IL-17在腰椎间盘突出症患者突出椎间盘组织中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察损伤疝出型、退变突出型腰椎间盘组织病理和免疫病理特点,探索白细胞介素-17(IL-17)和软骨细胞在腰椎间盘突出症中的作用及不同类型椎间盘组织的局部免疫状态,进一步理解两种不同病理类型腰椎间盘突出症的实质。
     方法选取天津医科大学总医院骨科和天津医院脊柱外科收治确诊并接受手术治疗单节段腰椎间盘突出症50例,根据临床诊断标准、影像学(CT及MRI)检查结果以及手术所见将病例分为:①损伤疝出型椎间盘突出组:共计35例,可见突出病变部位后纵韧带后纤维环破裂髓核组织与椎间盘母体分离,质软较易取出;②退变突出型椎间盘突出组:共计15例。病变部位后纵韧带较完整,切开浅层后总韧带可见纤维环完整,质硬必须用器械切除。收集椎间盘标本,采用HE染色、甲苯胺蓝染色和免疫组化染色等方法观察椎间盘标本。
     结果病理学检查发现损伤疝出组中肉芽组织、新生血管化明显高于退变突出组,损伤疝出组新生血管化率为88.6%,而退变突出组血管化率为13.3%;甲苯胺蓝染色观察软骨细胞成簇和增生发现于损伤疝出组中椎间盘标本组织,软骨细胞增生在损伤疝出组所占比例为74.3%,而在退变突出组所占比例为6.7%。免疫组化染色示损伤疝出组标本中IL-17阳性细胞数明显高于退变突出组。
     结论
     1.腰椎间盘突出症的病理分型为损伤疝出型和退变突出型,其病变机理存在差异,应加以区分;
     2.损伤疝出型椎间盘引起间盘神经微环境的改变如肉芽组织形成和新生血管化明显证实髓核暴露后引起突出间盘神经根局部炎症反应;
     3.软骨细胞增生和软骨细胞簇可能是椎间盘完整性破坏后椎间盘自我修复反应的一个表现;
     4.IL-17在损伤疝出型椎间盘表达明显证实了IL-17介导间盘神经根微环境免疫炎症变化;
     5.局部炎症和自身免疫反应在损伤疝出型腰椎间盘突出症的病理生理过程中均发挥作用,软骨细胞在椎间盘损伤后的修复中发挥作用。
Objective:To observe histological and immunohistochemical characteristics of the disc specimens in patients with lumbar disc herniation(LDH) which contain injured disc herniation and degenerative disc herniation, and explore the interleukin-17 (IL-17) and chondrocytes in the role of the pathogenesis of lumbar disc herniation(LDH)with different types, further make out the essence between the two types of lumbar disc herniation.
     Methods:Fifty patients with LDH were eligible for surgery in the orthopedic department of the General Hospital of Tianjin Medical University and spinal surgery department of Tianjin Hospital, according to the clinical diagnostic criteria, imaging (CT and MRI) examination results, and operative findings, the patients were divided into two groups as follows:①injured disc herniation (IDH) group:35 cases, prominent lesions of the posterior longitudinal ligament,the disruption of annulus fibrosus and separation between nucleus pulposus and maternal,soft and easily removed;②degenerative disc herniation (DDH) group:15 cases, annulus fibrosus was complete after shallow incision of posterior longitudinal ligament, hard and removed by equipment. All disc specimens were tested using HE staining, toluidine blue staining and immunohistochemical staining.
     ResuIts:Histological analysis using HE staining showed granulation tissue and neovascularization in the disc specimens of IDH group were more than those of the DDH group. The rate of neovascularization in IDH group was 88.6%, but that in DDH group was 13.3%; Histological examination using toluidine blue staining revealed chondrocyte proliferation(CP) and cartilage cells clusters were found in specimens of IDH group,chondrocyte proliferation in IDH group accounted for 74.3%, while chondrocyte proliferation in DDH group accounted for 6.7%. Analysis of immunohistochemical staining manifestated IL-17 positive cells in the specimens of IDH group were significantly higher than those in the DDH group.
     Conclusion:
     1.The pathological type of lumbar disc herniation should be divide into injured disc herniaton and degenerative disc herniation,the differences between the pathogenesis of LDH should be distinguished;
     2.Injured herniated disc causes the changes of disc-nerve root micro-enviroment such as granulation tissue formation and angiogenesis,which demonstrated that the exposure of nucleus pulposus induced the local inflammatory response;
     3.Chondrocyte proliferation and cartilage cell clusters might be some performances of self-healing response of intervertebral disc after the complete destruction of intervertebral disc;
     4.IL-17 found in the chondrocytes of injured herniated disc demonstrates that IL-17 could involve in the immune and inflammatory changes of disc nerve root microenvironment;
     5.Local inflammation and autoimmune response play important parts in the pathophysiology of LDH with injured disc herniation, chondrocyte could invovle in the process of disc repair after injury.
引文
[1]Mixter WJ, Barr JS. Rupture of the Intervertebral Disc with Involvement of the Spinal Canal*[J]. Journal of Neurosurgery 1964;21:74-81.
    [2]Spengler DM. Lumbar discectomy. Results with limited disc excision and selective foraminotomy[J]. Spine (Phila Pa 1976) 1982;7:604-7.
    [3]周秉文,胡有谷,孙进修,等.腰椎间盘突出的分型及突出椎间盘组织摘除术名称商榷[J].青岛医学院学报1986:43-6.
    [4]Satoh K, Konno S, Nishiyama K, et al. Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus[J]. Spine (Phila Pa 1976) 1999;24:1980-4.
    [5]Park JB, Chang H, Kim YS. The pattern of interleukin-12 and T-helper types 1 and 2 cytokine expression in herniated lumbar disc tissue[J]. Spine (Phila Pa 1976)2002;27:2125-8.
    [6]Geiss A, Larsson K, Rydevik B, et al. Autoimmune properties of nucleus pulposus:an experimental study in pigs[J]. Spine (Phila Pa 1976) 2007;32:168-73.
    [7]Geiss A, Larsson K, Junevik K, et al. Autologous nucleus pulposus primes T cells to develop into interleukin-4-producing effector cells:an experimental study on the autoimmune properties of nucleus pulposus[J]. J Orthop Res 2009;27:97-103.
    [8]Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem 2003;278:1910-4.
    [9]李庆华,杨欢,胡珏,等.IL-17、ROR γ t在实验性自身免疫性神经炎中的表达[J].中国神经免疫学和神经病学杂志2009;16:97-100,8.
    [10]余玲,吴汉妮,屈新才,等.I1-17在桥本甲状腺炎甲状腺组织中的表达研究[J].中国免疫学杂志2009;25:185-7.
    [11]Shamji MF, Allen KD, So S, et al. Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy[J]. Spine (Phila Pa 1976)2009;34:648-54.
    [12]Shamji MF, Setton LA, Jarvis W, et al. Pro-inflammatory cytokine expression profile in degenerative and herniated human intervertebral disc tissues[J]. Arthritis Rheum.2010.
    [13]Yasuma T, Arai K, Yamauchi Y. The histology of lumbar intervertebral disc herniation. The significance of small blood vessels in the extruded tissue[J]. Spine (Phila Pa 1976) 1993;18:1761-5.
    [14]Virri J, Gronblad M, Savikko J, et al. Prevalence, morphology, and topography of blood vessels in herniated disc tissue. A comparative immunocytochemical study[J]. Spine (Phila Pa 1976) 1996;21:1856-63.
    [15]Ikeda T, Nakamura T, Kikuchi T, et al. Pathomechanism of spontaneous regression of the herniated lumbar disc:histologic and immunohistochemical study[J]. J Spinal Disord 1996;9:136-40.
    [16]Kawaguchi S, Yamashita T, Yokogushi K, et al. Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs[J].Spine (Phila Pa 1976)2001;26:1209-14.
    [17]Gronblad M, Virri J, Tolonen J, et al. A controlled immunohistochemical study of inflammatory cells in disc herniation tissue[J].Spine (Phila Pa 1976) 1994; 19:2744-51.
    [18]Ito T, Yamada M, Ikuta F, et al. Histologic evidence of absorption of sequestration-type herniated disc[J]. Spine (Phila Pa 1976) 1996;21:230-4.
    [19]Doita M, Kanatani T, Harada T, et al. Immunohistologic study of the ruptured intervertebral disc of the lumbar spine[J]. Spine (Phila Pa 1976) 1996;21:235-41.
    [20]Nozawa S, Nozawa A, Kojima H, et al. Spontaneous disappearance of lumbar disk herniation within 3 months[J]. Orthopedics 2009;32:852.
    [21]Kobayashi S, Meir A, Kokubo Y, et al. Ultrastructural analysis on lumbar disc herniation using surgical specimens:role of neovascularization and macrophages in hernias[J]. Spine (Phila Pa 1976) 2009;34:655-62.
    [22]Tapia-Perez H. [Intervertebral disc pathologies from an immunological perspective] [J]. Rev Neurol 2008;46:751-7.
    [23]Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth[J]. Blood 2003;101:2620-7.
    [24]Olmarker K, Rydevik B, Holm S. Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression[J]. Spine (Phila Pa 1976) 1989;14:569-73.
    [25]Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons:a physiological basis for the radicular pain of nerve root compression[J]. Pain 1977;3:25-41.
    [26]Murphy RW. Nerve roots and spinal nerves in degenerative disk disease[J]. Clin Orthop Relat Res 1977:46-60.
    [27]Marshall LL, Trethewie ER, Curtain CC. Chemical radiculitis. A clinical, physiological and immunological study[J]. Clin Orthop Relat Res 1977:61-7.
    [28]McCarron RF, Wimpee MW, Hudkins PG, et al. The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain[J]. Spine (Phila Pa 1976) 1987; 12:760-4.
    [29]Kayama S, Konno S, Olmarker K, et al. Incision of the anulus fibrosus induces nerve root morphologic, vascular, and functional changes. An experimental study[J]. Spine (Phila Pa 1976) 1996;21:2539-43.
    [30]Olmarker K, Nordborg C, Larsson K, et al. Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus. Spine (Phila Pa 1976) 1996;21:411-4.
    [31]Olmarker K, Blomquist J, Stromberg J, et al. Inflammatogenic properties of nucleus pulposus[J]. Spine (Phila Pa 1976) 1995;20:665-9.
    [32]Franson RC, Saal JS, Saal JA. Human disc phospholipase A2 is inflammatory[J]. Spine (Phila Pa 1976) 1992;17:S129-32.
    [33]Saal JS, Franson RC, Dobrow R, et al. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations[J]. Spine (Phila Pa 1976) 1990;15:674-8.
    [34]Kato K, Kikuchi S, Konno S, et al. Participation of 5-hydroxytryptamine in pain-related behavior induced by nucleus pulposus applied on the nerve root in rats[J]. Spine (Phila Pa 1976) 2008;33:1330-6.
    [35]Naylor A. The biophysical and biochemical aspects of intervertebral disc herniation and degeneration[J]. Ann R Coll Surg Engl 1962;31:91-114.
    [36]Hirsch C. Etiology and pathogenesis of low back pain. Isr J Med Sci 1966;2:362-70.
    [37]Gertzbein SD, Tile M, Gross A, et al. Autoimmunity in degenerative disc disease of the lumbar spine[J]. Orthop Clin North Am 1975;6:67-73.
    [38]Pennington JB, McCarron RF, Laros GS. Identification of IgG in the canine intervertebral disc[J]. Spine (Phila Pa 1976) 1988;13:909-12.
    [39]Habtemariam A, Gronblad M, Virri J, et al. Immunocytochemical localization of immunoglobulins in disc herniations[J]. Spine (Phila Pa 1976) 1996;21:1864-9.
    [40]Brisby H, Balague F, Schafer D, et al. Glycosphingolipid antibodies in serum in patients with sciatica[J]. Spine (Phila Pa 1976) 2002;27:380-6.
    [41]Virri J, Gronblad M, Seitsalo S, et al. Comparison of the prevalence of inflammatory cells in subtypes of disc herniations and associations with straight leg raising[J]. Spine (Phila Pa 1976) 2001;26:2311-5.
    [42]Windsor RC, Vernau KM, Sturges BK, et al. Lumbar cerebrospinal fluid in dogs with type I intervertebral disc herniation. J Vet Intern Med 2008;22:954-60.
    [43]马信龙,徐云强,张义修,等.腰椎间盘突出症自身免疫因素的研究[J].中国现代神经疾病杂志2004;4:291-6.
    [44]Romagnani S. Regulation of the T cell response[J]. Clin Exp Allergy 2006;36:1357-66.
    [45]Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease[J]. Gut 2003;52:65-70.
    [46]Hwang SY, Kim JY, Kim KW, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB-and PI3-kinase/Akt-dependent pathways[J]. Arthritis Res Ther 2004;6:R120-8.
    [47]Li J, Li D, Tan Z. The expression of interleukin-17, interferon-gamma, and macrophage inflammatory protein-3 alpha mRNA in patients with psoriasis vulgaris[J]. J Huazhong Univ Sci Technolog Med Sci 2004;24:294-6.
    [48]Katsifis GE, Rekka S, Moutsopoulos NM, et al. Systemic and local interleukin-17 and linked cytokines associated with Sjogren's syndrome immunopathogenesis[J]. Am J Pathol 2009; 175:1167-77.
    [49]Kurasawa K, Hirose K, Sano H, et al. Increased interleukin-17 production in patients with systemic sclerosis[J]. Arthritis Rheum 2000;43:2455-63.
    [50]Nogueira E, Hamour S, Sawant D, et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis[J]. Nephrol Dial Transplant.
    [51]Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis[J]. Am J Pathol 2008; 172:146-55.
    [52]Wong CK, Lit LC, Tam LS, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus:implications for Th17-mediated inflammation in auto-immunity[J]. Clin Immunol 2008; 127:385-93.
    [53]Bobechko WP, Hirsch C. AUTO-IMMUNE RESPONSE TO NUCLEUS PULPOSUS IN THE RABBIT[J]. J Bone Joint Surg Br 1965;47:574-80.
    [54]Kanerva A, Kommonen B, Gronblad M, et al. Inflammatory cells in experimental intervertebral disc injury[J]. Spine (Phila Pa 1976) 1997;22:2711-5.
    [55]Takahashi H, Suguro T, Okazima Y, et al. Inflammatory cytokines in the herniated disc of the lumbar spine[J]. Spine (Phila Pa 1976) 1996;21:218-24.
    [56]Shalom-Barak T, Quach J, Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB[J]. J Biol Chem 1998;273:27467-73.
    [57]Cai L, Yin JP, Starovasnik MA, et al. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo[J]. Cytokine 2001;16:10-21.
    [58]Honorati MC, Bovara M, Cattini L, et al. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis[J]. Osteoarthritis Cartilage 2002; 10:799-807.
    [59]Pacquelet S, Presle N, Boileau C, et al. Interleukin 17, a nitric oxide-producing cytokine with a peroxynitrite-independent inhibitory effect on proteoglycan synthesis[J]. J Rheumatol 2002;29:2602-10.
    [60]Honorati MC, Cattini L, Facchini A. IL-17, IL-1beta and TNF-alpha stimulate VEGF production by dedifferentiated chondrocytes[J]. Osteoarthritis Cartilage 2004;12:683-91.
    [61]Kuligowska M, Odrowaz-Sypniewska G. Role of interleukin-17 in cartilage and bone destruction in rheumatoid arthritis[J].Ortop Traumatol Rehabil 2004;6:235-41.
    [62]Moran EM, Mullan R, McCormick J, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation:synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies[J]. Arthritis Res Ther 2009; 11:R113.
    [63]Grevers LC, van Lent PL, Koenders MI, et al. Different amplifying mechanisms of interleukin-17 and interferon-gamma in Fcgamma receptor-mediated cartilage destruction in murine immune complex-mediated arthritis[J]. Arthritis Rheum 2009;60:396-407.
    [64]You Z, DuRaine G, Tien JY, et al. Expression of interleukin-17B in mouse embryonic limb buds and regulation by BMP-7 and bFGF[J]. Biochem Biophys Res Commun 2005;326:624-31.
    [65]Kokubu T, Haudenschild DR, Moseley TA, et al. Immunolocalization of IL-17A, IL-17B, and their receptors in chondrocytes during fracture healing[J]. J Histochem Cytochem 2008;56:89-95.
    [66]Xu HG, Chen XW, Wang H, et al. [Correlation between chondrocyte apoptosis of vertebral cartilage endplate and degeneration of intervertebral disc] [J]. Zhonghua Yi Xue Za Zhi 2008;88:194-7.
    [67]Kim KW, Ha KY, Lee JS, et al. Notochordal cells stimulate migration of cartilage end plate chondrocytes of the intervertebral disc in in vitro cell migration assays[J]. Spine J 2009;9:323-9.
    [68]Kuh SU, Zhu Y, Li J, et al. A comparison of three cell types as potential candidates for intervertebral disc therapy:annulus fibrosus cells, chondrocytes, and bone marrow derived cells[J]. Joint Bone Spine 2009;76:70-4.
    [69]Le Maitre CL, Freemont AJ, Hoyland JA. Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells[J]. Arthritis Res Ther 2009;11:R137.
    [70]Le Maitre CL, Baird P, Freemont AJ, et al. An in vitro study investigating the survival and phenotype of mesenchymal stem cells following injection into nucleus pulposus tissue[J]. Arthritis Res Ther 2009; 11:R20.
    [71]Zhang Y, Phillips FM, Thonar EJ, et al. Cell therapy using articular chondrocytes overexpressing BMP-7 or BMP-10 in a rabbit disc organ culture model[J]. Spine (Phila Pa 1976) 2008;33:831-8.
    [72]Sakai D. Future perspectives of cell-based therapy for intervertebral disc disease[J]. Eur Spine J 2008;17 Suppl 4:452-8.
    [73]Kim KW, Chung HN, Ha KY, et al. Senescence mechanisms of nucleus pulposus chondrocytes in human intervertebral discs[J]. Spine J 2009;9:658-66.
    [74]Glant T, Mikecz K. Antigenic profiles of human, bovine and canine articular chondrocytes[J]. Cell Tissue Res 1986;244:359-69.
    [75]Fehr K. [Immunology of the primary inflamed joint] [J]. Z Gesamte Inn Med 1987;42:423-8.
    [76]Alsalameh S, Mollenhauer J, Hain N, et al. Cellular immune response toward human articular chondrocytes. T cell reactivities against chondrocyte and fibroblast membranes in destructive joint diseases[J]. Arthritis Rheum 1990;33:1477-86.
    [77]Brauer R, Kittlick PD, Thoss K, et al. Different immunological mechanisms contribute to cartilage destruction in antigen-induced arthritis[J]. Exp Toxicol Pathol 1994;46:383-8.
    [78]李青,史可中,安荣泽,等.突出腰椎间盘组织中免疫复合物的表达及意义[J].中国矫形外科杂志2002;9:486-7.
    [79]Hyc A, Osiecka-Iwan A, Jozwiak J, et al. The morphology and selected biological properties of articular cartilage[J]. Ortop Traumatol Rehabil 2001;3:151-62.
    [80]Kato T, Xiang Y, Nakamura H, et al. Neoantigens in osteoarthritic cartilage[J]. Curr Opin Rheumatol 2004; 16:604-8.
    [81]Sakata M, Masuko-Hongo K, Nakamura H, et al. Osteoarthritic articular chondrocytes stimulate autologous T cell responses in vitro [J]. Clin Exp Rheumatol 2003;21:704-10.
    [1]Romagnani S. Regulation of the T cell response[J]. Clin Exp Allergy 2006;36:1357-66.
    [2]Rouvier E, Luciani MF, Mattei MG, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene[J], J Immunol 1993; 150:5445-56.
    [3]Aggarwal S, Gurney AL. IL-17:prototype member of an emerging cytokine family[J]. J Leukoc Biol 2002;71:1-8.
    [4]Spriggs MK. Interleukin-17 and its receptor[J]. J Clin Immunol 1997;17:366-9.
    [5]Li H, Chen J, Huang A, et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family[J]. Proc Natl Acad Sci U S A 2000;97:773-8.
    [6]Shi Y, Ullrich SJ, Zhang J, et al. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity[J]. J Biol Chem 2000;275:19167-76.
    [7]Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1[J]. J Biol Chem 2001;276:1660-4.
    [8]Hymowitz SG, Filvaroff EH, Yin JP, et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding[J]. EMBO J 2001;20:5332-41.
    [9]Starnes T, Robertson MJ, Sledge G, et al. Cutting edge:IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production[J]. J Immunol 2001;167:4137-40.
    [10]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol 2005;6:1133-41.
    [11]Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells[J]. Annu Rev Immunol 2009;27:485-517.
    [12]Bettelli E, Korn T, Kuchroo VK. Th17:the third member of the effector T cell trilogy[J]. Curr Opin Immunol 2007;19:652-7.
    [13]Kokubu T, Haudenschild DR, Moseley TA, et al. Immunolocalization of IL-17A, IL-17B, and their receptors in chondrocytes during fracture healing[J].J Histochem Cytochem 2008;56:89-95.
    [14]Lubberts E, Joosten LA, van de Loo FA, et al. Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4[J]. Arthritis Rheum 2000;43:1300-6.
    [15]Goldberg M, Nadiv O, Luknar-Gabor N, et al. Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes[J]. Mol Immunol 2009;46:1854-9.
    [16]Li GZ, Zhong D, Yang LM, et al. Expression of interleukin-17 in ischemic brain tissue[J]. Scand J Immunol 2005;62:481-6.
    [17]Qiu Z, Dillen C, Hu J, et al. Interleukin-17 regulates chemokine and gelatinase B expression in fibroblasts to recruit both neutrophils and monocytes[J]. Immunobiology 2009;214:835-42.
    [18]Venkatachalam K, Mummidi S, Cortez DM, et al. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts[J]. Am J Physiol Heart Circ Physiol 2008;294:H2078-87.
    [19]Parsonage G, Filer A, Bik M, et al. Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFalpha[J]. Arthritis Res Ther 2008;10:R47.
    [20]Kawanokuchi J, Shimizu K, Nitta A, et al. Production and functions of IL-17 in microglia[J]. J Neuroimmunol 2008;194:54-61.
    [21]Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells[J]. Am J Respir Cell Mol Biol 2002;26:748-53.
    [22]Yang XO, Chang SH, Park H, et al. Regulation of inflammatory responses by IL-17F[J]. J Exp Med 2008:205:1063-75.
    [23]Suzuki S, Kokubu F, Kawaguchi M, et al. Expression of interleukin-17F in a mouse model of allergic asthma[J]. Int Arch Allergy Immunol 2007; 143 Suppl 1:89-94.
    [24]Kohno M, Tsutsumi A, Matsui H, et al. Interleukin-17 gene expression in patients with rheumatoid arthritis[J]. Mod Rheumatol 2008; 18:15-22.
    [25]Baba N, Rubio M, Sarfati M. Interplay between CD45RA+regulatory T cells and TNF-{alpha} in the regulation of human Thl7 differentiation[J]. Int Immunol.2010; 22:237-244.
    [26]Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease[J]. Gut 2003;52:65-70.
    [27]Nielsen OH, Kirman I, Rudiger N, et al. Upregulation of interleukin-12 and-17 in active inflammatory bowel disease[J]. Scand J Gastroenterol 2003;38:180-5.
    [28]Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. J Clin Invest 2006; 116:1310-6.
    [29]Andoh A, Yagi Y, Shioya M, et al. Mucosal cytokine network in inflammatory bowel disease[J]. World J Gastroenterol 2008;14:5154-61.
    [30]Liu Z, Yang L, Cui Y, et al.I1-21 enhances NK cell activation and cytolytic activity and induces Th17 cell differentiation in inflammatory bowel disease[J]. Inflamm Bowel Dis 2009;15:1133-44.
    [31]Holtta V, Klemetti P, Sipponen T, et al. IL-23/IL-17 immunity as a hallmark of Crohn's disease[J]. Inflamm Bowel Dis 2008;14:1175-84.
    [32]Faustini F, Zoli A, Ferraccioli GF. Immunologic and genetic links between spondylarthropathies and inflammatory bowel diseases[J]. Eur Rev Med Pharmacol Sci 2009; 13 Suppl 1:1-9.
    [33]Kamada N, Hisamatsu T, Honda H, et al. TL1A produced by lamina propria macrophages induces Thl and Th17 immune responses in cooperation with IL-23 in patients with Crohn's disease[J]. Inflamm Bowel Dis 2009;16:568-75.
    [34]Li J, Li D, Tan Z. The expression of interleukin-17, interferon-gamma, and macrophage inflammatory protein-3 alpha mRNA in patients with psoriasis vulgaris[J]. J Huazhong Univ Sci Technolog Med Sci 2004;24:294-6.
    [35]Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[J]. Nature 2007;445:648-51.
    [36]kenn AJ, Teunissen MB, Kapsenberg ML, et al. Interleukin-17 in inflammatory skin disorders[J]. Curr Opin Allergy Clin Immunol 2007;7:374-81.
    [37]Li J, Chen X, Liu Z, et al. Expression of Th17 cytokines in skin lesions of patients with psoriasis[J]. J Huazhong Univ Sci Technolog Med Sci 2007;27:330-2.
    [38]Fitch E, Harper E, Skorcheva I, et al. Pathophysiology of psoriasis:recent advances on IL-23 and Th17 cytokines[J]. Curr Rheumatol Rep 2007;9:461-7.
    [39]Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Thl and Th17 T cells[J]. J Invest Dermatol 2008;128:1207-11.
    [40]Peric M, Koglin S, Kim SM, et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes[J]. J Immunol 2008;181:8504-12.
    [41]Caproni M, Antiga E, Melani L, et al. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis:a randomized-controlled trial[J]. J Clin Immunol 2009;29:210-4.
    [42]Cho ML, Yoon CH, Hwang SY, et al. Effector function of type Ⅱ collagen-stimulated T cells from rheumatoid arthritis patients:cross-talk between T cells and synovial fibroblasts[J]. Arthritis Rheum 2004;50:776-84.
    [43]Hwang SY, Kim HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients[J]. Mol Cells 2005;19:180-4.
    [44]Kuligowska M, Odrowaz-Sypniewska G. Role of interleukin-17 in cartilage and bone destruction in rheumatoid arthritis[J]. Ortop Traumatol Rehabil 2004;6:235-41.
    [45]Hwang SY, Kim JY, Kim KW, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB-and PI3-kinase/Akt-dependent pathways[J]. Arthritis Res Ther 2004;6:R120-8.
    [46]Van Bezooijen RL, Van Der Wee-Pals L, Papapoulos SE, et al. Interleukin 17 synergises with tumour necrosis factor alpha to induce cartilage destruction in vitro[J]. Ann Rheum Dis 2002;61:870-6.
    [47]Kirkham BW, Lassere MN, Edmonds JP, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis:a two-year prospective study (the DAMAGE study cohort) [J]. Arthritis Rheum 2006;54:1122-31.
    [48]Cai L, Yin JP, Starovasnik MA, et al. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo[J]. Cytokine 2001;16:10-21.
    [49]Honorati MC, Neri S, Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts [J]. Osteoarthritis Cartilage 2006;14:345-52.
    [50]Honorati MC, Cattini L, Facchini A. VEGF production by osteoarthritic chondrocytes cultured in micromass and stimulated by IL-17 and TNF-alpha[J]. Connect Tissue Res 2007;48:239-45.
    [51]Grevers LC, van Lent PL, Koenders MI, et al. Different amplifying mechanisms of interleukin-17 and interferon-gamma in Fcgamma receptor-mediated cartilage destruction in murine immune complex-mediated arthritis[J]. Arthritis Rheum 2009;60:396-407.
    [52]Lubberts E, Koenders MI, Oppers-Walgreen B, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion[J]. Arthritis Rheum 2004;50:650-9.
    [53]Rohn TA, Jennings GT, Hernandez M, et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis[J]. Eur J Immunol 2006;36:2857-67.
    [54]Sakai A, Sugawara Y, Kuroishi T, et al. Identification of IL-18 and Thl7 cells in salivary glands of patients with Sjogren's syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18[J]. J Immunol 2008; 181:2898-906.
    [55]Nguyen CQ, Hu MH, Li Y, et al. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren's syndrome:findings in humans and mice[J]. Arthritis Rheum 2008;58:734-43.
    [56]Katsifis GE, Rekka S, Moutsopoulos NM, et al. Systemic and local interleukin-17 and linked cytokines associated with Sjogren's syndrome immunopathogenesis[J]. Am J Pathol 2009; 175:1167-77.
    [57]Vosters JL, Yin H, Roescher N, et al. Local expression of tumor necrosis factor-receptor 1:immunoglobulin G can induce salivary gland dysfunction in a murine model of Sjogren's syndrome[J]. Arthritis Res Ther 2009;11:R189.
    [58]Reksten TR, Jonsson MV, Szyszko EA, et al. Cytokine and autoantibody profiling related to histopathological features in primary Sjogren's syndrome[J]. Rheumatology (Oxford) 2009;48:1102-6.
    [59]Kurasawa K, Hirose K, Sano H, et al. Increased interleukin-17 production in patients with systemic sclerosis[J]. Arthritis Rheum 2000;43:2455-63.
    [60]Gourh P, Arnett FC, Assassi S, et al. Plasma cytokine profiles in systemic sclerosis:associations with autoantibody subsets and clinical manifestations [J]. Arthritis Res Ther 2009;11:R147.
    [61]Radstake TR, van Bon L, Broen J, et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFbeta and IFNgamma distinguishes SSc phenotypes[J]. PLoS One 2009;4:e5903.
    [62]Gold R, Luhder F. Interleukin-17--extended features of a key player in multiple sclerosis[J]. Am J Pathol 2008;172:8-10.
    [63]Graber JJ, Allie SR, Mullen KM, et al. Interleukin-17 in transverse myelitis and multiple sclerosis[J]. J Neuroimmunol 2008;196:124-32.
    [64]Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis[J]. Am J Pathol 2008;172:146-55.
    [65]Espinosa A, Dardalhon V, Brauner S, et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway[J]. J Exp Med 2009;206:1661-71.
    [66]Wong CK, Ho CY, Li EK, et al. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus[J]. Lupus 2000;9:589-93.
    [67]Doreau A, Belot A, Bastid J, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus[J]. Nat Immunol 2009;10:778-85.
    [68]Dong G, Ye R, Shi W, et al. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients[J]. Chin Med J (Engl) 2003;116:543-8.
    [69]Crispin JC, Oukka M, Bayliss G, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys[J]. J Immunol 2008; 181:8761-6.
    [70]Wang Y, Ito S, Chino Y, et al. Laser microdissection-based analysis of cytokine balance in the kidneys of patients with lupus nephritis[J]. Clin Exp Immunol;159:1-10.
    [71]Kwan BC, Tam LS, Lai KB, et al. The gene expression of type 17 T-helper cell-related cytokines in the urinary sediment of patients with systemic lupus erythematosus[J]. Rheumatology (Oxford) 2009;48:1491-7.
    [72]Wong CK, Lit LC, Tam LS, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus:implications for Th17-mediated inflammation in auto-immunity[J]. Clin Immunol 2008;127:385-93.
    [73]Yang J, Chu Y, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus[J]. Arthritis Rheum 2009;60:1472-83.
    [74]Pan HF, Ye DQ, Li XP. Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus [J]. Nat Clin Pract Rheumatol 2008;4:352-3.
    [75]Sohn MH, Noh SY, Chang W, et al. Circulating interleukin 17 is increased in the acute stage of Kawasaki disease[J]. Scand J Rheumatol 2003;32:364-6.
    [76]Abdulahad WH, Stegeman CA, Kallenberg CG. Review article:The role of CD4(+) T cells in ANCA-associated systemic vasculitis[J]. Nephrology (Carlton) 2009;14:26-32.
    [77]Deng J, Younge BR, Olshen RA, et al. Th17 and Th1 T-cell responses in giant cell arteritis[J]. Circulation;121:906-15.
    [78]Nogueira E, Hamour S, Sawant D, et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis[J]. Nephrol Dial Transplant.
    [79]Honorati MC, Bovara M, Cattini L, et al. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis [J]. Osteoarthritis Cartilage 2002; 10:799-807.
    [80]Honorati MC, Cattini L, Facchini A. IL-17, IL-1beta and TNF-alpha stimulate VEGF production by dedifferentiated chondrocytes[J]. Osteoarthritis Cartilage 2004;12:683-91.
    [81]Bobechko WP, Hirsch C. AUTO-IMMUNE RESPONSE TO NUCLEUS PULPOSUS IN THE RABBIT[J]. J Bone Joint Surg Br 1965;47:574-80.
    [82]Kanerva A, Kommonen B, Gronblad M, et al. Inflammatory cells in experimental intervertebral disc injury[J]. Spine (Phila Pa 1976) 1997;22:2711-5.
    [83]马信龙,徐云强,张义修,等.腰椎间盘突出症自身免疫因素的研究[J].中国现代神经疾病杂志2004;4:291-6.
    [84]Habtemariam A, Gronblad M, Virri J, et al. Immunocytochemical localization of immunoglobulins in disc herniations[J]. Spine (Phila Pa 1976) 1996;21:1864-9.
    [85]Shamji MF, Allen KD, So S, et al. Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy[J]. Spine (Phila Pa 1976)2009;34:648-54.
    [86]Shamji MF, Setton LA, Jarvis W, et al. Pro-inflammatory cytokine expression profile in degenerative and herniated human intervertebral disc tissues[J]. Arthritis Rheum.2010.
    [87]Khader SA, Cooper AM. IL-23 and IL-17 in tuberculosis[J]. Cytokine 2008;41:79-83.
    [88]Babu S, Bhat SQ, Kumar NP, et al. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results[J]. J Infect Dis;201:20-31.
    [89]Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance[J]. Eur J Immunol 2007;37:2695-706.
    [90]Caruso R, Pallone F, Monteleone G. Emerging role of IL-23/IL-17 axis in H pylori-associated pathology[J]. World J Gastroenterol 2007; 13:5547-51.
    [91]Shiomi S, Toriie A, Imamura S, et al. IL-17 is involved in Helicobacter pylori-induced gastric inflammatory responses in a mouse model [J]. Helicobacter 2008:13:518-24.
    [92]Mascart F, Verscheure V, Malfroot A, et al. Bordetella pertussis infection in 2-month-old infants promotes type 1 T cell responses[J]. J Immunol 2003;170:1504-9.
    [93]Fedele G, Stefanelli P, Spensieri F, et al. Bordetella pertussis-infected human monocyte-derived dendritic cells undergo maturation and induce Thl polarization and interleukin-23 expression[J]. Infect Immun 2005;73:1590-7.
    [94]Siciliano NA, Skinner JA, Yuk MH. Bordetella bronchiseptica modulates macrophage phenotype leading to the inhibition of CD4+T cell proliferation and the initiation of a Th17 immune response[J]. J Immunol 2006; 177:7131-8.
    [95]Patera AC, Pesnicak L, Bertin J, et al. Interleukin 17 modulates the immune response to vaccinia virus infection[J]. Virology 2002;299:56-63.
    [96]Maek ANW, Buranapraditkun S, Klaewsongkram J, et al. Increased interleukin-17 production both in helper T cell subset Th17 and CD4-negative T cells in human immunodeficiency virus infection[J]. Viral Immunol 2007;20:66-75.
    [97]Wiehler S, Proud D. Interleukin-17A modulates human airway epithelial responses to human rhino virus infection[J]. Am J Physiol Lung Cell Mol Physiol 2007;293:L505-15.
    [98]Molesworth-Kenyon SJ, Yin R, Oakes JE, et al. IL-17 receptor signaling influences virus-induced corneal inflammation[J]. J Leukoc Biol 2008;83:401-8.
    [99]Hou W, Kang HS, Kim BS. Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection[J]. J Exp Med 2009;206:313-28.
    [100]Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses[J]. Immunity 2002;17:375-87.
    [101]Prause O, Bozinovski S, Anderson GP, et al. Increased matrix metalloproteinase-9 concentration and activity after stimulation with interleukin-17 in mouse airways[J]. Thorax 2004;59:313-7.
    [102]Shen F, Zhao MW, He B, et al. [The levels and clinical implications of induced sputum interleukin-17 in chronic obstructive pulmonary disease and asthma] [J]. Zhonghua Nei Ke Za Zhi 2004;43:888-90.
    [103]Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients:linking T cell driven inflammation and granulocytic influx? [J] Respir Res 2006;7:135.
    [104]Celedon JC, Lange C, Raby BA, et al. The transforming growth factor-betal (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD) [J]. Hum Mol Genet 2004; 13:1649-56.
    [105]Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine[J]. Respir Med 2003;97:726-33.
    [106]Hellings PW, Kasran A, Liu Z, et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma[J]. Am J Respir Cell Mol Biol 2003;28:42-50.
    [107]McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice[J]. J Immunol 2008; 181:4089-97.
    [108]Kawaguchi M, Kokubu F, Fujita J, et al. Role of interleukin-17F in asthma[J]. Inflamm Allergy Drug Targets 2009;8:383-9.
    [109]Li HL, Kostulas N, Huang YM, et al. IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat[J]. J Neuroimmunol 2001;116:5-14.
    [110]Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury[J]. Nat Med 2009; 15:946-50.
    [111]Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth[J]. Nature 2006;442:461-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700