溶胶-凝胶法制备TiO_2纳米薄膜及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2因具备优异的物理化学特性而可被广泛地应用于化学、光学、生物、机械和电子等领域。目前,TiO_2薄膜因具备较高的光催化活性,成为一种公认的催化材料,而其光致亲水性能被用于自清洁薄膜,已形成产业化并实现了大规模的生产。本文利用溶胶-凝胶法,以玻璃为基底,制备了均匀、致密的TiO_2纳米薄膜,并研究了其摩擦学性能;同时,利用金属掺杂以及分子自组装技术,在玻璃表面制备了TiO_2纳米复合薄膜;此外,还考察了紫外光照对TiO_2薄膜摩擦学性能的影响。研究发现:
     (1)采用溶胶-凝胶法制备的TiO_2纳米薄膜致密且均匀,表面具备超亲水性能;摩擦实验测得在0.5N载荷下薄膜的耐磨寿命为150s。
     (2)采用Cu离子及Ni离子掺杂后,TiO_2纳米薄膜致密、均匀度依然良好,且薄膜的表面粗糙度变小;掺杂后薄膜的摩擦学性能明显改善,且当Cu离子及Ni离子掺杂量为5%(摩尔浓度)时,薄膜的抗磨减摩性能最佳。
     (3)利用分子自组装技术,在TiO_2纳米薄膜表面气相沉积了一层十七氟癸基三甲氧基硅烷(FAS)单分子膜,得到TiO_2- FAS复合双层薄膜,并发现其摩擦学性能显著提高,在0.5N载荷下耐磨寿命达到550s。
     (4)采用紫外光照处理后的TiO_2纳米薄膜摩擦学性能明显恶化,通过考察薄膜的亲水性能,以及紫外光照前后表面形貌的变化,发现导致恶化的原因有:紫外光照恢复了薄膜的超亲水性能从而加大了薄膜表面的粘附磨损;紫外光照后薄膜的表面形貌被破坏。其中,后者是导致薄膜摩擦学性能恶化的主要原因。
     TiO_2纳米薄膜的摩擦学性能影响了其在实际应用的正常持久发挥,本文通过常用金属掺杂、分子自组装技术,显著改善了薄膜的抗磨减摩性能,并研究了紫外光照后薄膜摩擦学性能恶化的因素,这些实验结果对TiO_2纳米薄膜的应用拓展有着十分重要的意义。
Nano-TiO_2 can be widely used in chemical, optical, biological, mechanical and electrical fields for its excellent physical and chemical properties. At present, TiO_2 thin films has recognized as catalytic material because of the higher photocatalytic activity. In the same time, TiO_2 thin films have implemented in large scale as self-cleaning glass because of the photo-induced hydrophilic properties. In this paper, the homogeneous, dense TiO_2 nano thin films were prepared on the glass substrates by sol-gel process and their tribological properties were studied. We also prepared the composite nano-TiO_2 films on glass substrate by using metal doping and molecular self-assembly technology. In addition, the effect of UV irradiation on the tribological properties of TiO_2 thin films was investigated. The main results are showed as follows:
     (1) The TiO_2 nano thin films prepared by sol-gel process are dense and uniform, and have super-hydrophilic properties. The wear life of the thin films is 150s at load of 0.5N.
     (2) Compared to undoped TiO_2 nano thin films, the Cu-doped and Ni-doped TiO_2 nano thin films are still dense and homogeneous, having much smaller the surface roughness. The tribological properties of the doped films have improved significantly, and when the doping content of the Cu and Ni is 5% (molar concentration), the tribological properties are the best.
     (3) With using the molecular self-assembly technology, (Heptadecafluoro-1,1,2,2- tetradecyl) trimethoxysilane (FAS) monolayer was deposited on the surface of TiO_2 nano thin film. It was found that their tribological performance was significantly improved, and the wear life is as long as 550s.at the load of 0.5N.
     (4) After UV irradiation treatment, the tribological properties of TiO_2 thin films deteriorated significantly. UV irradiation restored the ultra-hydrophilic properties of the thin films and thus increased the adhesion wear of the film surface. On the other hand, the surface morphology of the films was destroyed after the UV irradiation. Among them, the latter was the main reason that leading to the deterioration of the tribological properties.
     In fact, the tribological properties of nano-TiO_2 thin films affect their persistence in the practical application. In this paper, the tribological properties of the TiO_2 films have been significantly improved through metal doping and self-assembly techniques. Then the factors that affect the tribological properties of the films after the UV irradiation have been studied. The results here can play great role in real application of TiO_2 thin films.
引文
[1] G. Hass, Preparation, Structure, and Applications of Thin Films of Silicon Monoxide and Titanium Dioxide [J]. J. Am. Ceram. Soc. 1950,33, 353.
    [2]王学华,薛亦渝,赵利,等.电子束蒸发沉积TiO2薄膜结构及光学性能的研究[J] .武汉理工大学学报, 2002 , 24 (11) :11-14.
    [3] Leprince W Y, Yu Z K, Nguyen V, et a1. Correlation Between Microstructure and the Optical Properties of TiO2 Thin Films Prepared on Different Substrates [J]. Thin So1id Films , 1997 , 307 (1-2) :38-42.
    [4]黄代勇,刘保顺,赵修建.直流反应磁控溅射制备TiO2薄膜过程中热处理温度对薄膜性能的影响[J] .陶瓷科学与艺术, 2002, 36 (3) :11-12.
    [5]崔晓莉,沈杰,任达森,等.纳米TiO2薄膜的热致亲水性与光致亲水性机理[J] .化学通报, 2003 , 66 (3) :203-206.
    [6] Comini E, Sberveglieri G, Ferroni M. Response to ethanol of thin films based on Mo and Ti oxides deposited by sputtering [J]. Sensors and Actuators, 2003 , B 93 :409-415.
    [7] O’Brien, Kelly P J. Characterisation studies of the pulsed dual cathode magnetron sputtering process for oxide films [J]. Surface and Coatings Technology, 2001, 142-144: 621-627
    [8]谢强,王取泉,魏正和等. TiO2薄膜的结构和光学性质的研究[J].武汉大学学报(理学版), 2002, 48(5):593-596.
    [9] Ben Amor, Guedri L, Baud G, et al. Influence of the temperature on the properties of sputtered titanium oxide films [J]. Materials Chemistry and Physics. 2002,77: 903-911
    [10] Kuo D H, Tzeng KH. Growth and properties of titania and aluminum titanate thin films obtained by r. f. magnetron sputtering [J]. Thin Solid Films, 2002, 420-421: 497-502.
    [11] Comini E, Sberveglieri G, Ferroni M. Response to ethanol of thin films based on Mo and Ti oxides deposited by sputtering [J]. Sensors and Actuators, 2003, B 93:409-415.
    [12] Vomiero A, Della Mea G, Ferroni M, et al. Preparation and microstructural characterization of nanosized Mo-TiO2and Mo-WO thin films by sputtering: tailoring of composition and porosity by thermal treatment [J]. Materials Science and Engineering, 2003, B101: 216-221.
    [13]王向晖,张峰,李昌荣,等.氧分压对动态离子束辅助沉积合成的氧化钛膜的影响[J] .功能材料与器件学报, 2001, 7(1): 54-58.
    [14]郭清萍,武正簧,赵君芙等. CVD法TiO2薄膜的制备条件及光学性能的研究[J].太原理工大学学报, 1998, 29(3): 240-243.
    [15]曹亚安,沈东方,张听彤,等. Sn4 +掺杂对TiO2纳米颗粒膜光催化降解苯酚活性的影响[J] .高等学校化学学报, 2001, 22 (11): 1910-1912.
    [16]许效红,王民,侯云等.低压MOCVD生长TiO2薄膜结构和电性能研究[J].功能材料,2002, 33(3): 312-314.
    [17]周磊,赵文宽,方佑龄.液相沉积法制备光催化活性TiO2薄膜[J].应用化学, 2002, 19 (10): 919-922.
    [18]杨南如,余桂郁.溶胶凝胶法名词解释和测试方法[J].硅酸盐通报,1992, 12 (3): 62-63.
    [19]朱永法,张利,王莉.不锈钢基底上TiO2薄膜型光催化剂的制备和化学结构[J].化学学报, 2000, 58 (4): 467-472.
    [20]张玉红,吴鸣,熊国兴,等.溶胶-凝胶法制备TiO2复合光催化膜-制备前驱物对膜性能的影响[J].功能材料, 2000, 31 (5): 536-538.
    [21]贺飞,唐怀军,赵文宽等.二氧化钛光催化自洁功能陶瓷的研制[J].武汉大学学报,2001, 47(4): 419-424.
    [22]陈小兵,成晓玲,胡社军等.纳米TiO2薄膜光催化活性的研究进展[J].中国陶瓷工业, 2004, 11(3): 50-56.
    [23]姜鸿基,李彦锋,叶正芳等.纳米TiO2光催化剂的制备及在降解有机物方面的研究进展[J].功能材料, 2002, 33(4): 360-362.
    [24] Karakitsou K E, Verykios X E. Effects of altervalent cation doping of TiO2 on its performance as a photocatalysis for water cleavage [J]. Phys Chem, 1993, 97 (6): 1184– 1189.
    [25]刘秀珍,施利毅.二氧化钛形态结构及其光催化活性的研究进展[J].上海环境科学, 2000, 19 (9): 414- 419.
    [26]常红,王京刚.纳米二氧化钛在环保领域中的应用[J].矿冶, 2002, 11 (4) : 73- 76.
    [27]魏刚,黄海燕,熊蓉春.纳米二氧化钛的光催化性能及其在有机污染物降解中的应用[J].现代化工, 2003, 23 (1): 20- 23.
    [28]井立强,郑莹光,徐自力等. ZnO超微粒子的EPR特性和光催化性能[J].高等学校化学学报, 2001, 22(11): 1885-1888.
    [29] JING Liqiang, Xu Zili. The surface properties and photocatalytic activities of ZnO ultrafine particles [J]. Appl. Surf. Sci, 2001, 180 (324): 308-314.
    [30]魏刚,张元晶,熊蓉春.纳米TiO2膜的可控制备及膜结构与光催化活性的关系[J].中国科学, 2003, 33(1): 74-79.
    [31]卢萍,姚明,张颖,夏光明.钼离子掺杂对TiO 2薄膜光催化性能的研究[J].硅酸盐通报, 2003, (2): 34-37.
    [32]金立国,赵晓旭,郭英奎.掺Ag纳米TiO 2薄膜的制备与光催化性能研究[J].哈尔滨理工大学学报, 2004, 9(6): 54-60.
    [33] Choi,W. K. Termin, A. Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photo reactivity charge carrier recombination dynamics [J]. Phys. Chem, 1994. 98(51): 13669-13679.
    [34]韩兆慧,赵化桥.半导体多相光催化应用研究进展[J].化学进展, 1999, 11 (1) : 1-10.
    [35]施利毅,古宏晨,李春忠. TiO2-SnO2复合光催化剂制备和性能[J].催化学报, 1999, 20(3): 338-342.
    [36]符小荣,张校刚,宋世庚. P t/T iO 2/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学, 1997, 14 (4): 77-79.
    [37]沈伟韧,赵文宽,贺飞等. TiO2光催化反应及其在废水处理中的应用[J].化学进展, 1998, 10(4): 349– 361.
    [38] Sclafani, A; Palmisano, L; Schiavello, M. Influence of the preparation methods of TiO2 on the photolytic degradation of phenol in acqueous dispersion [J]. Phy. Chem, 1990, 94(3): 829-832.
    [39]蒲敏,吴东,孙予军. TiO2光电池的制备与应用研究进展[J].材料科学与工程, 2001, 19 (3): 113-116.
    [40]崔晓莉,沃松涛,任达森等.不同波长紫外光照下纳米TiO2薄膜的光致亲水性与循环伏安行为[J].化学学报, 2003, 61(11): 1872-1876.
    [41]戴文新,王绪绪,邵宇等.铝材表面状态对TiO2薄膜光催化性能和光致亲水性的影响[J].高等学校化学学报, 2004, 25(7): 1310-1313.
    [42] Zeman P, Takabayashi S. Self-cleaning Antifogging Effects of TiO2 Films by Radio Frequency Magnetron Sputtering [J]. J. Vac. Sci, Technol. A, 20(2): 388- 393.
    [43]李经,谭欣,赵林. TiO2光致超亲水性能的研究进展[J].钢铁钒钛,2004, 25(3): 61-66.
    [44]杨修文,江锐,石义杰. Cu掺杂TiO2薄膜的超亲水性与电化学特性研究[J].光电子技术,2008, 28(2): 113-115.
    [45]李婷,尹荔松,陈敏涛等. Ni2 +掺杂对纳米TiO2薄膜亲水性的影响[J].材料开发与应用,2007, 22(2): 24-28.
    [46]曾人杰,庞起,林仲华等.钇离子掺杂对二氧化钛纳米薄膜光诱导超亲水性能的影响及其机理[J].无机化学学报,2003, 19(7): 679-684.
    [47]刘维民,陈云霞,李斌.溶胶-凝胶法陶瓷超薄膜的制备及其摩擦学研究进展[J].摩擦学学报, 2003, 23(2): 162-167.
    [48] Paterson M J, Paterson P J K, Ben-Nissan B. The dependence of structural and mechanical properties on film thickness in sol-gel zirconia films [J]. J. Mater. Res, 1998, 13(2): 388-395.
    [49] Fabes B D, O liver W C. Mechanical properties of sol-gel coatings [J]. J Non- Cryst Solids, 1990, 121: 348-356.
    [50] Olofinjana A O, Bell J M, Jamting A K. Evaluation of themechanical properties of sol-gel-deposited titania films using ultra-micro-indentation method [J]. Wear, 2000, 241: 174-179.
    [51]王云霞,阎逢元.多层纳米TiO2薄膜的摩擦学性能研究[J].材料科学与工程学报, 2005, 23(6): 879-882.
    [52]刘维民,张文光,张兆敏.二氧化钛薄膜材料的制备及其摩擦学性能[J].摩擦学学报, 1999, 19(2): 166-168.
    [53]陈云霞,王博,刘维民.纳米PbS- TiO2复合薄膜的制备和摩擦学性能[J].过程工程学报,2002, 2(4): 365-369.
    [54]陈云霞,刘维民,张平余等.纳米Au-TiO2复合薄膜的溶胶-凝胶法制备、表征和性能[J].高等学校化学学报,2002, 23(8): 1574-1578.
    [55] Zhang Wenguang, Liu Weimin, Xue Qunji. Characterization and tribological investigation of Al2O3 and modified Al2O3 sol- gel thin films [J]. Mater. Res. Bull, 2001, 36(11): 1903-1914.
    [56]贾庆远,张玉娟,吴志申,张平余. Ag掺杂对TiO2纳米薄膜结构及摩擦学性能的影响[J].润滑与密封, 2006, 07: 139-141.
    [57]符连社,张洪杰,邵华等.溶胶-凝胶法制备无机/有机杂化材料研究进展[J].材料科学与工程, 1999, 17(1): 84-88.
    [58] Beaudry C L, Klein L C. Sol-gel process of silica/poly (vinyl acetate) nano- composites [J]. Polymers and Polymer Composite, 1995, 3: 431-432.
    [59]征茂平,金燕苹,顾明元等. So l2gel法制备T iO2/PV P复合材料及其显微硬度研究[J].材料科学与工程, 2000, 18(1): 81-84.
    [60] Kim S H, Asay D.B. Dugger M.T., Nanotribology and MEMS, Nanotoday, 2 (2007) 22-29.
    [61] Bhushan B. Nanotribology and nanomechanics of MEMS-NEMS and Bio MEMS -BioNEMS materials and devices [J]. Microelectronic Engineering, 84 (2007): 387-412.
    [62]雒建斌,何雨,温诗铸,钟掘.微/纳米制造技术的摩擦学挑战[J].摩擦学学报, 2005, 25(3): 283-288.
    [63] Mayer T. M., Elam J.W., George S. M., et al. Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices [J]. Appl. Phys. Lett., 82(2003): 2883-2885.
    [64] Niesen T.P. De Guire M.R., Review. Deposition of ceramic thin films at low temperatures from aqueous solutions [J]. J Electroceram. 6 (2001): 169–207.
    [65] Taylor D.J., Fleig P.F., Schwab S.T., Page R.A. Sol–gel derived, nanostructured oxide lubricant coatings [J]. Surface and Coatings Technology, 120-121(1999):465-469.
    [66]陈旬,耿强,刘军峰等.不同导电基底对TiO2薄膜光致亲水性的影响[J].物理化学学报, 2009, 25(11): 2237-2242.
    [67] Meth, S.; Savchenko, N.; Koltypin, M.; Starosvetsky, D; et al. Corrosion studies of stainless steel protected by a TiO2 thin film deposited on a sulfonate-functionalized self-assembled monolayer [J]. Corro. Sci., 2010, 52: 125-129.
    [68]沈晶晶,刘畅,朱育丹,李伟,冯新,陆小华.介孔TiO2的水热法制备及其光催化性能[J].物理化学学报, 2009, 25(5): 1013-1018.
    [69] Yu, J. G.; Yu, J. C.; Ho, W. K.; Jiang, Z. T. Effects of calcination temperature on the photocatalytic actvity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films [J]. New J. Chem., 2002, 26: 607-613.
    [70] Zhang W. G., Liu W. M., Li B.; Mai G. Characterization and tribological investigation of Sol–Gel titania and doped titania thin films [J]. J. Am. Ceram. Soc., 2002, 85: 1770-1776.
    [71] Zhang, W.G.; Wang, C.T.; Liu, W.M. Characterization and tribological investigation of sol-gel ceramic films on Ti–6Al–4V [J]. Wear, 2006, 260: 379-386.
    [72] Jia Q.Y.; Zhang Y.J.; Wu Z.S.; Zhang, P. Y. Trib. Lett., 2007, 26: 19-24.
    [73] Celik E.; Gokcen Z., Ak Azem N.F.; Tanoglu M.; Emrullahoglu O.F. Mater. Sci. Eng.: B, 2006, 132: 258-265.
    [74]姜洪波,高濂,张青红.铜离子掺杂对TiO2纳米颗粒膜结构和性能的影响[J].无机材料学报, 2002, 17: 787-791.
    [75]吴树新,马智,秦永宁等.掺铜二氧化钛光催化剂的XPS研究[J].物理化学学报, 2003, 19(10): 967-969.
    [76] Linsebigler, A. L.; Lu, G. Q. Photocatalysis on TiO2 surface. priciples, mechanisms, and selected results [J]. Chemical Review, 1995, 95: 735-738.
    [77] Liu, S. H., Luo, J. B., Li, G, et al. Effect of surface physicochemical properties on the lubricating properties of water film [J]. Appl. Surf. Sci., 2008, 254: 7137-7142.
    [78] Optiz, A.; Ahmed, S. I. U., Schaefer, J. A.; et al. Nanofriction of silicon oxide surfaces covered with thin water films [J]. Wear, 2003, 254: 924-929.
    [79] Hemme I.; Mangold H.; Geissen S-U.; et al. Doped titanium dioxide [P]. US 6627173, 2003-09-30.
    [80] Li, X.D.; Bharat Bhushan. Thin Solid Films, 1999, 340: 210-217.
    [81] Suchitra Sen; S Mahanty; S Roy; et a1. Thin Solid Films, 2005, 474: 245-249.
    [82] Kazuhiro S; Takeo H; Yasuhiro S; et a1. Journal of the Euro-pean Ceramic Society, 2004, 24: 1961-1967.
    [83]肖中党,黄丹,顾建华,陆祖宏.自组装成膜技术制备TiO2薄膜的XPS研究[J].物理化学学报, 1998, 01: 57-62.
    [84] Huang,D.; Xiao,Z.D.; Gu,J.H.; Huang,N.P.; Yuan, C.W. Thin Solid Films, 1997, 305: 110-115.
    [85] Kozhukharov V; Traoalis Ch; Samuneva B [J]. J. Mater. Sci., 1993, 28; 1283-1288.
    [86] Linacero R; Aguado-Serrano J; Rojas-Cervantes M L. Journal of Materials Science, 2006, 41(8): 2457-2464.
    [87] Jooho Moon, Takagi H, Fujishiro Y; et al. Journal of Materials Science, 2001(36): 949-955.
    [88] Klein J, Kumacheva E, M achalu D, et al. Reduction of frictional force between solid surfaces bearing po lymer brushes [J]. Nature, 1994, 370: 634-636.
    [89] SL Ren, SR Yang, JQ Wang, WM Liu, YP Zhao. Preparation and tribological studies of stearic acid self-assembled monolayers on Polymer-coated silicon surface [J]. Chem. Mater, 2004, 16: 428-434.
    [90]吴炬,程先华,白涛等.γ-甲基丙烯酰氧丙基三甲氧基硅烷自组装膜的制备及其摩擦学性能[J].摩擦学学报, 25(2): 117-120.
    [91]彭倚天,胡元中,王慧.氨基表面自组装膜成膜及摩擦性能研究[J].润滑与密封, 2006, 07: 28-30.
    [92]张俊彦,杨生荣,薛群基.硅烷自组装膜及硅烷/二氧化钛复合膜的XPS表征与摩擦学性能研究[J].摩擦学学报, 2000, 20(4): 241-243.
    [93]张丙伍,苏中兴,张俊彦.硅表面自组装双层膜制备及其摩擦磨损性能研究[J].摩擦学学报, 2007, 27(3): 199-202.
    [94]杨生荣,任嗣利,张俊彦,张绪寿.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报, 2001, 22(3): 470-476.
    [95]张俊苓,杨芳,郑文杰等.自组装单分子膜及其表征方法[J].化学进展, 2005, 17(2): 203-208.
    [96]顾惕人,马季铭等编著.表面化学[M].北京科学出版社,1994, 368-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700