川芎嗪治疗大鼠急性脊髓损伤差异表达蛋白质的蛋白质组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的利用蛋白质组学技术和大鼠急性脊髓损伤(acute spinal cord injury, ASCI)模型,比较川芎嗪治疗与生理盐水治疗后脊髓蛋白质组表达谱的差异,鉴定川芎嗪作用相关的差异蛋白质。并对差异蛋白质进行初步功能分析,从蛋白质分子水平揭示川芎嗪治疗大鼠急性脊髓损伤的机制。
     方法正常成年SD大鼠12只,采用改良ALLEN氏重物打击法制作急性脊髓中度损伤模型12个。随机分成两组:(1)生理盐水治疗组(NS组,N组)(n=6);(2)川芎嗪治疗组(TMP组,T组)(n=6)。两组大鼠按术后动物存活的时间再各分为3天组和7天组两个亚组,每亚组3只大鼠。TMP组大鼠伤后30分钟开始予以川芎秦注射液经腹腔内注射200mg/kg,每天给药一次,3天组大鼠用药3天,7天组大鼠共用药5天。NS组大鼠给予等量的生理盐水经腹腔内注射,给药次数和实验组相同。造模后在相应的时间点处死大鼠并切取脊髓标本,每只大鼠取以损伤段为中心的长约6mm的脊髓组织。加入裂解液提取脊髓蛋白质后进行蛋白质样品浓度测定。以1000ug的上样量进行双向凝胶电泳,蛋白质凝胶采用考马斯亮蓝染色后用PDQuest-8.0.1图象分析软件进行凝胶图像分析,寻找并切取差异表达的蛋白质斑点。用胰酶进行胶内原位酶解,获得的小肽片段采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)进行质谱分析。获取肽质量指纹图谱后采用MascotWizard软件查询SWISS-PROT和NCBInr数据库进行检索,鉴定差异蛋白质。基于文献复习对检索鉴定的差异蛋白质进行初步功能分析。
     结果通过固相PH梯度双向凝胶电泳获得了分辨率较高的双向凝胶电泳图谱,图像分析后发现两组图谱间存在较明显差异,应用基质辅助激光解吸电离飞行时间质谱成功鉴定出了差异蛋白质。3天组共鉴定出了15个差异蛋白质,表达上调的有血清白蛋白前体、低分子量神经丝蛋白、波形蛋白、神经纤维酸性蛋白、α-1A微管蛋白、β-2A微管蛋白、β-2C微管蛋白、亮氨酸氨基肽酶、二氢嘧啶酶相关蛋白2,表达下调的有α-互联蛋白、60kDa热休克蛋白、71kDa热休克蛋白同源蛋白、70kDa热休克蛋白相关蛋白2、β-1热休克蛋白、磷脂结合蛋白1;7天组共鉴定出了19个差异蛋白质,表达上调的有血清白蛋白前体、α-1A微管蛋白、β-2A微管蛋白、低分子量神经丝蛋白、中分子量神经丝蛋白、乙醛脱氢酶、鸟嘌呤核苷酸结合蛋白β1亚基、β肌动蛋白、波形蛋白、神经纤维酸性蛋白,表达下调的有H2异性核蛋白、帕金森病蛋白7同系物、囊泡相关膜蛋白B、泛素结合酶E2N、丙酮酸脱氢酶E1β亚基、异柠檬酸脱氢酶α亚基、脑型肌酸激酶、α-互联蛋白、60kDa热休克蛋白。结合文献复习,差异蛋白质主要涉及到神经细胞的增殖、凋亡、应激反应等过程。
     结论急性脊髓损伤川芎嗪治疗组与生理盐水治疗组蛋白质组表达谱存在差异,差异蛋白质主要涉及到神经细胞的增殖、凋亡、应激反应等过程。为进一步阐明脊髓损伤修复机制及川芎嗪治疗大鼠急性脊髓损伤的机制提供了理论依据。
OBJECTIVE Compare the differential expression of proteins in spinal tissue between rats treated with tetramethylpyrazine(TMP) and rats treated with normal sodium(NS) after acute spinal cord injury(ASCI) by using proteomic technology and ASCI model.Identify the differential proteins related to the effect of TMP. Analyze the primary function of the differential proteins.Reveal protein molecular mechanism of the curative effect of TMP in rats after ASCI.
     METHODS A total of 12 healthy adult Sprague Dawley rats were used to establish the ASCI models according to Allen's weight drop methed. These models were divided randomly into two groups:(1) Normal sodium treatment group(group NS,n=6);(2)Tetramethylpyrazine treatment group (group TMP, n=6).Two groups animals were further divided into two sub-groups(n=3 per sub-group), each at 3 and 7 days of survival before euthanasia.200mg/kg of TMP was administered in the TMP group intraperitoneally and the NS group were treated with the same volume of normal solution 30 minutes after injury. Each rat was given the same dosage once a day until euthanasia or survived for 5 days following the spinal cord injury if the rats survived for more than 5 days. At the corresponding time points following the injury, the rats of two groups were killed and the spinal cord tissue samples were collected from the injured segment with the length of 0.6cm. The spinal cord protein's lysate was extracted and the concentrations of proteins were detected by Bradford method. Then the proteins were separated by two-dimensional gel electrophoresis(2-DE).The differential expression proteins were detected by PDQuest-8.0.1 software after the gels were stained with colloidal coomassie blue.These proteins were digested with trypsin into peptides.And the resulting tryptic peptides were analyzed by matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-Q-TOF).The mass spectrometric data were used to identify the proteins by searching SWISS-PROT and NCBInr protein sequence database through MASCOT software.The primary function of the differential proteins was analyzed by literature reviewing.
     RESULTS High resolution gel maps were produced by 2-DE.The difference of gel maps between two groups were significant. The differential expression proteins were successfully identified by MALDI-Q-TOF.3 days after ASCI, a total of 15 differential expression proteins were identified. Up-regulated proteins were serum albumin、neurofilament light polypeptide、vimentin、glial fibrillary acidic protein、tubulin alpha-1A chain、tubulin beta-2A chain、tubulin beta-2C chain、leucyl aminopeptidase、dihydropyrimidinase-related protein 2; down-regulated proteins were alpha-internexin、60 kDa heat shock protein、heat shock cognate 71 kDa protein、heat shock related 70 kDa protein 2、heat shock protein beta-1、phosphatidylethanolamine-binding protein 1.7 days after ASCI, a total of 19 differential expression proteins were identified. Up-regulated proteins were serum albumin、tubulin alpha-1A chain、tubulin beta-2A chain、neurofilament light polypeptide、neurofilament medium polypeptide、aldehyde dehydrogenase、guanine nucleotide binding protein subunit beta-1、beta-actin、vimentin、glial fibrillary acidic protein;down-regulated proteins were heterogeneous nuclear ribonucleoprotein H2、parkinson disease protein 7 homolog、vesicle-associated membrane protein-associated protein B、ubiquitin-conjugating enzyme E2N、pyruvate dehydrogenase E1 component subunit beta、isocitrate dehydrogen ase [NAD] subunit alpha、creatine kinase B-type、alpha-internexin、60 kDa heat shock protein. By literature reviewing, the majority of differential expression proteins have been reported to participate in neuron growth, apoptosis and stress-reaction.
     CONCULUSION There are proteomic difference between the expression proteins of TMP group and NS group.The majority of differential expression proteins have been reported to participate in neuron growth, apoptosis and stress-reaction. The data will be helpful to illuminate the mechanism involved in the recovery of ASCI and the curative effect of TMP in rats after ASCI.
引文
[1]Thuret S,Moon LDF,Gage FH.Therapeutic interventions after spinal cord injury. Nat Rev Neuroscience,2006,7(8):628-643.
    [2]张强,贾连顺.脊髓损伤的临床统计资料分析.第二军医大学学报,2003,24(6):684-686.
    [3]Dumont RJ,Okonkwo DO,Verma S,Hurlbert RJ,Boulos PT,Ellegala DB,Dumont AS.Acute spinal cord injury, part1:pahtophysiologic mechanisms.Clin Neuropharmacol,2001,24(5):254-264.
    [4]Sekhon LH,Fehlings MG.Epidemiology,demographics,and pathophysiolo-gy of acute spinal cord injury.Spine,2001,26(24):S2-S12.
    [5]Tator CH,Fehlings MG.Review of the secondary injury theory mechanism. Neuosurg,1999,75(1):15-26.
    [6]胥少汀.关于脊髓损伤后修复研究的管见.中华骨科杂志,2003,23(2):124-126.
    [7]章亚东,侯树勋,刘汝落,朱艳.急性脊髓损伤中脊髓血流量与神经功能损害的关系.中国脊柱脊髓杂志,1999,9(5):260~263.
    [8]Green D, Sullivan S,Simpson J, Soltysik RC, Yarnold PR. Evolving risk for thromboembolism in spinal cord injury (SPIRATE Study).Am J Phys Med Rehabil,2005,84(6):420-422.
    [9]Tator CH.Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury.J Spinal Cord MED,1996,19(4):206-214.
    [10]Koyanagi I,Tator CH,Lea PJ.Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosioncasts.Part2:acute spinal cord injury.Neurosurgery,1993,33:285-291.
    [11]Crock HV,Yoshizawa H,Yamagishi M, Crock MC.Commentary on the prevention of paralysis after traumatic spinal cord injury in humans:the neglected factor-urgent restoration of spinal cord circulation. Eur Spine J,2005, 14(9):910-914.
    [12]Wang YJ,Tseng GF.Spinal axonal injury transiently elevates the level of metabotropic glutamate receptor 5,but not l,in cord-projection central neurons.J Neurotrauma,2004,21(4):479-489.
    [13]Payne JH,Wall PD,Chong MS.Repair and regeneration:experimental aspects of spinal cord disease.Curr Opin NeurolNeurosurg,1992,5 (4):558-562.
    [14]Verma P,Fawcett J.Spinal cord regeneration.Adv Biochem Eng Biotechnol, 2005,94:43-66.
    [15]欧阳立明,周涛,薛冲,刘志敏,张嗣良.逆转录病毒载体构建的hNT23基因在大鼠成纤维细胞中的表达.中国生物化学与分子生物学报,2002,18(1):55-58.
    [16]David S,Lacroix S.Molecular approaches to spinal cord repair.Annu Rev Neurosci,2003,26:411-440.
    [17]杨明理,刘新宇,杨金亮,王黎明,张勇刚,胡火珍.脊髓全横断损伤后差异表达蛋白的蛋白质组学分析.中国生物化学与分子生物学报,2007,23(3):212-220.
    [18]Kang SK, So HH, Moon YS,Kim CH. Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS.Proteomics,2006,6(9):2797-2812.
    [19]Ding Q,Wu Z,Guo Y,Zhao C,Jia Y,Kong F,Chen B,Wang H,Xiong S,Que H,Jing S,Liu S.Proteome analysis of up-regulated proteins in the rat spinal cord induced by transaction injury. Proteomics,2006,6(2):505-518.
    [20]赵宝林,杨小玉,朱庆三,尹飞,臧虎,孙庆,段德生.急性脊髓损伤蛋白质的双向电泳分析和质谱鉴定.中国实验诊断学,2006,10(7):738-742.
    [21]李志刚,耿昊,苑晓晨,魏开华.督脉电针对急性脊髓损伤6h后大鼠差异蛋白质组学的机理研究.北京中医药大学学报,2008,31(3):202-205.
    [22]谢玲玉,胡火珍,杨明理,刘新宇.成年大鼠急性脊髓全横断损伤后差异表达蛋白的蛋白组学研究.四川大学学报(自然科学版),2008,45(2):419-425.
    [23]袁泉,胡建中,张俊,徐大启,吕红斌.川芎嗪对大鼠急性脊髓损伤模型细胞凋亡的影响.中华实验外科杂,2008,25(8):1077.
    [24]沈正祥,吕红斌,李晓明,徐大启,胡建中,王锡阳.川芎嗪对大鼠急性脊髓损伤模型Caspase-3和NF表达的影响.中南大学学报(医学版)2008,33(8):693-699.
    [25]李洋.川芎嗪对大鼠脊髓急性损伤段微循环影响的实验性研究[D],中南大学,2007.
    [26]周赞.川芎嗪对大鼠脊髓急性损伤模型神经营养因子(NGF,BDNF,NT-3)表达的影响[D],中南大学,2007.
    [27]徐浩.川芎嗪的临床应用和药理作用.中国中西医结合杂志2003,23(5):376-377.
    [28]赵玉鑫,王洪,袁文旗,李艳军.川芎嗪对大鼠脊髓损伤后诱导型一氧化氮合酶表达及细胞凋亡的影响.中国临床康复,2006,10(15):59-61.
    [29]李洪敬,吕德成,张卫国,陈维华.川芎嗪对预防犬急性脊髓损伤神经保护作用 的实验研究.实用手外科杂志,2005,02:87-89.
    [30]孙海燕,贾连顺,陈宣维,桂斌捷,魏海峰.川芎嗪对大鼠脊髓损伤后脊髓组织c-fos基因蛋白表达的影响.中国中医骨伤科杂志,2004,06:238-241.
    [31]李晓明.川芎嗪对大鼠急性脊髓损伤模型IL-10、IL-18表达的影响[D],中南大学,2008.
    [32]肖志满.川芎嗪对大鼠急性脊髓损伤模型MIF、NF-KB及I-KBa表达的影响[D],中南大学,2009.
    [33]王圣轩.川芎嗪对大鼠急性脊髓损伤模型中FADD表达及Caspase-8活性的影响[D],中南大学,2009.
    [34]黎俊豪.川芎嗪对大鼠急性脊髓损伤模型P-选择素、中性粒细胞弹性蛋白酶表达的影响[D],中南大学,2009.
    [35]杨帆.川芎嗪对大鼠急性脊髓损伤模型神经营养因子NT-4及受体TrkA表达的影响[D],中南大学,2009.
    [36]Freeman LW,Wright GW. Experimental observations of concussion and contusion of spinal cord[J].Ann surg,1953,137(4):433.
    [37]Allen AR,MacPhail RC.Surgery of experimental lesion of spinal cord equivalent to crush injury of fractured is location of spinal column[J].A preliminary report, 1991,57(7):878-880.
    [38]Kunihara T,Sasaki S,Shiiya N,et al. Lazaroid reduces production of IL-8 and IL-1 receptor antagonist in ischemic spinal cord injury[J].Ann Thorac Surg, 2000,69(3):792-798.
    [39]刘晓勤,楼雅卿,施伟忠.川芎嗪药代动力学与药效学相关性及肝功能损伤对其药代动力学的影响[J].北京医科大学学报,1991,23(3):185~187.
    [40]郭顺根,贲长恩,牛建照,等.3H-川芎嗪在动物体内分布与排泄的定量研究[J].中国医药学报,1989,4(4):22-25.
    [41]XU JA,Hsu CY, Liu TH, et al.Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury[J].Neurochem,1990,55(3):907-912.
    [42]Nanette HB,Daryl JD,Shari K,et,al.Hypoxia-activated apoptosis of cardialmyocytes requires reoxygenatien or pH shift and is independent of P53[J].J Clin Invest,1999,104(3):239-252.
    [43]Kang PM,Haunstetter A,Aoki H,et al.Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation[J].Circ Bes,2000,87(2):118-125.
    [44]Takagi S,Iwai N,Yamanchi R,et el.Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men [J].Hypertens Res,2002,25(5): 677-681.
    [45]Sun AJ,Wang KQ,Li J,et al.Proteomic analysis of myocardial mitochondrial protein expression in rats with heart failure [J].Chinese Journal of Arterial Lerosis,2004,12(2):183-185.
    [46]Ohta S,Ohsawa, Ikuroh, et al. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer's disease:on defects in the cytochrome C oxidase complex and aldehyde detoxification[J].J Alzheimers Dis,2006,9(2): 155-166.
    [47]Duilio C,Ambrosio G,Kuppusamy P,et al.Neutrophils are primary source of radicals during reperfusion after prolonged myocardial ischemia[J].Am J Physiol Heart Circ Physiol,2001,280(6):H2649-H2657.
    [48]Cotgreave IA, Gerds RC.Recent trends in glutathione biochemistry-glutathione-protein interaction:a molecular link between oxidative stress and cell proliferation[J].J Biochem and Biophys Res Commu,1998,242(1):1-9.
    [49]Ohsawa I,Nishimaki K,Yasuda C,et al.Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC 12 cells[J].J Neurochemistry,2003,84(5):1110-1117.
    [50]Li SY,Gomelsky M,Duan JH,et al.Overexpression of aldehyde dehydrogenase-2(ALDH2) transgene prevents acetaldehyde-induced cell injury in human umbilical vein endothelial cells [J].J Biochemistry,2004,279(12):11244-11252.
    [51]Julien JP,Mushynski WE.Prog neurofilamenls in health and disease [J].Nucleic Acid Res Mol,1998,61:1-23.
    [52]Acher MG,Athalan ES,Mushynaki WE.Increased phosphorylation of the amino-terrninal domain of the low molecular weight neurofila-ment subunit in okadaic acid-treated neurons[J].J Bioj Chem,1994.269:18480-18484.
    [53]Uchida K,Baba H,Maczawa Y,et al.Progressive changes in neurofilament proteins and growth associated protein-43 immunoreactivities at the site of cervical spina cord compression in spinal hyerostotic mice [J].Spine,2002,27(5):480.
    [54]Uchida A,Brown A.Arrival,reversal,and departure of neurofilament at the tips of growing axons [J].Mol Biol Cell,2004,15:4215-4225.
    [55]易成腊,陈安民,徐卫国等.大鼠脊髓损伤后Caspase-3表达和神经细胞凋亡相关性研究.创伤外科杂志,2004,6:171-174.
    [56]Dau J,Wenthold RJ.Immunocytochemicallocal ization of neurofilament subunits in the spiral ganglion of normal and neomycin-treated guinea pigs[J].Hear Res,1989,42(2-3):253-263.
    [57]Yabe JT,Wang FS,Chylinski T,et al.Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites.Cell Motil Cytoskeleton 2001;50(1):1-12.
    [58]De Haan P,Kalkman CJ,Jacobs MJ.Spinal cord monitoring with myogenic motor of spinal cord protective strategies during thoracpabdominal aneurysm surgery.Semin Thorac Cardiovasc Surg,1998,10:19
    [59]Johnsson P. Marker of cerebral ischemia after cardiac surgery.J Cardiothorac Vasc Anesth,1996,10:120.
    [60]Ruzak-Skocir B,Trbojevic-Cepe M. Study of serum and cerebrospinal fluid enzymes in diagnosis and differential diagnosis of cerebrovascular disease. Neurology,1990,39:239
    [61]余奇劲,周青山,黄海波,段代明,柯齐斌,刘先义.脊髓缺血损伤时脑型肌酸激酶与后肢肌电图的变化.临床麻醉学杂志,2003,19(7):412-414.
    [62]Costigan M,Mannion RJ,Kendall Qet al.Heat shock protein27:developmental regulation and expression after peripheral nerve injury. Neurosci,1998,18(15): 5891-5900.
    [63]Hickey RW,Zhu RL,Alexander HL,et al.lOkD mitochondrial matrix heat shock protein mRNA is induced following global brain ischemia in the rat.Brain Res Mol Brain Res,2000,79(1-2):169-173.
    [64]Saleh A,Srinivasula SM,Balkir L,et al.Negative regulation of the Apaf-1 apoptosome by Hsp70.Nat Cell Biol,2000,2(8):476-480.
    [65]Kelly S,Yenari MA.Neuroprotection:heat shock proteins.Curr Med Res Optin, 2002,18:555-560.
    [66]Tanimura S,Kohno M.Heat shock protein 70 binding protein 1 induces enhanced apoptotic response against anticancer drugs in tumor cells. Nippon Rinsho, 2004,62(7):1291-1296.
    [67]Micheva KD,Vallee A,Beaulieu C,Herman IM,Leclerc N.β-Actin is confined to structures having high capacity of remodeling in developing and adult rat cerebellum[J].Eur J Neurosci,1998,10 (12):3785-3798.
    [68]Cooper JA.The role of actin polymerization in cell motility[J].Annu Rev Physiol, 1991,53:585-605.
    [69]Ivan V,Gary GB.Self-organization of a propulsive actin network as an evolutionary process[J].Proc Natl Acad Sci USA,2001,98(20):11324-11329.
    [70]Zheng JQ,Kelly TK, Chang B,et al.A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons.J Neurosci, 2001,21:9291-9303.
    [71]Dahl D,Ruegger DC,Bignami A.Vimentin,the 57000 molecular weight protein of fibroblast filaments,is the major cytoskeletal component in immature glia. Eur J Cell Biol,1998,24(2):191-196.
    [72]Ridet JL,Malhotra SK,Privat A,et al. Reactive astrocytes:cellular and molecular cues to biological function.Trends Neurosci,1997,20(12):570-577.
    [73]Palacios G,Mengod QTortosa A,et al.Increased beta-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes.Eur J Neurosci,1995,7(3):501-510.
    [74]Schiffer D,Giordana MT,Migheli A,et al.Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain[J].Brain Res,1986, 374(1):110-118.
    [75]Janeczko K.Lesion-induced proliferation of vimentin-positive astrocytes in the mouse cerebral hemisphere [J].Folia Histochem Cytobiol,1991,29(2):55-57.
    [76]林江凯,蔡文琴.波形蛋白在大鼠大脑穿刺损伤后的表达研究[J].第三军医大学学报,2001,23(10):1149-1152.
    [77]徐波,汪德文,赵忠凯等.用CFAP和VIM表达推断脑损伤时间的实验研究[J].中国法医学杂志,2000,15(1):4-6.
    [78]方燕南,黄如训.星形细胞及胶质纤维酸性蛋白在脑梗死中的作用[J].国外医学脑血管疾病分册,2000,8(6):331-334.
    [79]Pulsinelli WA,Buchan AM.The four-vessel occlution rat model:methed for complete occlution of vertebral arteries and control of collateral circulation[J]. Stroke,1988,(19):913-914.
    [80]Carsten Culmsee,Ralf K Stumm,Martin K-H Schafer,et al.Clenbuterol induces growth factor mRNA, activates astrocytes,and protects rat brain tissue against ischemic damage[J].European Journal of Pharmacology,1999,379:33.
    [81]Pasquale A,Cancilla MD,James Bready BA,Judith Berliner PhD,et al.Expression of mRNA for glial fibriliary acidic protein after experimental cerebral injury[J].Journal of Neuropathology and Experimental Neurology,1992,51(3) 560.
    [1]刘锐,田增民.机械性脊髓损伤动物模型及动物术后护理.海军总医院学报,2008,21(3):160-162.
    [2]肖年来,姚共和.急性脊髓损伤模型的建立.中国中医骨伤科杂志,1999,7(6):49-51.
    [3]Rivlin AS,Tator CH.Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat.Surg Neurol,1978,10(1):38-43.
    [4]Khan M,Griebel R.Acute spinal cord injury in the rat:comparison of three experimental techniques.Can J Neurol Sci,1983,10(3):161-165.
    [5]Fujii H,Yone K,Sakou T.Magnetic resonance imaging study of experimental acute spinal cord injury.Spine,1993,18(14):2030-2034.
    [6]Hackney DB,Ford JC,Markowitz RS,et al.Experi-mental spinal cord injury: imaging the acute lesion.AJNR Am J Neuroradiol,1994,15 (5):960-961.
    [7]Haghighi SS,Perez Espejo MA,Rodriguez F,et al.Ra-diofrequency as a lesioning model in experimental spinal cord injury.Spinal Cord, 1996,34(4):214-219.
    [8]Freeman LW,Wright TW.Experimental observations of concussion and contusion of the spinal cord[J].Ann Surg,1953,137(4):433-443.
    [9]Ford RW.A reproducible spinal cord injury model in the cat[J].J Neurosurg,1983,59(2):268-275.
    [10]Basso DM,Beattie MS,Bresnahan JC.Graded histological and loco-motor outcomes after spinal cord contusion using the NYU weight-drop device versus transection[J].Exp Neurol,1996,139(2):244-256.
    [11]Gruner JA.A monitored contusion model of spinal cord injury in the rat[J].J Neurotrauma,1992,9(2):123-126.
    [12]叶晓健,李明.强啡呔对脊髓损伤后兴奋性氨基酸含量变化的影响与意义.中国脊柱脊髓杂志,1997,7:23-25.
    [1]张敬东,刘焯霖.神经干细胞研究.中国病理生理杂志,2003,19(4):558-561.
    [2]Ishizaki T,Naito M,Fujisawa K,et al.P160ROCK,a Rho associated coil forming protein kinase,works downstream of Rho and induces focal adhesions[J].FEBS Lett,1997,404(23):118-124.
    [3]Wettschureck N,Offermanns S.Rho/Rho kinase mediated signaling in physiology and pathophysiology[R].J Mol Med,2002,80(10):629-638.
    [4]Narumiya S.The small GTPase Rho:cellular functions and signal transduction[R]. J Biochem,1996,120(2):215-228.
    [5]Kimura K,Ito M,Amano M,et al.Regulation of myosin phosphatase by Rho and Rho-associated kinase(Rho kinase)[J].Science,1996,273(5272):245-248.
    [6]Lehmann M,Fournier A,Selles-Navarro I,et al.Inactivation of Rho signaling pathway promotes CNS axon regeneration[J].J Neurosci,1999,19(17):7537-7547.
    [7]Dergham P,Ellezam B,Essagian C,et al.Rho signaling pathway targeted to promote spinal cord repair[J].J Neurosci,2002,22(15):6570-6577.
    [8]Fournier AE,Takizawa BT,Strittmtter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS[J].J Neurosci,2003,23(4):1416-1423.
    [9]Hitoshi S,Alexson T,Tropepe V,et al.Notch pathway molecules are essential for the maintenance,but not the generation,of mammalian neural stem cells.Genes Dev,2002,16(7):846-858.
    [10]Baron M.An overview of the Notch signalling pathway.Semin Cell Dev Biol, 2003,14(2):113-119.
    [11]Yoo AS,Bais C,Greenwald I.Crosstalk between the EGFR and LIN-12/Notch pathways in C.elegans vulval development.Science,2004,303 (5658):663-666.
    [12]Liang Y,Ganem D.Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein,the mediator of Notch signaling.Pro Natl Acad Sci U S A,2003,100(14):8490-8495.
    [13]Lardelli M,Williams R,Mitsiadis T,et al.Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development.Mech Dev,1996,59 (2):177-190.
    [14]Okano H,Imai T,Okabe M.Musashi:a translational regulator of cell fate.J Cell Sci,2002,115(Pt 17):1355-1359.
    [15]De Joussineau C,SouleJ,Martin M,et al.Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila.Nature 2003;426(6966):555-559
    [16]Joussineuu DC,Smlle J,Martin M,et al.Delta-promoted filopedia medi atelong-range lateral inhibition in Drosophila.Nature,2003,426 (6981):445.
    [17]Irvin DK,Nakano I,Paucar A,et al.Patterns of Jagged1,Jagged2,Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in pro-genitors and di erentiated cells.J Neurosci Res,2004,75(3):330-343.
    [18]Alexson TO,Hitoshi S,Coles BL,et al.Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial ortemporal niche.Dev Neurosci 2006;28(1-2):34-48.
    [19]Mizutani K,Yoon K,Dang L,et al.Differential Notch signalling distinguishes neural stem cells from intermediate progenitors.Nature 2007;449(7160):351-355
    [20]Zhang J,Wang B,Xiao Z,et al.Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitorcells through activation of Notch signaling.Neuroscience 2008;153(2):406-413.
    [21]Kageyama R,Ishibashi M,Takebayashi K,et al.bHLH transcription factors and mammalign neuronal di erentiation.Int J Biochem Cell Bioh,1997,29(12):1389 -1399.
    [22]Ball DW.Achaete-scute homolog-1 and Notch in lung neuroendocrineb development and cancer.Cancer Lett 2004;204(2):159-169.
    [23]Vinals F,Reiriz J,Ventura F,et al.BMP2 decreases Mash 1 stahility by increasing Idl expression.EMBO J,2004,23:3527-3537.
    [24]Rowitch DH,Lu QR,Kessaris N,et al.An'oligarchy'rules neural de-velopment. Trends Neurosci,2002,25(8):417-422.
    [25]Ishibashi M,Ang SL,Shiota K,et al.Targeted disruption of mam-malian hairy and Enhancer of split homolog-1(HES-1)leadsto up-regulation of neural helix-loop-helixfactors premature neurogenesis, and severeneural tube defects.Genes Dev, 1995,9(24):3136-3148.
    [26]Okuda T,Kokame K,Miyata T.Differential expression patterns of NDRG family proteins in the central nervous system.J Histochem Cytochem 2008;56 (2):175-182.
    [27]Li H,Bishop KM,O'Leary DD.Potential target genes of EMX2 include Odz/ Ten-M and other gene families with implications for cortical patterning.Mol Cell Neurosci 2006;33(2):136-149.
    [28]Ellison DW,Onilude OE,Lindesy JC,et al.beta-Catenin status pre-dicts a favorable outcome in childhood medulloblastoma:the United Kingdom Children's Cancer Study Group Brain Tumour Committee.J Clin Oncol,2005,23(31):7951-7957.
    [29]Miller JR.The Wnts.Genome Biol,2002,3(1):REVIEWS3001.
    [30]Kuhl M.The WNT/calcium pathway:biochemical mediators,tools and future requirements.Font Biosci,2004,9:967-974.
    [31]Bienz M.beta-Catenin:a pivot between cell adhesion and Wnt signal-ling.Curr Biol,2005,15(2):R64-67.
    [32]Nelson WJ,Nusse R.Convergence of Wnt,beta-catenin,and cadherin pathways. Science,2004,303(5663):1483-1487.
    [33]Liu F,van den Brock O,Destree O,et al.Distinct roles for XenopusTcf/Lef genes in mediating specic responses to Wnt/beta-catenin signalling in mesoderm development.Development,2005,132(24):5375-5385.
    [34]Lee SM,Tole S,Grove E,et al.A local Wnt-3 a signal is required for development of the mammalian hippocampus.Development,2000,127(3):457-467.
    [35]Shariatmadari M,Peyronnet J,Papachristou P,et al.Increased Wnt levels in the neural tube impair the function of adherens junctions during neurulation.Mol Cell Neurosci 2005;30(3):437-451.
    [36]Hirabayashi Y,Itoh Y,Tabata H,et al.The Wnt/beta-catenin pathway directs neuronal di erentiation of cortical neural precursor cells. Development,2004,131 (12):2791-2801.
    [37]Sommer L.Multiple roles of canonical Wnt signaling in cell cycle progression and cell lineage speci cation in neural development.Cell Cycle,2004,3(6):701-703.
    [38]Liste I,Garcia-Garcia E,Martinez-Serrano A.The generation of dopa-minergic neurons by human neural stem cells is enhanced by Bcl-XL,both in vitro and in vivo.J Neurosci,2004,24(48):10786-10795.
    [39]Clark PA,Treisman DM,Ebben J,et al.Developmental signaling pathways in brain tumor-derived stem-like cells.Dev Dyn 2007;236(12):3297-3308.
    [40]Sotgia F,Williams TM,Cohen AW,et al.Caveolin-1-deficient mice have an increased mammary stem cell population with upregulation of Wnt/beta-catenin signaling.Cell Cycle 2005;4(12):1808-1816.
    [41]Tumley AM.Role of SOCS2 in growth hormone actions.Trends Endo-crinol Metab,2005,16(2):53-58.
    [42]Das AV,Mallya KB,Zhao X,et al.Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling.Dev Biol 2006;299 (1):283-302.
    [43]Alvarez-Medina R,Cayuso J,Okubo T,et al.Wnt canonical pathway Restri-cts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 2008;135(2):237-247.
    [44]Xu G,Zhang W,Bertram P,et al.Pharmacogenomic profiling of the PI3K/ PTEN-AKT-mTOR pathway in common human tumor[J].IntJ Oncol,2004,24 (4):901-908.
    [45]Gao N,Zhang Z,Jiang BH,et al.Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer[J].Biochem Biophys Res Commun, 2003,310(4):1124-1132.
    [46]Vogt PK.PI3-kinase,mTOR,protein synthesis and cancer[J].Trends Mol Med,2001, 7(11):482-484.
    [47]危国军,董大明,姚猛等.PTEN和mTOR信号转导通路在实验性脊髓损伤中的表达.现代生物医学进展,2009,9(10):1849-1851.
    [48]Melanson-Drapeau L,Beyko S,Dave S,et al.Oligodendrocyte progenitor enrichment in the connexin32 null-mutant mouse.J Neurosci,2003,23(5):1759-1768.
    [49]Barnabe-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and di erentiation of cortical progenitors via distinct signaling pathways.J Neurosci,2003,23(12):5149-5160.
    [50]Molteni R,Zheng JQ,Ying Z,et al.Voluntary exercise increases axonal regeneration from sensory neurons.Proc Natl Acad Sci USA,2004,101 (22):8473-8478.
    [51]Tsai SY,Yang LY,Wu CH,et al.Injury-induced Janus kinase/protein kinase C-dependent phosphorylation of growth-associated protein 43 and signal transducer and activator of transcription 3 for neurite growth in dorsal root ganglion.J Neurosci Res 2007;85(2):321-331.
    [52]Jandial R,Singec I,Ames CP,et al.Genetic modification of neural stem cells.Mol Ther 2008;16(3):450-457.
    [531王岩峰,吕刚,李雷等.神经干细胞移植对大鼠脊髓损伤后胶质细胞源性神经营养因子与生长相关蛋白43基因表达的影响[J].中国修复重建外科杂志,2005,19(6):416-419.
    [54]Chojnacki A,Shimazaki T,Gregg C,et al.Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mam-malian forebrain neural stem cells.J Neurosci,2003,23(5):1730-1741.
    [55]Neuhuber B,Timothy Himes B,Shumsky JS,et al.Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations.Brain Res2005;1035(1):73-85.
    [56]Di Giovanni S,Faden AI,Yakovlev A,et al.Neuronal plasticity after spinal cord injury:identification of a gene cluster driving neurite outgrowth.FASEB J 2005;19(1):153-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700