斜拉桥拱塔的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和城市建设的需要,桥梁美观方面的要求变得越来越重要。因此城市中往往要修建一些比较优美的桥型,但是在结构方面就会比较复杂或者特殊。延吉拱塔斜拉桥就是这样一座桥梁,该桥桥塔比较独特,钢结构拱塔在横桥向为两个椭圆形拱,在纵桥向两个椭圆形拱分别向两侧倾斜20°角呈“V”型,且在纵桥向和横桥向均为变截面,桥塔在国内为第一次设计修建。该桥桥塔在施工阶段和成桥阶段的稳定性是非常重要的。
     本文施工阶段的稳定性计算时对桥塔模型进行了简化,运用逐次渐近法计算了拱塔的临界荷载,并运用卡罗波夫的方法对各施工阶段的屈曲特征值进行了分析。分析结果表明,拱塔在各施工阶段稳定性满足规范要求;随着施工阶段的进展,屈曲特征值逐渐减小。另外,分析了各施工阶段风荷载对屈曲特征值的影响,结果表明风荷载影响不大,影响随着施工阶段的进展逐渐减小,影响值0~2%之间。
     本文基于空间有限元原理运用Matlab程序编制了空间稳定的计算程序,并运用Midas和Ansys有限元程序对其进行了验证。运用该程序计算了成桥阶段各种可能的荷载或荷载组合的屈曲特征值,分析了风荷载、系统温度和活载的影响。分析结果表明,桥塔的屈曲主要以平面外侧倾失稳为主,各工况屈曲特征值均满足规范要求,风荷载和系统温度对成桥阶段桥塔的屈曲影响不大,活载对其有一定的影响,大约为5%左右。
     本文采用Midas有限元程序对桥塔进行了施工阶段和成桥阶段几何非线性屈曲分析,得出了各施工阶段和成桥阶段各荷载工况的荷载-位移曲线。分析结果表明,由于几何非线性的影响,桥塔的屈曲特征值减小了20%~30%左右,因此在进行拱塔的稳定分析时应计入几何非线性的影响。
With the city's economic development and the necessary construction, aesthetic requirements of bridges become more and more important. Some of the more beautiful bridges will be built in the cities, but they are always more complicated or special in the structure. Yanji arch-tower cable-stayed bridge is this kind of bridge.The bridge tower is quite unique that the tower is ellipse arch in the horizontal bridge approaches and is "V" type in the vertical bridge approaches because the two arch towers incline 20°angle to each side.This tower is the first construction in domestic.The stability of this tower is an important example in the construction stage and the operational stage.
     The model of the tower is simplified and the critical load is got by Successive approximation method in the construction stage analysis. The buckling eigenvalue of each construction stage is got by Calobove method. The analysis results indicate that the arch tower is safe at stability in the construction stage, and the buckling eigenvalue is smaller with the construction evolving. In addition, the effect of wind load to the buckling eigenvalue is analysised in each construction stage. The results show that the effect of wind is little, and it is smaller with the construction evolving, which is 0~2%.
     In this paper, the stability program is compiled by Matlab based on spatial finite element theory, and it is validated by the program Midas and Ansys. The buckling eigenvalue of each possible load and load combination is caculated by this program and the effect of wind load, the overall temperature and the moving load is analysised in the operational stage. The results reveal that the buckling style is the roll-plane instability primarily, the buckling eigenvalue of each load case meet the code, the effect of wind load and the overall temperature to the buckling eigenvalue is little, the effect of moving load is about 5%.
     The geometry non-linear buckling analysis of the tower is carried on in the construction stage by the program Midas. The load- displacement curve is obtained in the construction stage and the operational stage. The results indicate that the buckling eigenvalue reduces about 20%~30% because of the effect of the geometry non-linear. Therefore, it is necessary to reckon the effect of the geometry non-linear in when the buckling of the tower is analysis.
引文
[1]吴明德.弹性杆件稳定理论[M].北京:高等教育出版社,1988,8:1-14
    [2]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992,10:1-5,68-104
    [3]王宏.高墩大跨连续刚构桥稳定性和静力分析[D].大连理工大学硕士学位论文,2007,12
    [4]陈铨恺.大跨连续刚构桥的双肢薄壁高墩施工稳定性分析[D1.湖南大学硕士学位论文,2007,5
    [5]曾昭东.大跨径钢管混凝土拱桥稳定性及极限承载力研究[D].长沙理工大学硕士学位论文,2007,4
    [6]费志中.弹性稳定[M].北京:煤炭工业出版社,1989,10:3-18
    [7]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991,6:1-4
    [8]D.A.Dadeppo,R.Schmidt.Large Deflection Loads[J].Appl.Mech.,1976,41(4),989-994
    [9]W.J.Austin,T.J.Ross.Elastic Buckling of Arches under Symmetrical Loading[J].Struct.Div.,ASCE,1976,102(5):1085-1095
    [10]S.Komatan,T.Shinke.Practical Formulation for in-plane Load Carrying Capacity of Arches[J].Civ.Engrg.,JSCE,1977,(267),39-52
    [11]T.Sakimoto,S.Komatsu.Ultimate Strength of Steel Arches under Lateral Loads[J];Civ.Engrg.,JSCE,1976,(252),1989-1994
    [12]T.Sakimoto,S.Komatsu.Ultimate Strength of Arches with Bracing Systems[J].Struct,Div.,ASCE,1982,108(ST5),525-534
    [13]T.Sakimoto,S.Komatsu.Ultimate Strength Formula for Steel Arches[J].Struct.Engrg.,ASCE.1983,109(3):613-627
    [14]S,Kuranishi,T.Yabubi.Some Numerical Estimation of Ultimate in-plane Strength of Two-Hinged Steel Arches[J].Civ.Engrg.,JSCE.1979,287:155~158
    [15]P.R.Calhoun,D.A.Dadeppo.Nonlinear Finite Element Analysis of Clamped Arches[J]Struct.Engrg.,ASCE.1983,109(3)599-612
    [16]Timshenko,S.P.,Young,D.H..Vibration problems in Engineering,1955,3-end
    [17]T.kitada.Ultimate strength and ductility of state-of the-art concrete-filled steel bridge piers in JaPan[J].Engineering Sturctuers,Vol.20.1998.347-354
    [18]S.H.Ju.Statistical analyses of effective lengths in steel arch bridges[J].Computers and Structures 2003,(81),1487-1497
    [19]Saldmoto.T.,Sakata.T..The out-of-Plane buckling strength of through-type arch bridges[J].Constructional Steel Research,1990,16
    [20]M.Elehalaknai.Concrete-filled circular steel tubes subjected to pure bending[J].Jounal of Constructional Steel Research 2001,57,1141-1168
    [21]Jin Cheng,Jian-Jing Jiang.Uitimate load carrying capacity of concrete-filled steel arch bridge under static wind loads[J].Computer&Sturetuers,2003,81,61-73
    [22]A.S.Nazmy.Stability and load-carrying capacity of three-dimensional long-span steel arch bridges[J].Computer&Structures1997,65(6),857-568
    [23]Y.L.Pi,N.S.Trahair.Nonlinear buckling and postbuckling of elastic arches[J].Structual Engineering,The University of Sydney,NSW,Australia,1998
    [24]Sadao Komatsu,Tatsuro.Ultimate Load-carrying Capacity Of Steel Arches[J].Journal Of the Struxtural Division,ASCE,1997
    [25]Y Fukasawa.The Buckling of Circular Arches by Lateral Flexure and Torsion under Axial Thrust[J].Proc.ASCE.1963
    [26]Samith Qaqish,Aimin Haddadin.Buckling of Elastic Circular Arches[J]J.Engng.Mech.ASCE.1991.
    [27]Vlahinos A.S.,Ermopoulos J C,Wang Yang-Cheng.Buckling analysis of steel arch bridges[J].Journal of Constructional Steel Research.1993
    [28]Wastlund,G.Stability.Problems of Compressed Steel Components and Arch Bridge[J].Proc.Of ASCE.1960
    [29]胡大琳.钢筋混凝土拱非线性分析[J].理论与应用力学学报,1988,1
    [30]盛洪飞等.无风撑钢管混凝土中承拱桥非线性试验分析[J].哈尔滨建筑大学学报,Vol.30 No.4
    [31]赵雷,张金平.大跨度拱桥施工阶段非线性稳定分析若干问题的探讨[J].铁道学报,1995,3
    [32]赵雷.龙潭河大桥施工阶段非线性稳定分析[J].中南公路工程,2000,9
    [33]颜全胜,韩大建,骆宁安.无风撑钢管混凝土系杆拱桥的非线性分析[J].中国土木工程学会公路桥梁和结构工程学会第十二届年会论文集,广州,1996:367-372
    [34]刘忠.万县长江大桥稳定与承载能力分析[J].中国土木工程学会公路桥梁和结构工程学会第十二届年会论文集,广州,1996:379-384
    [35]郑振飞,吴尚杰.安溪铭选大桥侧向稳定分析[J].福州大学学报(自然科学版)Vol.24,No.4,1996
    [36]钟新谷.单拱面预应力混凝土系杆拱桥极限承载力分析[J].工程力学.1999,05
    [37]陈宝春,陈友杰.钢管混凝土拱面内受力全过程试验研究[J].工程力学,2000,4
    [38]戴公连,李德建,曾庆元.深圳市芙蓉大桥连续钢管拱系杆拱桥空间稳定性分析[J].中国公路学报,2001,14
    [39]赵长军,王锋军,陈强,徐兴.大跨度钢管混凝土拱桥空间稳定性分析[J].公路.2001,12
    [40]袁红茵.大跨径钢管混凝土拱桥非线性效应及合理设计探讨[J].中外公路,2001,(10)
    [41]袁红茵,张贵明.大跨径钢管混凝土拱桥复合非线性研究及合理设计探讨[J].公路,2001,12
    [42]申明文,李国平等.钢管混凝土拱的稳定与极限承载力分析[J].结构工程师,2002,1
    [43]章庆军.钢管混凝土桁肋拱桥的有限单元模型及动力特性分析[J].中国市政工程, 2004,3
    [44]铁木辛柯著,张福范译.弹性稳定理论.北京:科学出版社,1965,120-131
    [45]胡大琳,艾夫·哈依姆,黄安录.大跨径钢管混凝土拱桥空间几何非线性分析[J].中国公路学报,1998,4
    [46]李存权.结构稳定和稳定内力[M].北京:人民交通出版社,2000,3:1-12,56-78
    [47]唐家祥,王仕统,裴若娟.结构稳定理论[M].北京:中国铁道出版社,1989,10:1-10,89-95,117-120,385-504
    [48]夏志斌,潘有昌.结构稳定理论[M].北京:高等教育出版社,1988,7:1-10,89-104
    [49][美]A·查杰斯著,唐家祥译.结构稳定性理论原理[M].甘肃:甘肃人民出版社,1982,9:1-7,71-82,113-125
    [50]黎绍敏.稳定理论[M].北京:人民交通出版社,1989,11:1-4,30-42
    [51]武际可,苏先樾.弹性系统的稳定性[M].北京:科学出版社,1994,7:11-28
    [52]刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988,9:1-29,270-32
    [53]曾攀.有限元分析及应用[M].北京:清华大学出版社,20.04,6:119-122
    [54]罗晓峰.超大跨度斜拉桥稳定性研究[D].长沙理工大学硕士学位论文,2008,4:29-31
    [55]华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997,6:112-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700