旋毛虫排泄分泌物调节巨噬细胞及成肌细胞功能的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋毛虫是一种寄生于宿主骨骼肌细胞内的胞内寄生线虫,感染所有的哺乳动物(包括人类)和一些食肉鸟类。旋毛虫病是由旋毛虫(Trichinella)引起的一种呈全球性分布的食源性人兽共患寄生虫病。人类旋毛虫病在许多国家爆发,目前在世界范围内约有1100万人被感染,在我国该病仍有发生。旋毛虫感染不同于其他线虫,他的生活史在单一宿主内完成,分成三个主要阶段:成虫、新生幼虫和肌幼虫,其分别寄生于宿主肠上皮细胞和骨骼肌细胞。旋毛虫在感染不同时期,释放许多生物活性物质调节宿主免疫反应并入侵宿主肌细胞为自己构建了一个安全的家(包囊)来达到成功的寄生。
     在宿主抵抗外来病原入侵的免疫应答过程中,巨噬细胞在起始,调节,终末效应的各个环节起着重要的作用,因此他被认为是参与机体免疫应答的主要细胞。巨噬细胞在线虫感染中,已作为寄生虫调节宿主免疫反应的靶细胞,对寄生虫生存具有重要意义。另外,巨噬细胞在肌肉损伤的修复过程中也扮演着重要的角色,他不仅可以吞噬凋亡坏死的细胞碎片,而且通过其释放的活性因子调节卫星细胞的激活与分化。目前关于旋毛虫排泄分泌物(即ES)对肌细胞及巨噬细胞功能影响的报道比较少,研究不同时期ES产物对这些细胞功能的影响将有利于我们进一步的阐明旋毛虫免疫逃逸及包囊形成机制。
     首先,本研究选择了小鼠巨噬细胞系J774A.1做为细胞模型,调查了旋毛虫不同时期ES产物对巨噬细胞活性的影响。SYBR Green I实时荧光定量PCR和ELISA结果表明,不同时期ES产物降低了LPS刺激的巨噬细胞分泌促炎性细胞因子(IL-1β、IL-12、TNF-α和IL-6)的能力。然而只有旋毛虫3日龄成虫排泄分泌物(AD3 ES)和旋毛虫5日龄成虫(AD5)与新生幼虫(NBL)混合排泄分泌物(AD5-NBL ES)明显抑制了LPS刺激的效应分子iNOS的表达。我们发现:在ES产物单独作用组,旋毛虫不同时期ES产物上调了抗炎性细胞因子(IL-10和TGF-β)和替代性活化的巨噬细胞标记物Arg1的表达,相反抑制了iNOS的表达,因此我们推测ES产物可能调节巨噬细胞向可替代激活表型转化。另外我们通过细胞免疫荧光和Western blot技术分别检测了NF-κB信号通路中NF-κB的核易位以及MAPKs信号通路的磷酸化情况。结果表明,旋毛虫不同时期ES产物至少部分依靠这两条信号传导通路来抑制促炎性细胞因子的表达。我们推测旋毛虫可以通过抑制促炎性细胞因子的产生和诱导巨噬细胞向可替代激活表型的转换,在巨噬细胞水平调节宿主免疫反应,这将有利于旋毛虫的生存和宿主健康。
     其次,本研究将肌幼虫期排泄分泌物(ML ES)体外作用于小鼠C2C12成肌细胞,采用CCK-8、SYBR Green I实时荧光定量PCR、细胞免疫荧光和Western blot检测ML ES对成肌分化程序的影响。CCK-8分析表明,在低血清条件下,ML ES促进成肌细胞的增殖,同时细胞免疫荧光和Western blot结果表明,在分化条件下,ML ES增强C2C12成肌细胞的细胞增殖核抗原(PCNA)和细胞周期调节因子cyclin D1的表达。另外我们检测了肌细胞终末分化标记物肌球蛋白重链(MHC)的表达,结果显示ML ES作用的成肌细胞MHC的转录及表达明显下降,表明ML ES抑制了C2C12成肌细胞的分化,进一步的细胞免疫荧光实验表明这一抑制效应是可以逆转的。同时,我们调查了抑制机制,结果表明ML ES在转录和转录后水平抑制细胞分化相关因子(MyoD、Myogenin、p21)的表达和p38 MAPK的磷酸化水平。这些结果表明ML ES中存在重要的调节因子能够促使成肌细胞的增殖但抑制它的分化。
     最后我们利用共培养技术,建立了巨噬细胞与成肌细胞共培养模型,在体外调查了与旋毛虫ML ES作用后的巨噬细胞共培养对成肌细胞分化的影响。我们的结果表明成肌细胞与ML ES作用后的巨噬细胞共培养上调了成肌细胞PCNA和cyclin D1的表达,说明ML ES作用后的巨噬细胞可以增强成肌细胞的增殖。另外细胞免疫荧光表明,与对照组比较,成肌细胞分化调节因子(MyoD、Myogenin、p21)阳性细胞的数量及终末分化标记物MHC的表达明显降低。我们进一步用Western blot验证了这种抑制效果。本研究表明旋毛虫ML ES不仅可以直接调节成肌细胞的分化,而且可以通过调节巨噬细胞活性来影响成肌细胞的分化,这为研究旋毛虫与宿主细胞及旋毛虫感染后,宿主细胞间相互对话的复杂机制提供了新的思路。
Trichinella spiralis is an intracellular parasite of skeletal muscle, which can infect a wide variety of mammalian species and some carnivorous birds. Trichinellosis is a widespread food-borne zoonosis. Human trichinellosis outbreaks occur in many parts of the world, and it has been estimated that as many as 11 million people are infected with Trichinella. There is still a high prevalence in China. Trichinella differs from other helminthes because its life cycle which is reproduced in the same host involves two distinct intracellular habitats, intestianal epithelium and skeletal cell and can be divided into three main stages: adult worms, newborn larvae, and muscle larvae. During the infection, T. spiralis release a variety of biologically active proteins to regulate host immune and invasive the muscle cell to construct their home, named nurse cell, which are very important to parasitize successfully.
     Macrophages play crucial roles in the immune response agaist infections, as they can initiate, modulate and also be final effector cells during immune responses. During helminth infections, macrophages, the important targets for immunomodulation, have been shown to play a central role in helminth survival. Moreover, macrophages play an important role in repairing injured muscle, which do not only play important role as scavengers to clear cell debris, but also can regulate satellite cell proliferation and differentiation by releasing some active factors. Now, how ES products modulate macrophage and muscle cell functions as well as signal transduction pathways is largely unknown. Research on the impact of different stages of ES products on these host cell function will be benefical for us to clarify the mechanism of immune evasion and nurse cell formation.
     First of all, we investigated the effect of ES products from different stages of T. spiralis on modulating J774A.1 macrophage activities. The ELISA and real-time PCR results indicated that ES products from different stages of T. spiralis reduced the capacity of macrophages to express pro-inflammatory cytokines (tumor necrosis factor (TNF-α), interleukin-1β(IL-1β), interleukin-6 (IL-6), and interleukin-12 (IL-12)) in response to lipopolysaccharide (LPS) challenge. However, only ES products from 3-day-old adult worms (AD3) and 5-day-old adult worms/newborn larvae (AD5-NBL) significantly inhibited inducible nitric oxide synthase (iNOS) gene expression in LPS-induced macrophages. In addition, ES products from different stages of T. spiralis alone boosted the expression of anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor-β(TGF-β) and effector molecule arginase 1 (Arg1) in J774A.1 macrophages. In contrast, ES products alone reduced iNOS expression. Signal transduction studies showed that ES products significantly inhibited nuclear factor-κB (NF-κB) translocation into the nucleus and the phosphorylation of both extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) in LPS-stimulated J774A.1 macrophages. Therefore, we hypothesize that during T. spiralis infection, ES products least partly depend on inhibiting these pathway to suppress pro-inflammatory products. These results suggest that ES products regulate host immune response at the macrophage level, which may be important for worm survival and host health. Secondly, utilizing a C2C12 myoblast cell line, the ability of ES from muscle larvae of T. spiralis to influence proliferation and differentiation of murine myoblasts was evaluated in vitro by CCK-8, real-time PCR, immunofluorescence and western-blot technique. CCK-8 results showed that ML ES products significantly enhance cell proliferation under low-serum conditions and dose-dependent manner. Moreover, immunofluorescence and western-blot analysis demonstrated that in differentiation condition, ML ES increase the PCNA and cyclin D1 expression, compared with control group. In addition, our biochemical analysis showed that ML ES reduce the expression of MHC in transcription and post transcription, a marker of sarcomere assembley during terminal differentiation. This result suggests that ML ES reversibly inhibited their differentiation. Furthermore, we exam the mechamism by which ML ES inhibit C2C12 myoblast differentiation, the results showed that ML ES inhibitd the expression of MRFs (MyoD and Myogenin), as well as p21 expression. ML ES also suppressed the phophoryation of p38 MAPK in C2C12 myoblast. Take together, these results imply that some important mediators in ML ES are able to
     promote proliferation but inhibit differentiation in murine skeletal myoblast, which provide an important insight for full understanding of the mechanisms of T. spiralis to induce infected muscle cell phenotype change and nurse cell formation.
     Finally, we investigated the effect of ML ES-treated macrophage on C2C12 myoblasts differentiation program in vitro using the co-culture technique. In the treated group, increase expression of PCNA and cyclin D1 indicated that cocultured ML ES-treated macrophages enhance the C2C12 myoblast proliferation. In contrast, the immunostaining showed that the expression of MRFs (MyoD and Myogenin), p21 and MHC were reduced as compared with control group, indicating that cocultured ML ES-treated macrophages inhibit myoblasts differentiation. The inhibitory effects of ML ES on the expression MRFs (MyoD and Myogenin) and MHC were confirmed by western-blot analysis. Our study showed that ML ES not only directly regulate myoblast differentiation, but also can indirectly influence myoblasts differentiation by regulating macrophages activity, which provide new opinion for elucidate complex mechanism of cell-parasite and cell-cell interaction during T. spiralis infection.
引文
[1] Reyes J, Terrazas L. The divergent roles of alternatively activated macrophages in helminthic infections[J]. Parasite Immunology(2007) 29: 609-619.
    [2] Kreider T, Anthony R M, Urban Jr J F, et al. Alternatively activated macrophages in helminth infections[J]. Current opinion in immunology(2007) 19: 448-453.
    [3] Tato C M, Laurence A,O'Shea J J. Helper T cell differentiation enters a new era: Le Roi est mort; vive le Roi![J]. The Journal of Experimental Medicine(2006) 203: 809-812.
    [4]杨维平,李国才.蠕虫免疫调控与"蠕虫疗法"[J].中国病原生物学杂志(2010) 5: 948-950.
    [5] Wilson M S, Maizels R M. Regulatory T cells induced by parasites and the modulation of allergic responses[J]. Chem Immunol Allergy(2006) 90: 176-195.
    [6] Gordon S. Alternative activation of macrophages[J]. Nature Reviews Immunology(2003) 3: 23-35.
    [7] No?l W, Raes G, Hassanzadeh Ghassabeh G, et al. Alternatively activated macrophages during parasite infections[J]. Trends in parasitology(2004) 20: 126-133.
    [8] Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development[J]. Journal of Clinical Investigation(2007) 117: 1155.
    [9] Varin A,Gordon S. Alternative activation of macrophages:immune function and cellular biology[J]. Immunobiology(2009) 214:630-641.
    [10] Mills C D, Kincaid K, Alt J M, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. The Journal of Immunology(2000) 164: 6166.
    [11] Pesce J,Kaviratne M,Ramalingam TR, et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation[J]. J Clin Invest(2006) 116:2044-2055.
    [12] Frohlich A,Marsland BJ,Sonderegger I, et al. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo[J]. Blood(2007) 109:2023-2031.
    [13] Mantovani A,Sica A,Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol(2004) 25: 677-686.
    [14] Stumpo R, Kauer M, Martin S, et al. IL-10 induces gene expression in macrophages: partial overlap with IL-5 but not with IL-4 induced genes 1[J]. Cytokine(2003) 24: 46-56.
    [15] Edwards J P, Zhang X, Frauwirth K A, et al. Biochemical and functional characterization of three activated macrophage populations[J]. Journal of leukocyte biology(2006) 80: 1298-1307.
    [16] Taylor M D, Harris A, Nair M G, et al. F4/80+ alternatively activated macrophages control CD4+ T cell hyporesponsiveness at sites peripheral to filarial infection[J]. The Journal of Immunology(2006) 176: 6918-6927.
    [17] P'ng Loke MN, Parkinson J, Guiliano D, et al. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype[J]. BMC Immunol(2002) 3:7-10.
    [18] P'ng Loke A S M D, Robb A, Maizels R M, et al. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact[J]. Eur. J. Immunol(2000) 30: 2669-2678.
    [19] Gause W C, Urban J F. The immune response to parasitic helminths: insights from murine models[J]. Trends in immunology(2003) 24: 269-277.
    [20] Finkelman F D, Shea-Donohue T, Morris S C, et al. Interleukin-4-and interleukin-13-mediated host protection against intestinal nematode parasites[J]. Immunological reviews(2004) 201: 139-155.
    [21] Voehringer D, Van Rooijen N,Locksley R M. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages[J]. Journal of leukocyte biology(2007) 81: 1434-1444.
    [22] Zhu Z, Zheng T, Homer R J, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation[J]. Science(2004) 304: 1678-1682.
    [23] Anthony R M, Urban J F, Alem F, et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites[J]. Nature medicine(2006) 12: 955-960.
    [24] Pearce E J, MacDonald A S. The immunobiology of schistosomiasis[J]. NatureReviews Immunology(2002) 2: 499-511.
    [25] Smith P, Walsh C M, Mangan N E, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages[J]. The Journal of Immunology(2004) 173: 1240-1248.
    [26] Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity[J]. Annual review of immunology(2008) 26: 677.
    [27] Sharpe A H, Wherry E J, Ahmed R, et al. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection[J]. Nature Immunology(2007) 8: 239-245.
    [28] Mohrs M, Arendse B, Schwegmann A, et al. Alternative Macrophage Activation Is Essential for Survival during Schistosomiasis and Downmodulates T Helper 1 Responses and Immunopathology[J]. Immunity(2004) 20: 623-635.
    [29] Sandler N G, Mentink-Kane M M, Cheever A W, et al. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair[J]. The Journal of Immunology(2003) 171: 3655-3677.
    [30] Gratchev A, Kzhyshkowska J, Utikal J, et al. Interleukin-4 and Dexamethasone Counterregulate Extracellular Matrix Remodelling and Phagocytosis in Type-2 Macrophages[J]. Scandinavian Journal of Immunology(2005) 661: 10-17.
    [31] Donnelly S, O'Neill S M, Sekiya M, et al. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages[J]. Infection and immunity(2005) 73: 166-173.
    [32] Flynn R J, Mannion C, Golden O, et al. Experimental Fasciola hepatica infection alters responses to tests used for diagnosis of bovine tuberculosis[J]. Infection and immunity(2007) 75: 1373-1381.
    [33] Toenjes S, Kuhn R. The initial immune response during experimental cysticercosis is of the mixed Th1/Th2 type[J]. Parasitology research(2003) 89: 407-413.
    [34] Rodríguez-Sosa M,Satoskar AR,Calderón R, et al. Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability[J]. InfectImmun(2002) 70:3656-3664.
    [35] Raes G, Brys L, Dahal B K, et al. Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation[J]. Journal of leukocyte biology(2005) 77: 321-327.
    [36] Terrazas L I, Montero D, Terrazas C A, et al. Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis[J]. International journal for parasitology(2005) 35: 1349-1358
    [37] Rodriguez-Sosa M, David J R, Bojalil R, et al. Cutting edge: susceptibility to the larval stage of the helminth parasite Taenia crassiceps is mediated by Th2 response induced via STAT6 signaling[J]. The Journal of Immunology(2002) 168: 3135-3139.
    [38] Hassanzadeh Ghassabeh G, De Baetselier P, Brys L, et al. Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions[J]. Blood(2006) 108: 575-583.
    [39] Oivanen L. Endemic trichinellosis -experimental and epidemiological studies, Faculty of Veterinary Medicine, University of Helsinki, 2005.
    [40] Despommier DD G R, Hotez PJ. Parasitic diseases: Springer-Verlag[J]. New York Inc.(1994.):
    [41] Bruschi F, Murrell K. New aspects of human trichinellosis: the impact of new Trichinella species[J]. Postgraduate medical journal(2002) 78: 15-22.
    [42] Pozio E, Bruschi F. The importance of correct terminology in describing the muscular stage of Trichinella infection[J]. Trends in parasitology(2001) 17: 362.
    [43] Pozio E, Foggin C, Marucci G, et al. Trichinella zimbabwensis n. sp.(Nematoda), a new non-encapsulated species from crocodiles (Crocodylus niloticus) in Zimbabwe also infecting mammals[J]. International journal for parasitology (2002) 32: 1787-1799.
    [44] Rombout Y, Bosch S,Van Der Giessen J. Detection and identification of eight Trichinella genotypes by reverse line blot hybridization[J]. Journal of clinical microbiology(2001) 39: 642-646.
    [45] Pozio E, Miller I, Jrvis T, et al. Distribution of sylvatic species of Trichinella in Estonia according to climate zones[J]. The Journal of parasitology(1998) 84: 193-195.
    [46] Pozio E, La Rosa G, Rossi P, et al. Biological characterization of Trichinella isolates from various host species and geographical regions[J]. The Journal of parasitology(1992) 78: 647-653.
    [47] Pozio E. Factors affecting the flow among domestic, synanthropic and sylvatic cycles of Trichinella[J]. Veterinary Parasitology(2000) 93: 241-262.
    [48] Schellenberg R S, Tan B J K, Irvine J D, et al. An outbreak of trichinellosis due to consumption of bear meat infected with Trichinella nativa in 2 northern Saskatchewan communities[J]. Journal of Infectious Diseases(2003) 188: 835-843.
    [49] Kapel C, Gamble H. Infectivity, persistence, and antibody response to domestic and sylvatic Trichinella spp. in experimentally infected pigs[J]. International journal for parasitology(2000) 30: 215-221.
    [50] Kapel C, Webster P, Lind P, et al. Trichinella spiralis, T. britovi, and T. nativa: infectivity, larval distribution in muscle, and antibody response after experimental infection of pigs[J]. Parasitology research(1998) 84: 264-271.
    [51] Pozio E, La Rosa G, Murrell K D, et al. Lichtenfels, Taxonomic revision of the genus Trichinella[J]. The Journal of parasitology(1992) 78: 654-659.
    [52] Boev S, Sokolova L. Primary diagnostics of sibling-species of Trichinellae[J]. Wiadomo ci parazytologiczne(1981) 27: 483-487.
    [53] Malakauskas A, Kapel C M O. Tolerance to low temperatures of domestic and sylvatic Trichinella spp. in rat muscle tissue[J]. Journal of Parasitology(2003) 89: 744-748.
    [54] La Rosa G, Marucci G, Zarlenga D, et al. Trichinella pseudospiralis populations of the Palearctic region and their relationship with populations of the Nearctic and Australian regions[J]. International journal for parasitology(2001) 31: 297-305.
    [55] Webster P, Malakauskas A,Kapel C. Infectivity of Trichinella papuae for experimentally infected red foxes (Vulpes vulpes)[J]. Veterinary Parasitology(2002) 105: 215-218.
    [56] Pozio E, Marucci G, Casulli A, et al. Trichinella papuae and Trichinella zimbabwensis induce infection in experimentally infected varans, caimans, pythons and turtles[J]. Parasitology(2004) 128: 333-342.
    [57] Murrell K, Lichtenfels R, Zarlenga D S, et al. The systematics of the genus Trichinella with a key to species[J]. Veterinary Parasitology(2000) 93: 293-307.
    [58] Zarlenga D S, La Rosa G.. Molecular and biochemical methods for parasite differentiation within the genus Trichinella[J]. Veterinary Parasitology(2000) 93: 279-292.
    [59] Bell R. The generation and expression of immunity to Trichinella spiralis in laboratory rodents[J]. Advances in Parasitology(1998) 41: 149-217.
    [60] Bruschi F. The immune response to the parasitic nematode Trichinella and the ways to escape it. From experimental studies to implications for human infection[J]. Current Drug Targets-Immune, Endocrine &Metabolic Disorders (2002) 2: 269-280.
    [61] Pritchard D. Immunity to helminths: is too much IgE parasite-rather than host-protective?[J]. Parasite Immunology(1993) 15: 5-9.
    [62] Dessein A, Parker W, James S, et al. IgE antibody and resistance to infection. I. Selective suppression of the IgE antibody response in rats diminishes the resistance and the eosinophil response to Trichinella spiralis infection[J]. The Journal of Experimental Medicine(1981) 153: 423-436.
    [63] Watanabe N, Katakura K, Kobayashi A, et al. Protective immunity and eosinophilia in IgE-deficient SJA/9 mice infected with Nippostrongylus brasiliensis and Trichinella spiralis[J]. Proceedings of the National Academy of Sciences of the United States of America(1988) 85: 4460-4462.
    [64] Bruschi F, Pozio E, Watanabe N, et al. Anaphylactic Response to Parasite Antigens: IgE and IgG1 Independently Induce Death in Trichinella¨CInfected Mice[J]. International archives of allergy and immunology(2000) 119: 291-296.
    [65] Wakelin D, Harnett W, Parkhouse R, et al. Nematodes[J]. Immunology and molecular biology of parasitic infections.(1993): 496-526.
    [66] Korenaga M, Wang C, Bell R, et al. A. Ahmad, Intestinal immunity to Trichinellaspiralis is a property of OX8-OX22-T-helper cells that are generated in the intestine[J]. Immunology(1989) 66: 588.
    [67] Mosmann T, Coffman R. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties[J]. Annual review of immunology(1989) 7: 145-173.
    [68] Miller H R P. Mucosal mast cells and the allergic response against nematode parasites[J]. Veterinary immunology and immunopathology(1996) 54: 331-336.
    [69] Finkelman F D, Morris S C, Orekhova T, et al. Stat6 regulation of in vivo IL-4 responses[J]. The Journal of Immunology(2000) 164: 2303-2310.
    [70] Knight P A, Wright S H, Lawrence C E, et al. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1[J]. The Journal of Experimental Medicine(2000) 192: 1849-1856.
    [71] Arizmendi N, Yépez-Mulia L, Cedillo-Rivera R, et al. Interleukin mRNA changes in mast cells stimulated by TSL-1 antigens[J]. Parasite(2001) 8: S114-S116.
    [72] Vallance B A, Blennerhassett P A, Deng Y, et al. IL-5 contributes to worm expulsion and muscle hypercontractility in a primary T. spiralis infection[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology(1999) 277: G400-G408.
    [73] McVay C S, Bracken P, Gagliardo L F, et al. Antibodies to tyvelose exhibit multiple modes of interference with the epithelial niche of Trichinella spiralis[J]. Infection and immunity(2000) 68: 1912-1918.
    [74] Moczon T, Wranicz M. Trichinella spiralis: proteinases in the larvae[J]. Parasitology research(1999) 85: 47-58.
    [75] Li C K F, Seth R, Gray T, et al. Production of proinflammatory cytokines and inflammatory mediators in human intestinal epithelial cells after invasion by Trichinella spiralis[J]. Infection and immunity(1998) 66: 2200-2206.
    [76] Urban J F, Noben-Trauth N, Schopf L, et al. Cutting edge: IL-4 receptor expression by non-bone marrow-derived cells is required to expel gastrointestinal nematode parasites[J]. The Journal of Immunology(2001) 167: 6078-6081.
    [77] Garside P, Kennedy M W, Wakelin D, et al. Immunopathology of intestinal helminth infection[J]. Parasite Immunology(2000) 22: 605-612.
    [78] Venturiello S, Giambartolomei G, Costantino S. Immune killing of newborn Trichinella larvae by human leucocytes[J]. Parasite Immunology(1993) 15: 559-564.
    [79] Bandi C, La Rosa G, Comincini S, et al. Random amplified polymorphic DNA technique for the identification of Trichinella species[J]. Parasitology(1993) 107: 419-424.
    [80] Venturiello S, Giambartolomei G,Costantino S. Immune cytotoxic activity of human eosinophils against Trichinella spiralis newborn larvae[J]. Parasite Immunology(1995) 17: 555-559.
    [81] Buys J, Wever R,Ruitenberg E. Myeloperoxidase is more efficient than eosinophil peroxidase in the in vitro killing of newborn larvae of Trichinella spiralis[J]. Immunology(1984) 51: 601-607.
    [82] Herndon F, Kayes S. Depletion of eosinophils by anti-IL-5 monoclonal antibody treatment of mice infected with Trichinella spiralis does not alter parasite burden or immunologic resistance to reinfection[J]. The Journal of Immunology(1992) 149: 3642-3647.
    [83] Paolocci N, Sironi M, Bettini M, et al. Immunopathological mechanisms underlying the time-course of Trichinella spiralis cardiomyopathy in rats[J]. Virchows Archiv(1998) 432: 261-266.
    [84] Li C, Ko R. The detection and occurrence of circulating antigens of Trichinella spiralis during worm development[J]. Parasitology research(2001) 87: 155-162.
    [85] Gomez Morales M A, Mele R, Sanchez M, et al. Increased CD8+-T-cell expression and a type 2 cytokine pattern during the muscular phase of Trichinella infection in humans[J]. Infection and immunity(2002) 70: 233-239.
    [86] Ferraccioli G, Mercadanti M, Salaffi F, et al. Prospective rheumatological study of muscle and joint symptoms during Trichinella nelsoni infection[J]. Quarterly Journal of Medicine(1988) 69: 973-984.
    [87] Meschia M, Bruschi F, Amicarelli F, et al. The sacrospinous vaginal vault suspension: critical analysis of outcomes[J]. International UrogynecologyJournal(1999) 10: 155-159.
    [88] Jungery M, Clark N W T, Parkhouse R M. A major change in surface antigens during the maturation of newborn larvae of Trichinella spiralis[J]. Molecular and Biochemical Parasitology(1983) 7: 101-109.
    [89] Bass D A, Szejda P. Mechanisms of killing of newborn larvae of Trichinella spiralis by neutrophils and eosinophils: killing by generators of hydrogen peroxide in vitro[J]. Journal of Clinical Investigation(1979) 64: 1558-1564.
    [90] Bruschi F, Carulli G, Azzara A, et al. Modulating effects by Trichinella spiralis sensu stricto excretory/secretory antigens of human neutrophil functions[J]. Wiadomo ci parazytologiczne(1989) 35: 391-400.
    [91] Shupe K, Stewart G L. Stimulated chemotactic response in neutrophils from Trichinella pseudospiralis-infected mice and the neutrophilotactic potential of Trichinella extracts[J]. International journal for parasitology(1991) 21: 625-630.
    [92] Despommier D D, Gold A M, Buck S W, et al. richinella spiralis: secreted antigen of the infective L1 larva localizes to the cytoplasm and nucleoplasm of infected host cells[J]. Experimental parasitology(1990) 71: 27-38.
    [93] Hong Y, Kim C W,Ghebrehiwet B. Trichinella spiralis: activation of complement by infective larvae, adults, and newborn larvae[J]. Experimental parasitology (1992) 74: 290-299.
    [94] Takahashi Y, Tucker S L, Kitadai Y, et al. Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer[J]. Archives of Surgery(1997) 132: 541-546.
    [95] Robinson K, Bellaby T, Chan W, et al. High levels of protection induced by a 40-mer synthetic peptide vaccine against the intestinal nematode parasite Trichinella spiralis[J]. Immunology(1995) 86: 495-498.
    [96] Goyal P, Wheatcroft J,Wakelin D. Tyvelose and protective responses to the intestinal stages of Trichinella spiralis[J]. Parasitology International(2002) 51: 91-98
    [97] Bolas-Fernandez F, Wakelin D. Immunization against geographical isolates of Trichinella spiralis in mice[J]. International journal for parasitology(1992) 22: 773-781.
    [98] Goyal P, Bolas-Fernandez F,Wakelin D. Immunization of mice against Trichinella spiralis and T. britovi using excretory and secretory antigens[J]. Journal of helminthology(1997) 71: 109-112.
    [99] Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection[J]. Infection and immunity(2007) 75 (1):397-407
    [100] Motomura Y, Wang H, Deng Y, El-Sharkawy R, Verdu E, Khan W. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis[J]. Clinical & Experimental Immunology(2009) 155 (1):88-95
    [101] Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic L. Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats[J]. Experimental parasitology(2008) 118 (4):641-647
    [102] Park HK, Cho MK, Choi SH, Kim YS, Yu HS. Trichinella spiralis: infection reduces airway allergic inflammation in mice[J]. Experimental parasitology(2010) 127 (2):539-544
    [103] Wing E, Krahenbuhl J, Remington J. Studies of macrophage function during Trichinella spiralis infection in mice[J]. Immunology(1979) 36 (3):479
    [104] Ros-Moreno R, Vázquez-López C, Giménez-Pardo C, de C, Armas-Serra C, Rodríguez F. A study of proteases throughout the life cycle of Trichinella spiralis[J]. Folia Parasitologica(2000) 47 (1):49-54
    [105] Bian K, Zhong M, Harari Y, Lai M, Weisbrodt N, Murad F. Helminth regulation of host IL-4Ralpha/Stat6 signaling: mechanism underlying NOS-2 inhibition by Trichinella spiralis[J]. Proc Natl Acad Sci USA (2005)102 (11):3936-3941
    [106]施海燕,林琳,朱昌来,张天一,顾君一. HSPgp96和LPS激活小鼠腹腔巨噬细胞的比较研究[J].细胞与分子免疫学杂志(2007) 23 (11):1050-1052
    [107] Kenneth J, Thomas D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods (2001) 25 (4):402-408
    [108]范国华,陈生弟,杨卉,戚辰,李琳,巴茂文.人HSP40基因真核表达载体的构建及表达[J].上海交通大学学报(2006) 1:
    [109] Gerencer M, Marinculic A, Rapic D, Frankovic M, Valpotic I.Immunosuppression of in vivo and in vitro lymphocyte responses in swine induced by Trichinella spiralis or excreory-secretory antigens of the parasite[J]. Veterinary parasitology (1992) 44 (4):263-273
    [110] Langelaar M, Aranzamendi C, Franssen F, Van der Giessen J, Rutten V, VAN DER L. Suppression of dendritic cell maturation by Trichinella spiralis excretory/secretory products[J]. Parasite Immunology (2009) 31 (10):641-645
    [111]程云,彭景贤.诱导型一氧化氮合酶与寄生虫感染[J].寄生虫病与感染性疾病(2009) 7(4) :224-226
    [112]潘雷,王英华,曾锦旗.核转录因子NF-κB的研究进展[J].现代实用医学(2002) 14(4):205-207
    [113] Baeuerle PA, Baltimore D. NF-kappa B: ten years after[J]. Cell (1996) 87:13–20
    [114]姜勇,龚小卫. MAPK信号转导通路对炎症反应的调控[J].生理学报(2000) 52(4): 267-271
    [115]赵嘉惠,张华屏,王春芳. MTT法在检测细胞增殖方面的探讨[J].山西医科大学学报(2007) 38(3): 262-263
    [116]熊建文,肖化,张镇西. MTT法和CCK-8法检测细胞活性之测试条件比较[J].激光生物学报(2007) 16(5): 560-562
    [117]李红艳,夏启胜,徐梅,房青,徐波,陈志华,向青. MTT、MTS、WST-1在细胞增殖检测中最佳实验条件的研究[J].中国康复医学杂志(2005) 20(11):824-826
    [118] Beiting DP, Bliss SK, Schlafer DH, Roberts VL, Appleton JA. Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis[J]. Infection and immunity (2004) 72 (6):3129-3137
    [119] Goodridge HS, Wilson EH, Harnett W, Campbell CC, Harnett MM, Liew FY. Modulation of macrophage cytokine production by ES-62, a secreted product of the filarial nematode Acanthocheilonema viteae [J]. The Journal of Immunology (2001)167 (2):940-945
    [120] Mills CD, Kincaid K, Alt JM. Heilman MJ and Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. The Journal of Immunology (2000) 164 (12): 6166-6173
    [121] Goerdt S and Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells[J]. Immunity (1999) 10 (2): 137-142
    [122] Bian K, Harari Y, Zhong M, Lai M, Castro G, Weisbrodt N and Murad F. Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasite-induced gut inflammation: a path to identify a selective NOS-2 inhibitor[J]. Molecular Pharmacology (2001) 59 (4): 939-947
    [123] Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA Jr. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections[J]. The Journal of Immunology (2001) 167 (9):5294-5303
    [124] Beiting DP, Gagliardo LF, Hesse M, Bliss SK, Meskill D, Appleton JA. Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10, regulatory T cells, and TGF-β[J]. The Journal of Immunology (2007) 178 (2):1039-1047
    [125] Reyes J and Terrazas L. The divergent roles of alternatively activated macrophages in helminthic infections[J]. Parasite Immunology (2007) 29(12): 609-619
    [126] Dzik J, Go os B, Jagielska E, Zieli ski Z, E W-R. A non-classical type of alveolar macrophage response to Trichinella spiralis infection[J]. Parasite Immunology (2004) 26 (4):197-205
    [127] Dirgahayu P, Fukumoto S, Miura K, Hirai K. Excretory/secretory products from plerocercoids of Spirometra erinaceieuropaei suppress the TNF-αgene expression by reducing phosphorylation of ERK1/2 and p38 MAPK in macrophages[J]. International journal for parasitology (2002) 32 (9):1155-1162
    [128] Dirgahayu P, Fukumoto S, Tademoto S, Kina Y, Hirai K. Excretory/secretory products from plerocercoids of Spirometra erinaceieuropaei suppress interleukin-1βgene expression in murine macrophages[J]. International journal for parasitology (2004) 34 (5):577-584
    [129] Wu Z, Nagano I, Asano K, Takahashi Y. Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response[J]. Parasitology research (2010) 107 (5):1173-1188
    [130] Wranicz MJ, Gustowska L, Gabryel P, Kucharska E, Cabaj W. Trichinella spiralis: induction of the basophilic transformation of muscle cells by synchronous newborn larvae[J]. Parasitology research (1998) 84: 403-407
    [131]崔晶.旋毛虫幼虫囊包的结构及其形成机制[J].国外医学寄生虫病分册(2002)29(5):197-199
    [132] Despommier DD. How does Trichinella spiralis make itself at home? [J]. Parasitology Today (1998) 14: 318-323.
    [133] Wu Z, Sofronic-Milosavljevic L, Nagano I, Takahashi Y. Trichinella spiralis: Nurse cell formation with emphasis on analogy to muscle cell repair[J]. Parasites & Vectors (2008)1:2
    [134]邹仲敏,程天民,罗成基,栗永萍,高京生.肌形成及其基因调控的研究进展[J].中国科学基金(2009)3:137-142
    [135]曾瑞霞,苏玉虹. p38γ/SAPK3信号传导通路及其生物学功能[J].生命科学(2005)17(5):420-423
    [136]洪海霞.永生化猪脐静脉血管内皮细胞系的建立及其生物学特征分析[D].杨凌:西北农林科技大学,2007
    [137]吴海涛. Sema4C基因在成肌分化过程中的表达、功能及作用机制研究[D].北京:军事医学科学院基础医学研究所,2007.
    [138]陈永乐,周光前,邓宇斌,智伟,谢彗琪,邓力,杨志明,王亚柱. C2C12成肌细胞体外诱导分化为肌管的实验[J].中山大学学报(2008)29(1):12-15
    [139] Jasmer DP. Trichinella spiralis infected skeletal muscle cells arrest in G2/M and cease muscle gene expression[J]. The Journal of cell biology (1993) 121:785-793
    [140] Jasmer DP. Trichinella spiralis: subversion of differentiated mammalian skeletal muscle cells[J]. Parasitology Today (1995) 11: 185-188.
    [141] Wu Z, Nagano I, Boonmars T, Takahashi Y. A spectrum of functional genes mobilized after Trichinella spiralis infection in skeletal muscle[J]. Parasitology (2005)130:561-573.
    [142] Robinson MW, Gare DC, Connolly B. Profiling excretory/secretory proteins of Trichinella spiralis muscle larvae by two-dimensional gel electrophoresis and mass spectrometry[J]. Veterinary parasitology (2005) 132:37-41.
    [143] Ko RC, Fan L, Lee DL. Experimental reorganization of host muscle cells byexcretory/secretory products of infective Trichinella spiralis larvae[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene (1992) 86:77-78.
    [144] Leung, RKM, Ko RC. In vitro effects of Trichinella spiralis on muscle cells[J]. Journal of Helminthology (1997) 71(2): 113-118.
    [145]向生光,胡维新.增殖细胞核抗原PCNA在DNA修复中的作用[J].生命的化学(2009)29(4):472-476
    [146] Wu Z, Matsuo A, Nakada T, Nagano I, Takahashi Y. Different response of satellite cells in the kinetics of myogenic regulatory factors and ultrastructural pathology after Trichinella spiralis and T. pseudospiralis infection[J].Parasitology (2001)123:85-94.
    [147] Alessandra G, Erick G, Laís C, JoséC, Leila ML, Helene B. Toxoplasma gondii down modulates cadherin expression in skeletal muscle cells inhibiting myogenesis[J]. BMC Microbiology (2011)11:1-11.
    [148] Jasmer DP, Yao S, Vassilatis D, Despommier DD, Neary, S.M. Failure to detect Trichinella spiralis p43 in isolated host nuclei and in irradiated larvae of infected muscle cells which express the infected cell phenotype[J]. Molecular and biochemical parasitology (1994)67: 225-234.
    [149] Olwin BB, Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate[J]. The Journalof cell biology (1992) 118: 631–639.
    [150] Gamble HR, Rapi? D, Marinculi? A, Murrell KD. Evaluation of excretory-secretory antigens for the serodiagnosis of swine trichinellosis[J]. Veterinary Parasitology (1988)30: 131–137.
    [151] Andrade M.A, Siles-Lucas M, Lopez-Aban J, et al. Trichinella: Differing effects of antigens from encapsulated and non-encapsulated species on in vitro nitric oxide production[J]. Veterinary parasitology(2007) 143(1): 86-90
    [152] Shariati F, Pérez-Arellano JL, López-Abán J, et al. Trichinella: Differential expression of angiogenic factors in macrophages stimulated with antigens from encapsulated and non-encapsulated species[J]. Experimental parasitology(2009) 123(4): 347-353
    [153] Chilosi M, Poletti V, ZamòA, et al. Aberrant repair and fibrosis development in skeletal muscle[J]. American Journal of Pathology(2003) 162(5): 1495
    [154]李永平,梁炳生. MyoD肌形成作用机制研究进展[J].国际骨科学杂志(2008) 28(1):37-40
    [155]贺强,王立峰. bHLH蛋白家族的功能[J].国外医学·生理、病理科学与临床分册(2004) 24(6): 545-546
    [156] Wehling M, Spencer MJ, Tidball JG. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice[J]. The Journal of cell biology(2001) 155(1): 123–131
    [157] Bondesen BA, Mills ST, Kegley KM, Pavlath GK. The COX-2 pathway is essential during early stages of skeletal muscle regeneration[J]. American Journal of Physiology-Cell Physiology (2004) 287:C475–C483.
    [158] Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo[J]. The Journal of Physiology(2007) 578(1): 327–336.
    [159] Kurek JB, Nouri S, Kannourakis G, Murphy M, Austin L. Leukemia inhibitory factor and interleukin-6 are produced by muscle cells in diseases and regenerating skeletal muscle[J]. Muscle Nerve (1996) 19: 1291–1301.
    [160] Kodelja V, Müller C, Tenorio S, et al. Differences in angiogenic potential of classically vs alternatively activated macrophages[J]. Immunobiology (1997) 197: 478–493.
    [161] Liu D, Black BL, Derynck R. TGF-βinhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3[J]. Genes & development (2001) 15(22): 2950-2966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700