多热源合成碳化硅炉温度场数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多热源合成碳化硅炉炉内温度分布、热量传递及温度梯度变化对碳化硅产品的产量、质量和能耗都有重要的影响。因此,研究合成炉内温度场规律和工艺条件对合成炉温度场的影响,采取一定措施改善生成碳化硅的温度区域,对于从根本上提高碳化硅的产量和质量,降低产品能耗和安全生产具有重要的意义。
     对传统的单热源合成炉(Acheson炉)和课题组研究发明的多热源合成炉的温度场进行了传热分析,进行了简化、假设和约定,确定了初始条件和边界条件,建立了数学模型。采用有限元法建立了单热源合成炉和多热源合成炉温度场的有限元几何模型和数值计算模型。分析了所建立的数学模型与ANSYS软件数学基础的一致性,表明采用ANSYS软件对多热源合成炉温度场进行数值模拟研究是可行的。
     通过查表及相关运算,确定了采用ANSYS软件所需的热性能参数。通过模拟及实验研究了单热源合成炉温度场随时间和功率的变化规律。分析了不同炉型多热源炉温度场的温度分布、热流量及温度梯度的模拟结果的差异,表明多热源合成炉炉芯之间的热屏蔽作用、温度场叠加作用及相互之间的保温作用是其具有节能、提质和高产等优点的内在原因,并通过实验进行了验证;模拟探讨了不同供电功率时,多热源合成炉内温度分布、热量传递和温度梯度的变化状况,表明供电功率对合成炉的温度分布、热量传递和温度梯度变化具有重要的影响,确定了模拟炉型的最佳供电功率,多热源合成工艺实验表明实验结果和模拟结果基本相符;研究了立体四热源炉内温度场随时间的变化趋势,表明供电时间对炉内温度分布状况和碳化硅反应区域的大小有影响。
     研究了热源数目趋于无穷时的合成炉温度分布、热流量和温度梯度的演变规律。表明随热源数目的增多,热源之间的温度场叠加区域的温度分布趋于一致,热流量和温度梯度很小且趋于一致。热源数目为无数多个时,炉芯之间的温度大小一致,炉芯之间温度场成为一个均匀的温度场。利用无数多个热源温度场的启示,提出将导电体掺入反应料使之导电发热合成碳化硅材料的方法,即无芯炉法。
     对提出的无芯炉合成碳化硅材料的方法的进行了实验验证研究。研究了反应料配比、供电功率和供电时间等供电制度对碳化硅合成的影响;采用XRD和SEM等
    
     分析测试手段分析了合成的不同类型碳化硅产品的微观形态和特性,并指出了其可--
    _能的应用领域。
The temperature distribution, heat-transfer and temperature gradient change have vital influence on yield, quality and energy-cost of SiC product in multi-heat sources synthesis SiC furnaces. Therefore the study on regulation of temperature field and effect of the process condition on temperature field and measure that improving temperature area of silicon carbide synthesis has a great importance to enhance yield and improve quality, decrease energy-cost and safely produce.
    The temperature fields of traditional single-heat source furnace (Acheson furnace) and multi-heat sources synthesis furnaces invented by our group are analyzed by heat transfer method. The initial and boundary conditions are confirmed, through simplification, hypothesis and assumption of single-heat source and multi-heat sources furnace. And the mathematics models of temperature field are formed in single-heat source and multi-heat sources synthesis furnaces. The geometry models and numerical calculation models of temperature field in single-heat and multi-heat sources furnaces are established through finite element method. The consistency between confirmed mathematics models and mathematics base of ANSYS software is analyzed. It is showed that the study on numerical simulation of temperature field in multi-heat source is feasible with ANSYS software.
    The heat-performance parameters are determined through table and interrelated operation. The change rules of temperature field and reaction area with time and power are studied in single-heat source by simulation and experiment.
    The difference of simulation results of temperature distribution, heat flux and temperature gradient in various type furnaces is discussed. It is showed that the inner reasons for energy saving, quality improving, high-yield in multi-heat source furnace are
    
    
    the functions of heat shield among cores, superposition and heat preservation of temperature fields each other. The simulation results are tested with multi-heat sources technical experiments.
    The changing rules of temperature distribution, heat-transfer and temperature gradient are simulated also in multi-heat sources furnace when the power is various. The study results show that the power has important effect on temperature field, heat-transfer and temperature gradient. And the optimum power of simulating furnace is ascertained. The experiment results are in accord with simulation results.
    Subsequently, the changing tends of temperature field are analyzed at different time in multi-heat sources furnace temperature. The study shows that the time has influence on temperature distribution and area of synthesis silicon carbide.
    And then the evolvement regulations of temperature distribution, heat flux and temperature gradient in furnaces are researched when the heat source number increases infinitely. The result demonstrates that the area temperature, heat flux and temperature gradient among heat sources become uniform and consistent with heat source number increasing. When the heat sources are unnumbered, the temperature among heat sources become coincident and the heat flux value and gradient value are almost naught. The temperature field among heat sources is even and consistent. Based on the study the new synthesized method of silicon carbide is put forward, named non-core furnace method that conductor is added to raw material to synthesis SiC.
    Finally, the feasibility of non-core furnace method for synthesis silicon carbide is tested by experiment in paper. The influences of raw material batch, power and time on silicon carbide are studied. The microcosmic form and performance of silicon carbide are analyzed through XRD and SEM analysis instrument. The potential application range is pointed out.
引文
[1] [澳大利亚]M.V.斯温主编.郭景坤,等译.材料科学与技术丛书—陶瓷的结构与性能.北京:科学出版社,1998.156~163,206~221
    [2] N.Neil, T.C.John. Silicon Carbide. Ceramic Bulletin, 1990, 69(5): 878~890
    [3] 王启宝,等.稻壳合成β-SiC晶须/颗粒及其增强复合材料的应用.金刚石与磨料磨具工程,1996,95(5):9~11
    [4] 高积强,等.碳化硅陶瓷的工程应用.机械工程材料,1999,23(3):1~3
    [5] 袁明文.SiC材料与器件.半导体情报,2001,38(2):1~6
    [6] K.Rottner, M.Frischholz and T. Myrtveit, et al. SiC power devices for high voltage applications. Materials Science and Engineering, 1999, B61~62: 330~338
    [7] 王启宝,等.SiC晶须的特性及其合成与应用发展现状.化工新型材料,1997,25(5):8~13
    [8] E.G. Acheson, Production of artificial crystalline carbonaceous materials. America, US Patent 492767, 2.28.1893
    [9] 周强.艾奇逊电阻炉在中国.工业炉,1999,21(4):4~5
    [10] K.H.Mehrwald. History and economic aspects of industrial SiC manufacture. Cfi/Ber. DKG 1992, 69(3):72~81
    [11] 王晓刚.煤矸石的纳米结构和用煤矸石与烟煤低温合成β-SiC的研究:[学位论文].西安:西安交通大学,1999
    [12] J. Bose and Rao M.Subba. Characteristic of Silica in rice husk ash. America Ceramic Society Bulletin, 1986,65(8): 1177~1182
    [13] S.Shiro, A.Nobuyuki and K.Kazuhiko. Synthesis of β-SiC whiskers from silica black ore. Journal of the Ceramic Society of Japan, 1996, 104(10): 992~994
    [14] 乔冠军,等.碳化硅粉体制备技术.硅酸盐通报,1993,12(3):34~39
    [15] I.J.Macolm. In forming, shaping, and working of high-performance ceramics. New York: Chapman and Hall, 1988. 90~103
    [16] T. B.Perter and Shaffer. SiC synthesized by carbon and silicon. In: H. Heystek(ed.), Proceeding of the conference on raw material for advanced and engineering ceramics, New York: The America Ceramic Society, 1985.1289~1295
    [17] Sata and Ryoda. Manufacture of high purity beta silicon carbide powder by utilizing
    
    multi-arc. Chemical Abstract 1995, 123(1): 203~212
    [18]Nishikawa and Nobuo. Continuous preparation of silicon carbide. Chemical Abstract, 1976, 85(4): 162~168
    [19]戴长虹,等.碳化硅纳米晶须的制备.硅酸盐学报,2001,29(3):275~277
    [20]郝旭升.世界SiC产量分布.耐火材料,1999,(6):362
    [21]许可强.我国碳化硅产品出口的现状及问题分析.金刚石磨料磨具工程,1999,113(5):43~45
    [22]谢龙滨.国内外碳化硅材料的基本情况.电碳,1995,(4):1~5
    [23]王晓刚.多芯炉生产碳化硅新技术推广应用可行性报告.西安:西安科技学院,2001.2~3
    [24]宁夏回族自治区经济贸易委员会.关于推广碳化硅多芯炉冶炼新技术的通知.2001,1~3
    [25]魏明坤,等.碳化硅耐火材料的发展与性能.硅酸盐通报,2001,(3):36~40
    [26]彭伟良.碳化硅冶炼工艺平横技术讨论(2).金刚石与磨料磨具工程,1995,5(3):44~45
    [27]周强.炉表温度对单位电耗的影响.工业炉,1998,30(4):16~19
    [28]李建福.我厂4400KVA碳化硅炉变与炉体不匹配的原因分析.甘肃冶金,1998(2):54~56
    [29]王福德.碳化硅电阻炉工艺和电气参数配合的探讨.甘肃冶金,1997(2):38~42
    [30]H.Daniel Filsinger and B. Bourrie Daniel. Silica to Silicon: key carbon-thermic reactions and kinetics. J.AM.Ceram. Soc, 1990,72(6). 1726~1732
    [31]I.Rosenqvist, J.K.Tuset. Discussion of "Thermodynamics of the Si-C-O system for the production of silicon carbide and metallic silicon". Metallurgical Transaction, 1987,18B: 471~472
    [32][美]施天谟.计算传热学.北京:科学出版社,1987.194~207
    [33]Michal Krizek. Finite element approximation of a nonlinear steady-state heat conduction problem, Journal of Computational Mathematics, 2001,19(1):27~34
    [34]Cui Guixiang, Xu Weran and Zhang Zhaoshun. Three-dim ensional Numerical Prediction of the flow and temperature Field at the surface of a PDC bit, TSINGHUA SCIENCE AND TECHNOLOGY, 1998,2(3): 981~988
    [35]Cheng Heming, Zhang Shuhong and Wang Honggang, et al. Finite element analysis of temperature field with phase transform and non-linear surface heat-transfer coefficient during quenching. Applied Mathematics and mechanics, 1998,1 (19): 15~20
    [36]Li Junchang, J.Merlin and Chen Jinbo, et al. Quick approximate calculation on the
    
    transient temperature field of laser heat treatment. CHINSES JOURNAL OF LASERS, 1997,6(3):282~288
    [37]何恩广.多炉芯法和无炉芯法工业合成SiC材料及其节能优化技术研究:[学位论文].西安:西安交通大学,2001
    [38]李景涌.有限元法.北京:北京邮电大学出版社,1999.3~5
    [39]俞昌铭编著.热传导及其数值分析.北京:清华大学出版社,1981.5~7
    [40]程尚模主编.传热学.北京.高等教育出版社,1990.19~23
    [41]王晓刚主编.碳化硅合成理论与技术.西安:陕西科学技术出版社,2001.189~193
    [42]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998.263~264
    [43]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999,1~8,48~71,166~185
    [44]钱作勤,等.ANSYS在求解点线啮合齿轮稳态温度场中的应用.武汉造船,1999,(4):20~23
    [45]周晓琴,等.ANSYS三维热分析及应用.武汉交通科技大学学报,1999,23(1):9~13
    [46]王华倩.大型通用有限元分析软件—ANSYS.计算机辅助设计与制造,1998,(12):16~18
    [47]孙晋涛.硅酸盐热工基础,武汉:武汉工业大学出版社,1992.210~211
    [48]叶大伦.实用无机热力学手册,北京:冶金工业出版社,1981.431
    [49]陆佩文.物理化学手册.上海:上海科技出版社,1991.243
    [50]美国ANSYS公司北京办事处.ANSYS基本过程操作手册,1998.23~72
    [51]宋希敏,等.耐火材料、磨料行业细碎、粗磨新型加工设备.中国粉体技术,2000,6:159~162
    [52]Hatakeyama, Fumio and Kangaki, et al. Synthesis of monodispersed spherical beta-silicon carbide power by a sol-gel process. Journal of the American Ceramic Society, 1990, 73(7): 2107~2110
    [53]Rcardoifuents. Silicon carbide: advanced material application and preparation. Chemisty&Industry, 1992,(2): 806~808
    [54]Wang Yucheng, Kong Huashang and T. Jeffrey etal. Effect of substrate orientation on interracial and bulk character of chemically vapor deposited mono-crystalline silicon carbide thin films. J.AM.Ceram. Soc, 1990,73 (5). 1289~1296
    [55]P.K.Mishra, B.B.Nayak and B.Mohanty. Synthesis of silicon carbide from rice husk in a packed bed arc reactor. Journal of the America Ceramic Society, 1995,78(9): 2381~2384
    
    
    [56] R.W. Smith. Reactive plasma spray forming for advanced materials synthesis. Powder Metallurgy International, 1993,25(1):9~16
    [57] L.Wang, H.Wada and L.F. allard. Synthesis and characterization of SiC whiskers. Journal of Material Research, 1992,7(1): 148~163
    [58] N.K.Shrama, W.S.Williams and A.Zangvil. Formation and Structure of silicon carbide whiskers from rice hull. Journal of America Society, 1984, 67(11):715~720
    [59] J.V. Milewski, F.D.Gac and J.J.Petrovic, et al. Growth of beta-silicon carbide whiskers by the process. Journal of Material Science, 1985, 20(2): 1160~1166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700