转录因子FOXC1在妇科肿瘤中的表达及临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的转录因子是一类通过对靶基因表达的调控从而起到对机体的发育、分化、代谢等的关键性作用的蛋白质分子。转录因子家族Forkhead Box(FOX家族)是2000年由国际Forkhead/winged helix命名委员会正式统一命名的转录因子家族,其家族成员都可以通过特有DNA结构域结合DNA,近年来研究发现,其功能涉及细胞分化状态的维持、胚胎发育、细胞周期调控、糖类代谢、细胞凋亡等多个生物学过程,其基因突变与发育畸形、肿瘤发生相关。
     转录因子FOXC1属FOX家族成员之一。研究发现,其基因突变与动物胚胎发育及人类阿克森费尔德·里格尔综合征(ARS)密切相关,阿克森费尔德·里格尔综合征属于常染色体遗传性发育异常,其临床表现分为视表现型及非视表现型,其中视表现型包括虹膜基质发育低下,小角膜发育低下,前房粘连,角膜混浊及青少年青光眼;非视表现型包括上颌骨发育低下,牙发育不全及脐周皮肤翻转异常。此外,FOXC1可能参与了几种人类生殖道肿瘤发生发展过程,如前列腺癌,子宫内膜癌及卵巢癌等。但迄今,FOXC1基因蛋白在妇科肿瘤组织中的表达及临床意义尚无实验研究报道。本实验研究通过检测FOXC1在浆液性卵巢癌细胞株SKOV-3与HO-8910,良性、交界性及恶性浆液性卵巢肿瘤组织,子宫内膜癌组织及宫颈癌组织中的表达情况,并回顾性研究FOXC1表达与3种恶性妇科肿瘤临床病理特征间的相关性,旨在探讨FOXC1与妇科肿瘤发生、发展间的关系,为进一步深入研究妇科肿瘤的发病机制提供理论依据。
     方法体外培养人卵巢癌浆液性囊腺癌SKOV-3及HO-8910细胞株;收集2004年2月~2009年2月间于重庆医科大学附属第二医院病理科经手术切除后存档的石蜡组织标本,其中浆液性卵巢肿瘤(包括良性、交界性及恶性)80例、子宫颈癌54例、子宫内膜癌23例;另收集新鲜卵巢肿瘤标本7例,包括3例散发性浆液性卵巢囊腺癌,2例交界性浆液性囊腺瘤,2例浆液性囊腺瘤及正常卵巢,正常子宫内膜组织做对照,均来自重庆医科大学附属第二医院2008年12月~2009年2月间手术切除的标本。Western-blot及免疫组化法检测2种卵巢癌细胞株中FOXC1蛋白表达。原位杂交法检测卵巢肿瘤中FOXC1mRNA的表达及定位。RT-PCR检测卵巢肿瘤及正常卵巢,子宫内膜组织中FOXC1mRNA表达水平。采用免疫组织化学SP法对2种卵巢癌细胞株、浆液性卵巢肿瘤、宫颈癌、子宫内膜癌石蜡组织中的FOXC1蛋白进行检测;卵巢浆液性囊腺癌患者的血肿瘤相关抗原(CA125)水平均为接受手术前经化学发光法测定;χ2检验或Fisher精确概率法及相关性检验进行统计学分析。
     结果⑴FOXC1表达:2株浆液性卵巢囊腺癌中FOXC1蛋白均有表达;FOXC1mRNA在正常卵巢组织及卵巢肿瘤组织中有表达。FOXC1蛋白在46(57.5%)例卵巢肿瘤组织,29(53.7 %)例子宫颈癌组织及FOXC1蛋白在20(87.0 %)例子宫内膜组织有表达。⑵卵巢浆液性囊腺瘤FOXC1蛋白表达阳性率为84%;交界性浆液性肿瘤中FOXC1蛋白表达阳性率为66.7%;浆液性囊腺癌中FOXC1蛋白表达阳性率为37.5%,明显低于浆液性囊腺瘤和交界性浆液性肿瘤组织(P<0.01),且与FIGO手术病理分期及血CA125测定值密切相关(P<0.05),但与年龄、组织学分级及腹水量间无关(P>0.05)。⑶FOXC1阳性表达与宫颈癌组织学分级相关(P<0.05),与宫颈癌的病理分型,FIGO临床分期,宫颈肌层浸润及盆腔淋巴结转移之间无关(P>0.05)。⑷FOXC1蛋白表达与子宫内膜癌病理类型,组织学分级,FIGO手术病理分期,肌层浸润深度,宫颈受累情况及附件受累,盆腔淋巴结转移之间均无关(P>0.05)。
     结论⑴浆液性卵巢囊腺瘤及交界性浆液性卵巢囊腺瘤组织中FOXC1蛋白表达水平明显高于浆液性卵巢囊腺癌组织;而在浆液性卵巢囊腺癌中,高中分化囊腺癌的FOXC1蛋白表达水平亦有高于低分化浆液性卵巢囊腺癌的趋势,组织分化程度越低,阳性表达率越低;浆液性囊腺癌中FOXC1蛋白表达阳性率与FIGO手术病理分期呈明显相关及与血CA125测定值水平相关;提示FOXC1蛋白表达可能与卵巢肿瘤细胞的生物学行为有关,并参与了浆液性卵巢癌的发生发展过程。⑵FOXC1阳性表达与宫颈癌的组织学分级相关,FOXC1蛋白可能参与了子宫颈癌的发生及发展过程,提示FOXC1表达降低,是子宫颈癌恶性程度增高的表现。⑶FOXC1可能未参与子宫内膜癌的发生发展过程。
Objective Transcription factors are a group of modular proteins which are involved in a wide variety of biological processes of development, differentiation and metabolism through regulating their target genes. The conserved members of forkhead box(FOX)/winged-helix transcription factor family, whose nomenclature were revised in 2000, have the same basic design in their interaction with DNA through specific DNA-binding forkhead domain. In recent years the function of FOX genes has become better understood in controlling processes, including regulation of maintenance of differentiated cell states, embryogenesis, cell cycle, glycometabolism and cell apoptosis. In addition to their vital roles in normal development processes, a number of mutant FOX genes also participate in development malformation and tumorigenesis.
     Transcription factor FOXC1 is a member of FOX family. Studies on animal models have demonstrated the importance of FOXC1 as a developmentally key transcription factor. Mutations of FOXC1 gene in human result in various glaucoma-related phenotypes, e.g. Axenfeld-Rieger syndrome (ARS) is an autosomal dominantly inherited developmental disorder in which patients present with ocular and non-ocular clinical findings. Ocular characteristics include hypoplasia of the anterior iris stroma, microcornea, anterior chamber synechiae, corneal opacity, and juvenile onset glaucoma. Nonocular features typically include maxillary hypoplasia, hypodontia, and failure of involution of the periumbilical skin. Previous study also revealed FOXC1 might be involved in several types of genital tumorigenesis, such as human prostate, endometrial and ovarian cancers.
     However, it was unclear whether FOXC1 protein exists in gynecological tumor tissues. In addition, its clinical significance of FOXC1 protein in gynecological tumor remains poorly understood. This study was designed to clarify the problem and explore the association of FOXC1 protein expression with clinicopathologic factors and outcome of the diseases.
     Methods Two human serous ovarian cystadenocarcinoma cell lines, SKOV-3 and HO-8910 cells were cultured in vitro. Eighty cases of serous ovarian tumor (including 25 ovarian cystoadenoma, 15 ovarian borderline serous cystoadenoma and 40 serous ovarian cystadenocarcinoma), 54 cervical cancer and 23 endometrial cancer, all paraffin embeded, were retrieved from case files in Department of Pathology of 2nd Affiliated Hospital of Chongqing Medical University between February, 2004 and February, 2009. Seven cases of serous ovarian tumor(including 2 ovarian cystoadenoma, 2 borderline ovarian cystoadenoma, and 3 serous ovarian cystadenocarcinoma), normal ovarian tissues and normal endometrial tissue as positive control, were recruited from gynecological operations of 2nd Affiliated Hospital of Chongqing Medical University between December, 2008 and February, 2009. Western-blot and immunohistochemistry were employed to dectect FOXC1 protein level in 2 ovarian cancer cell lines. In situ hybridization and RT-PCR were used to measure FOXC1 mRNA level in normal endometrium,normal ovarian tissue and ovarian tumors. Immunohistochemistry were employed to determine FOXC1 protein level in paraffin-bedded tumor tissues, including ovarian tumor, cervical cancer and endometrial cancer tissues. The relationships between FOXC1 protein expression of paraffin-bedded tumor tissues and clinicopathologic parameters were examined by Chi-square test or Fisher’s Exact Test and correlation test.
     Results⑴FOXC1 mRNA expression was confirmed in normal endometrium and ovarian tumor tissues. FOXC1 protein was revealed in 2 ovarian cancer cell lines, 46(57.5%)cases of ovarian tumor, 29(53.7 %)cervical cancer and 20(87.0 %)endometrial cancer.⑵Positive reactivity was found in 21 (84%) cases of serous ovarian cystoadenoma, in 10 (66.7%) serous ovarian borderline cystoadenoma, and in 15 (37.5%) serous ovarian cystadenocarcinoma. Chi-square test showed a significant correlation between positive FOXC1 immunoreactivity and pathological subtypes of serous ovarian tumor (P<0.01) and FOXC1 protein levels significantly decreased with advancing FIGO stages (Ⅰ~ⅡvsⅢ~Ⅳ) and serum CA125 levels(P<0.05). No significant association was shown between FOXC1 protein expression and clinicopathological factors including age, histological grade and volumes of ascites (P>0.05).⑶Significant correlation in retrospective study was observed between FOXC1 protein expression and histological grades (P<0.05) in cervical cancer. No significant association was shown between FOXC1 protein expression in cervical cancer and clinicopathological factors including pathological types, FIGO stages, lymph node metastasis and etc.⑷No significant association was shown between FOXC1 protein expression in endometrial cancer and clinicopathological factors including pathological types, histological grades, FIGO stages, myometrial invasion and involvement of cervix and adnexa, and lymph node metastasis (P>0.05).
     Conclusion⑴Expression levels of FOXC1 protein in paraffin-bedded tissues of serous ovarian cystoadenoma and serous ovarian borderline cystoadenoma were revealed to be significantly higher than in serous ovarian cystadenocarcinoma. There was also a decreasing trend of FOXC1 protein expression with increased histological grades. Positive FOXC1 expression in serous ovarian cystadenocarcinoma was found correlated with FIGO stages, while there was a significantly correlation between FOXC1 expression and serum CA125 levels. Loss of FOXC1 expression may be an early event in serous ovarian tumorigenesis.⑵FOXC1 expression in cervical cancer was revealed correlated with histological grades. Loss of FOXC1 expression may play an important role in genesis and development of cervical cancer.⑶FOXC1 expression may not play a role in genesis and development of endometrial cancer.
引文
[1]吴爱如.妇科恶性肿瘤的流行病学[J].中国肿瘤.1997,6(11):3-5.
    [2] Benjamin I, Rubin SC. Management of early stage epithelial ovarian cancer[J]. Obstet Gynecol Clin Norht Am. 1994,21:107.
    [3] Bosch FX, Mu?oz N. The viral etiology of cervical cancer[J].Virus Res. 2002,89(2):183-190.
    [4] Kim YT, Zhao M. Aberrant cell cycle regulation in cervical carcinoma[J]. Yonsei Med J.2005,46(5):597–613.
    [5]张维,刘爽,徐宁志. Wnt信号传导通路及其在肿瘤发生中的作用[J].世界华人消化杂志. 2002,10(10):1201-1205.
    [6]江培洲,沈新明.癌基因与抑癌基因的表达研究进展[J].国外医学:肿瘤学分册. 2001,28(2):89-92.
    [7] Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism[J]. Dev Biol.2002,250(1):1-23.
    [8] Kaestner KH, Kn?chel W, Martinez DE. Unified nomenclature for the aged helix/forkhead transcription factor [J]. Genes Dev. 2000,14(2):142-146.
    [9] Kaufmann E, and Kn?chel W. Five years on the wings of fork head [J]. Mech Dev.1996,57(1): 3-20.
    [10] Lehmann OJ, Sowden JC, Carlsson P, et al. Fox’s in development and disease[J]. Trends Genet.2003,19(6):339-344.
    [11] Cocquet J,Pailhoux E,Jaubert F, et a1.Evolution and expression of FOXL2[J].J Med Genet.2002,39(12):916-921.
    [12] Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism[J]. Dev Biol. 2002, 250(1):1-23.
    [13] KaestBer KH, Bleckmann SC, Monaghan AP, et al. Clustered arrangement of winged helix genestida-6 and MFH-l:possible implications for mesoderm development[J]. Development.1996,122(6):1751-1758.
    [14] von Both I, Silvestri C, Erdemir T, et a1. Foxhl is essential for development of the anterior heart field[J]. Dev Cell.2004,7(3):331-345.
    [15] Nishimura DY, Searby CC, Alward W L, et al. A spectrum of FOXC l mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye[J]. Am J Hum Genet.200l,68(2):364-372
    [16] Cocquet J, De Baere E, Gareil M, et a1. Structure,evolution and expression of the FOXL2 transcription unit[J]. Cytogenet Genome Res.2003,101(3-4):206-211.
    [17] FontenoL JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Irnmunol.2003,4(4):330-336.
    [18] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science.2003,299(5609):1057-1061.
    [19] Khattri R, Cox T, Yasayko SA, et a1. An essential role for Scurfm in CD4+CD25+T regulatory cells[J]. Nat Immunol.2003,4(4):337-342.
    [20] Roncador G, Garcia JF, Garcia JF,et a1. FOXP3, a selective marker for a subset of adult T-cell Leukaemia/lymphoma[J].L eukemia.2005,19(12): 2247-2253.
    [21] Leenders H, Whiffield S, Benoist C, et a1. Role of the forkhead transcription family member, FKHR,in thymocyte differentiation[J]. Eur J Immunol.2000,30(10): 2980-2990.
    [22] Wolfrum C,Asilmaz E,Luea E,et a1.Foxa2 reguLates lipid metabolism and ketogenesis in the liver during fasting and in diabetes[J].Nature.2004,432:1027-1032.
    [23] Wolfrum C,Shih D Q,Kuwajima S,et a1.Role of Foxa-2 in adipocyte metabolism and differentiation[J].J Clin Invest.2003,112:345-356.
    [24] Luo MJ, Chen LL, Zheng J, et al. The effect of calorie restriction on the expression of liver’s gulconeogenesis[J]. Zhonghua Gan Zang Bing Za Zhi.2008,16(2):125-8.(article in Chinese)
    [25] Laoukili J, Kooistra MR, Brás A, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability[J]. Nat Cell Biol. 2005.eb;7(2):126-36.
    [26] Teh MT, Wong S T, Neill G W, et a1. FOXM I is a downstream target of Gli l in basal cell carcinomas[J]. Cancer Res.202, 62:4773-4780.
    [27] Kalinichenko VV, Major ML, Wang X, et a1. Foxmlb transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor[J]. Genes Dev.2004,18: 830-850.
    [28] Wonsey DR, Follettie MT. Loss of the forkhead transcription factor FoxMl causes centrosome amplification and mitotic catastrophe[J]. Cancer Res.2005,65:5181-5189.
    [29] Martinez-Gac L, Marques M, Garcia Z, et a1. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead[J]. Mol Cell Biol.2004,24:2181-2189.
    [30] Paik J, Kollipara R, Chu G, et al. FoxOs are lineage-restricted redundant tumor suppressors and critical regulators of endothelial cell homeostasis[J]. Cell.2007,128(2): 309-323.
    [31] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell.1999,96(6): 857-868.
    [32] Chong Z, Li F, Maiese K. GroupⅠMetabotropic Receptor Neuroprotection Requires Akt and Its substrates that govern FOXO3a, Bim andβ-catenin during oxidative stress[J]. Curr Neurovasc Res. 2006,3(2):107-117.
    [33] Birkenkamp KU, Coffer PJ. Regulation of cell survival andproliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors[J]. Biochem Soc Trans. 2003, 31(Pt 1):292-297.
    [34] Eichberger T, Regl G, Ikram MS, et a1. FOXE1, a new transcriptional target of GLl2 is expressed in human epidermis and basal cell carcinoma[J]. J Invest Dermatol.2004,122:1180-1187.
    [35] Freyaldenhoven BS, Fried C, Wielckens K. FOXD4a and FOXD4b, two new winged helix transcription factors,are expressed in human leukemia cell lines[J]. Gene.2002,294:131-140.
    [36] Hayashi H, Sano H, Seo S, et al. The Foxc2 Transcription Factor Regulates Angiogenesis via Induction of Integrinβ3 Expression[J]. J Biol Chem. 2008,283(35): 23791-23800.
    [37] Mani S, Yang J, Brooks M, et al. Mesenchyme Forkhead 1(FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers[J]. Proc Natl Acad Sci U S A. 2007,104(24):10069-10074.
    [38] Nicolas Kalfa, Pascal Philibert, Catherine Patte, et al. Extinction of FOXL2 expression in aggressive ovarian granulosa cell tumors in children[J]. Fertil Steril.2007,87(4):896-901.
    [39] Milne K, K?bel Martin, Kalloger SE, et al. Systematic Analysis of Immune Infiltrates in High-Grade Serous Ovarian Cancer Reveals CD20, FoxP3 and TIA-1 as Positive Prognostic Factors[J]. PLoS One.2009,4(7): e6412.
    [40] [40] Zhang HY, Sun H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer[J]. Phytomedicine. 2010,287(1): 91-97.
    [41] Santin AD, Zhan F, Bignotti E, et al. Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy[J].Virology.2005,331(2):269-291.
    [42] Ward EC, Hoekstra AV, Blok LJ, et al. The Regulation and Function of the Forkhead Transcription Factor, Forkhead Box O1, Is Dependent on the Progesterone Receptor in Endometrial Carcinoma[J]. Endocrinology.2008,149(4):1942-1950.
    [43] Mears AJ, Jordan T, Mirzayans F, et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly[J]. Am J Hum Genet.1998, 63(5):1316-1328.
    [44] Nishimura DY, Swiderski RE, Alward WL, et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25 [J]. Nat Genet.1998, 19(2):140-147.
    [45] Gould DB, Mears AJ, Pearce WG, et al. Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25 [J]. Am J Hum Genet.1997, 61(3):765-768.
    [46] Mirzayans F, Mears AJ, Guo SW, et al. Identification of the human chromosomal region containing the iridogoniodysgenesis anomaly locus by genomic-mismatch scanning [J]. Am J Hum Genet.1997, 61(1):111–119.
    [47] Pierrou S, Hellqvist M, Samuelsson L, et a1. Cloning and characterization of seven human forkhead proteins:binding site specificity and DNA bending[J]. Embo J.1994,13(20):5002-5012.
    [48] Saleem RA, Baneoee-Basu S, Berry FB, et a1. Analyses of the effects that disease-causing missense mutations have on the structure and function of the winged-helix protein FOXC1[J]. Am J Hum Genet.2001,68(3):627-641.
    [49] Saleem RA, Banerjee-Basu S, Berry FB, et a1. Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXCl[J]. Hum Mol Genet.2003,12(22):2993-3005.
    [50] Saleem RA, Murphy TC, Liebmarm JM, et a1. Identification and analysisof a novel mutation in the FOXCl forkhead domain[J]. Invest Ophthalmol Vis Sci.2003,44(11):4608-4612.
    [51] Berry FB, Mirzayans F, Walter MA. Regulation of FOXC1 stability and transcriptional activity by a!l epidermal growth factor-activated mitogen-activated protein kinase signaling cascade[J]. J Biol Chem.2006,281(15):10098-10104.
    [52] Seo S, Fujita H, Nakano, A, et a1. The forkhead transcription factors,Foxc l and Foxc2,are required for arterial specification and lymphatic sprouting during vascular development[J]. Dev Biol.2006,294(2):458-470.
    [53] Berry FB, Skarie JM, Mirzayans F, et a1. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO 1A[J]. Hum Mol Genet.2008,l7(4):490-505.
    [54] Zhou Y, Kato H, Asanoma K, et al. Identification of FOXC1 as a TGF-beta1 responsive gene and its involvement in negative regulation of cell growth[J]. Genomics.2002,80(5): 465-472.
    [55] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med.2004,10(9):942-949.
    [56] [56] Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the dentification of high-risk breast cancer patients and those at risk of late relapse[J]. Clin Oncol. 2006, 24(34):5373-5380.
    [57] Kobayashi N, Hiraoka N, Ymagami W, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis[J]. Clin Cancer Res.2007,13(3):902-911.
    [58] Banham AH, Beasley N, Campo E, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene onchromosome 3p[J]. Cancer Res.2001,61(24):8820-8829.
    [59] Fu L, Girling JE, Rogers PAW. Expression of Fox Head Protein 1 in Human Eutopic Endometrium and Endometriosis[J]. Reproductive Sciences.2008,15(3): 243-252.
    [60] Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Loss of expression and nuclear/cytoplasmic localization of the FOXP1 forkhead transcription factor are common events in early endometrial cancer: relationship with estrogen receptors and HIF-1alpha expression[J]. Mod Pathol.2006,19(1):9-16.
    [61] Fox SB, Brown P, Han C, et al. Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptorαand improved survival in primary human breast carcinomas[J]. Clin Cancer Res.2004,10:3521-3527.
    [62] Ryan A, Susil B, Jobling T, et al. Endometrial cancer[J]. Cell Tissue Res.2005, 322(1):53-61.
    [63] Madureira PA, Varshochi R, Constantinidou D, et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells[J]. J Biol Chem.2006,281(35):25167-25176.
    [64] Kim IM, Ackerson T, Ramakrishna S, et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer[J]. Cancer Res.2006,66(4):2153-2161.
    [65] Douard R, Moutereau S, Pernet P, et al. Sonic Hedgehog-dependent proliferation in a series of patients with colorectal cancer[J]. Surgery.2006,139(5):665-670.
    [66] Chan DW, Yu SYM, Chiu PM, et al. Over-expression of FOXM1 transcription factor is associated with cervical cancer progression and pathogenesis[J]. J Pathol.2008,215(3):245-252.
    [67]陈旭峰,牟瀚舟,戴惠芳,等。转化生长因子β1对人卵巢癌细胞系HO-8910凋亡的诱导作用[J].中华妇产科杂志,1997,32(7),436-439.
    [68] van der Heul-Nieuwenhuijsen L, Dits NF, Jenster G. Gene expression of forkhead transcription factors in the normal and diseased human prostate [J]. BJU Int.2009,103(11):1574-1580.
    [69] Berry FB, Saleem RA, Walter MA. FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain [J]. J Biol Chem.2002,277(12): 10292-10297.
    [70]林仲秋. FTGO IGSO妇癌分期和临床实践指南(之四).中国实用妇科与产科杂志.2004,20(6):381-382.
    [1] Kaestner KH, Kn?chel W, Martinez DE.Unified nomenclature for the aged helix/forkhead transcription factor [J]. Genes Dev, 2000; 14(2):142-146.
    [2] Kaufmann E, and Kn?chel W. Five years on the wings of fork head [J]. Mech Dev, 1996; 57(1): 3–20.
    [3] Cocquet J, Pailhoux E, Jaubert F,et al. Evolution and expression of FOXL2 [J]. J Med Genet, 2002; 39(12):916–921.
    [4] Nicolas Kalfa, Pascal Philibert, Catherine Patte, et al. Extinction of FOXL2 expression in aggressive ovarian granulosa cell tumors in children[J]. Fertil Steril, 2007;87(4):896-901.
    [5] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004;10(9):942–949.
    [6] Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cellsenables the dentification of high-risk breast cancer patients and those at risk of late relapse[J]. Clin Oncol, 2006; 24(34):5373–5380.
    [7] Kobayashi N, Hiraoka N, Ymagami W, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis[J]. Clin Cancer Res, 2007; 13(3):902–911.
    [8] Leffers N, Gooden MJ, de Jong RA, et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer[J]. Cancer Immunol Immunother, 2009; 58(3):449–459.
    [9] Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression[J]. Trends Mol Med, 2007; 13(3): 108–116.
    [10] de Jong D, Koster A, Hagenbeek A, et al. Impact of the tumor microenvironment on prognosis in follicular lymphoma is dependent on specific treatment protocols[J]. Haematologica, 2009; 94(1): 70–77.
    [11] Ke X, Wang J, Li L, et al. Roles of CD4+CD25(high) FOXP3+ Tregs in lymphomas and tumors are complex[J]. Front Biosci, 2008; 13: 3986–4001.
    [12] Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma[J]. Blood, 2006; 108(9): 2957–2964.
    [13] Milne K, K?bel Martin, Kalloger SE, et al. Systematic Analysis of Immune Infiltrates in High-Grade Serous Ovarian Cancer Reveals CD20, FoxP3 and TIA-1 as Positive Prognostic Factors[J]. PLoS One, 2009; 4(7): e6412.
    [14] Zhang HY, Sun H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer[J].Phytomedicine, 2010; 287(1): 91-97.
    [15] Zhou Y, Kato H, Asanoma K, et al. Identification of FOXC1 as a TGF-beta1 responsive gene and its involvement in negative regulation ofcell growth[J]. Genomics, 2002; 80(5): 465–472.
    [16] Arimoto-Ishida E, Ohmichi M, Mabuchi S, et al. Inhibition of phosphorylation of a forkhead transcription factor sensitizes human ovarian cancer cells to cisplatin[J]. Endocrinology, 2004; 145(4):2014-2022.
    [17] Kim YT, Zhao M. Aberrant cell cycle regulation in cervical carcinoma[J]. Yonsei Med J, 2005; 46(5):597–613.
    [18] Katoh M, Katoh M. Human FOX gene family(Review)[J]. Int J Oncol, 2004; 25(5):1495–1500.
    [19] Kim IM, Ramakrishna S, Gusarova GA, et al. The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature[J]. J Biol Chem, 2005; 280(23):22278–22286.
    [20] Wang X, Kiyokawa H, Dennewitz MB, et al. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration[J]. PNAS, 2002; 99(26):16881–16886.
    [21] Yoshida Y, Wang IC, Yoder HM, et al. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer[J]. Gastroenterology, 2007; 132(4):1420–1431.
    [22] Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor[J]. Biol Chem, 2007; 388(12):1257–1274.
    [23] Teh MT, Wong ST, Neill GW, et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas[J]. Cancer Res, 2002; 62(16):4773–4780.
    [24] Kalinichenko VV, Major ML, Wang X, et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor[J]. Gene Dev, 2004; 18(7):830–850.
    [25] Madureira PA, Varshochi R, Constantinidou D, et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha inbreast cancer cells[J]. J Biol Chem, 2006; 281(35):25167–25176.
    [26] Kim IM, Ackerson T, Ramakrishna S, et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer[J]. Cancer Res, 2006; 66(4):2153–2161.
    [27] Douard R, Moutereau S, Pernet P, et al. Sonic Hedgehog-dependent proliferation in a series of patients with colorectal cancer[J]. Surgery, 2006; 139(5):665–670.
    [28] Santin AD, Zhan F, Bignotti E, et al. Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy[J]. Virology, 2005; 331(2):269-291.
    [29] Chan DW, Yu SYM, Chiu PM, et al. Over-expression of FOXM1 transcription factor is associated with cervical cancer progression and pathogenesis[J]. J Pathol, 2008; 215(3):245–252.
    [30] Creasman WT, Odicino F, Maisonneuve P, et al. Carcinoma of the corpus uteri [J]. J Epidemiol Biostat, 2001; 6(1):47–86.
    [31] Southcott BM. Carcinoma of the endometrium[J]. Drugs, 2001; 61(10):1395–1405.
    [32] Labied S, Kajihara T, Madureira PA, et al. Progestins Regulate the Expression and Activity of the Forkhead Transcription Factor FOXO1 in Differentiating Human Endometrium[J]. Mol Endocrinol, 2006; 20(1):35–44.
    [33] Kops GJ, de Ruiter ND, De Vries-Smits AM, et al. Direct control of the Forkhead transcription factor AFX by protein kinase B[J]. Nature, 1999; 398:630–634.
    [34] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell, 1999; 96(6):857–868.
    [35] Ryan A, Susil B, Jobling T, et al. Endometrial cancer[J]. Cell Tissue Res, 2005; 322(1):53–61.
    [36] Ward EC, Hoekstra AV, Blok LJ, et al. The Regulation and Function of the Forkhead Transcription Factor, Forkhead Box O1, Is Dependent on the Progesterone Receptor in Endometrial Carcinoma[J]. Endocrinology, 2008; 149(4):1942–1950.
    [37] Banham AH, Beasley N, Campo E, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p[J]. Cancer Res, 2001; 61(24):8820-8829.
    [38] Fu L, Girling JE, Rogers PAW. Expression of Fox Head Protein 1 in Human Eutopic Endometrium and Endometriosis[J]. Reproductive Sciences, 2008; 15(3): 243-252.
    [39] Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Loss of expression and nuclear/cytoplasmic localization of the FOXP1 forkhead transcription factor are common events in early endometrial cancer: relationship with estrogen receptors and HIF-1alpha expression[J]. Mod Pathol, 2006; 19(1):9-16.
    [40] Fox SB, Brown P, Han C, et al. Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptorαand improved survival in primary human breast carcinomas[J]. Clin Cancer Res, 2004; 10:3521-3527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700