人参愈伤组织细胞表达CTB-hIFN-α2b融合蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人干扰素α2b(hIFN-α2b)具有多种生物学功能,包括广谱抗病毒、抑制肿瘤细胞增殖和免疫调节的作用,在临床上主要用于治疗病毒性肝炎及肿瘤性疾病。目前,临床应用的干扰素制剂主要是从大肠杆菌表达系统获得的基因工程重组蛋白,并以注射给药为主。由于干扰素在血液中的半衰期短,静脉注射后很快从血中消失,故很难维持较高的血药浓度,在临床应用上只能以提高用药频率和用药量来解决,这样就很容易诱发干扰素抗体的产生及增加毒副作用。因此,如何改进给药途径是其开发的一个重要方向。霍乱毒素B亚单位(CTB)是霍乱毒素的无毒结合亚基,具有载体蛋白的特性,并且由于CTB本身具有很强的免疫原性,能剌激血液和肠道产生特异性保护抗体,与其他抗原共同使用还具有免疫佐剂的作用,能增强抗原蛋白的免疫效力和免疫特异性。人参是一种珍贵的药用植物,具有独特的营养和药用价值。近年来,利用转基因植物作为生物反应器生产药用蛋白正得以深入研究,多方面的报道证明植物可以高水平表达具有功能的重组蛋白质。
     在本研究中,我们构建了含有霍乱毒素B亚单位与人干扰素α2b融合基因片段的植物细胞表达载体,选择人参愈伤组织细胞作为生物反应器,利用农杆菌介导的转化法将融合基因导入人参愈伤组织细胞,得到了能够同时表达hIFN-α2b和CTB的转基因人参愈伤组织细胞系。为建立以人参愈伤组织细胞作为生物反应器生产口服药用蛋白奠定了基础,并为药用蛋白和药用植物的联合应用开辟了一条新思路。
Human interferonα2b(hIFN-α2b)processes a variety of biological functions, including broad-spectrum antiviral, anti-cell division and immunomodulatory activities. In the clinic, it′s mainly for the treatment of viral hepatitis and cancer diseases. At present, the clinical application of interferon preparations are mainly obtained from the E.coli expression system, and the main administration is injection. Because the half-life is short, interferon would soon disappeare from the blood after the intravenous injection. It is difficult to maintain a high plasma concentration in clinical applications. The problem can only be solved through increasing the frequency and dosage. So that it is easy to produce interferon-induced antibody and increase the toxic side effects. The injected administration is inconvenient and expensive for patients. Therefore, it was need to develop new formulations of interferon.
     Cholera toxin B subunit (CTB) is a non-toxic binding subunit of cholera toxin, it can specific bind with the gangliosides GM1 receptor which placed on the membrane of nucleated cells. CTB can be used for carrier protein, so exogenous peptides may be combined with CTB in order to increase the opportunity to contact with the cell membrane receptor. Based on these characteristics of CTB, today it has been applied to the oral vaccines and oral drugs research.
     In recent years, the use of transgenic plants producing pharmaceutical proteins are able to in-depth study. Compared with the traditional system, the plant expression system is efficient, economical and convenient and so on. In addition, the most important edible plants also have characteristics. Therefore, the use of transgenic plants as bioreactors production of oral pharmaceutical proteins are being increasingly subject to national attention. It was report that plants can express high levels of functional recombinant proteins.
     For transgenic plant material can be divided into plants, explant and callus cells, and so on. Plant tissue cell culture studies have decades of history. Compared with conventional agricultural production, it is not impacted by the ecological environment and the pests. Ginseng is a precious medicinal plants, has a unique nutritional and medicinal value. The common receptors of transgenic plants are tobacco, rice, tomato, potato and so on. The expression of human interferon in ginseng has not been reported.
     In this study, human interferonα2b and cholera toxin B subunit gene was fused by gene fusion, which CTB was located at the N-terminal and hIFN-α2b was placed at the C-terminal. They were linked by a flexible peptide chain. First, the fusion gene was constructed into the pMD18-T vector to form the pMDCI. The pMDCI and pBI121 was digested with BamH I and Sac I. The target gene fragment and vector fragments were recovered by agarose gel electrophoresis and connected to receive expression vector. The recombinant plasmid was confirmed by PCR and restriction digestion, finally obtaining the plant expression vector pBICI.
     The pBICI was transformed into Agrobacterium tumefaciens stain LBA4404 directly by the freeze-thaw method. Subsequently, Agrobacterium tumefaciens carrying pBICI was used to transform ginseng cells. Ginseng cells were co-cultivated for 48~72 h with Agrobacterium tumefaciens carrying pBICI. Ginseng cells were then rinsed with sterilized water added 500 mg/L cefotaxime to kill the Agrobacterium tumefaciens on the surface of cells, and blotted dry on a sterilized paper towel, and placed onto a 67-V medium added 500 mg/L cefotaxime for recovery. After recovery period of 7 days, the ginseng cells were transferred to a 67-V medium added 500mg/L cefotaxime and 50mg/L G418 to select transgenic progeny. About 3~4 months later, G418-resistant ginseng cells regenerants were removed to a 67-V medium containing 25 mg/L G418. We have obtained the cell line of ginseng which carrying CTB-hIFN-α2b fusion gene.
     Transgenic cells were checked for the presence of target gene using PCR and RT-PCR. Samples containing the target gene showed a clear band in site of 880 bp by agarose electrophoresis analysis. The results demonstrated that an amplified product with expected size was present in G418 resistant cells and absent in non-transformed cells. Expression products were carried out Western blot, anti-viral activity and GM1 binding assay analysis, the results showed that the expression protein of a human interferon and CTB protein properties biological activity.
     From these results, it was concluded that fusion proteins can be expressed in transgenic ginseng callus cells and are able to keep the activity.
引文
[1] Hoskins M. A protective action of neurotropic against viscerotropic yellow fever virus in Macacus rhesus[J]. Am J Trop Med, 1935, 15: 675-680.
    [2] Magrassi F. Studi sul'infezione e sul'immunita da virus erpetico[J]. Z Hyg Infectionskrh, 1935, 117: 573-620.
    [3] Andrewea C H. Interference by one virus with the growth of another in tissue-culture[J]. Br J Exp Pathol, 1942, 23:214-220.
    [4] Henle W, Henle G. Interference of inactive virus with the propagation of virus of influenza[J]. Science, 1943, 98(2534):87-89.
    [5] Ziegler J E, Horsfall F L. Interference between the influenza viruses: I. The effect of active virus upon the multiplication of influenza viruses in the chick embryo[J]. J Exp Med, 1944, 79: 361-377.
    [6] Ziegler J E, Lavin G I, Horsfall F L. Interference between the influenza viruses: II. The effect of virus rendered non-infective by ultraviolet radiation upon the multiplication of influenza viruses in the chick embryo[J]. J Exp Med, 1944, 79: 379-400.
    [7] Gard S. Tissue immunity in mouse poliomyelitis[J]. Acta Med Scand, 1944, 119:27-46.
    [8] Lennette E H, Koprowski H. Interference between viruses in tissue culture[J]. J Exp Med, 1946, 83: 195-219.
    [9] Burnet F M, Fraser K B, Lind P E. Genetic interaction between influenza viruses[J]. Nature, 1953,171: 163-165.
    [10] Nagano Y, Kojima Y. Pouvoir h'nmunisant du virus vaccinal inactive par des rayons ultraviolets[J]. Compt. Rend. Soc. Biol. (Paris), 1954,148: 1700-1702.
    [11] Isaacs A, Lindenmann J. Virus Interference. I. The interferon[J]. Proc Roy Soc Lond B Biol Sci, 1957, 147:258-267.
    [12] Roberts R M, Liu L, Guo Q, et al. The evolution of the type I interferons. JInterferon Cytokine Res, 1998,18: 805-816.
    [13] Pestka S, Krause C D, Walter M R. Interferons, interferon-like cytokines, and their receptors[J]. Immunol, 2004, 202: 8-32.
    [14] Hauptmann R, Swetly P. A novel class of human type I interferons[J]. Nucleic Acid Res, 1985,13(13): 4739-4749.
    [15] Adolf G R, Maurer-Fogy I, Kalsner I, et al. Purification and characterization of natural human interferonω: two alternative cleavage sites for the signal peptidase[J]. J Biol Chem, 1990, 265(16): 9290-9295.
    [16] Flores I, Mariano T M, Pestka S, et al. Human interferon omega (ω) binds to theα/B receptor[J]. J Biol Chem, 1991, 266(30): 19875-19877.
    [17] Horton H M, Hernandez P, Parker S E, et al. Antitumor effects of interferon-ω: in vivo therapy of human tumor xenografts in nude mice[J]. Cancer Res, 1999,59(16): 4064-4068.
    [18] Bermúdez-Humarán LG, Langella P, Commissaire J, et al. Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis[J]. FEMS Microbiol Lett, 2003, 224(2): 307-313.
    [19] Li J, Roberts R M. Structure-function relationships in the interferon-τ[J]. J Biol Chem, 1994, 269(40): 24826-24833.
    [20] Roberts R M, Ealy A D, Alexenko A P, et al. Trophoblast interferons[J]. Placenta, 1999, 20(4):259-264.
    [21] Soos J M, Stüve O, Youssef S, et al. Cutting edge: oral type I IFN-τpromotes a th2 bias and enhances suppression of autoimmune encephalomyelitis by oral glatiramer acetate[J]. J Immunol, 2002, 169(5): 2231-2235.
    [22] Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R[J]. Nat Immunol, 2003, 4(1): 63-68.
    [23] Kotenko S V, Gallagher G, Baurin V V, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex[J]. Nat Immunol, 2003, 4(1): 69-77.
    [24] Ank N, West H, Bartholdy C, et al. Lambda Interferon (IFN-λ), a Type III IFN,is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo[J]. J Virol, 2006, 80(9): 4501-4509.
    [25] Ank N, West H, Paludan S R. IFN-λ: novel antiviral cytokines[J]. J Interferon Cytokine Res. 2006,26(6):373-379.
    [26] Radhakrishnan R, Walter L J, Hruza A, et al. Zinc mediated dimer of human interferon-α2b revealed by X-ray crystallography[J]. Structure (Lond.), 1996,4:1453-1463.
    [27] Malmgaard L. Induction and regulation of IFNs during viral infections[J]. J Interferon Cytokine Res. 2004, 24(8):439-454.
    [28] LaFleur D W, Nardelli B, Tsareva T, et al. Interferon-κ, a novel type I interferon expressed in human keratinocytes[J]. J Biol Chem, 2001, 276:39765-39771.
    [29] Martal J L, Chene N M, Hutnh L P, et al. IFN-tau, a novel subtype I IFN, structural characteristics, nonubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentilities[J]. Biochimic, 1998, 80:755-777.
    [30] Demmers K J, Derecka K, Flint A. Trophoblast interferon and pregnancy[J]. Reproduction, 2001, 121:41-49.
    [31] Oritani K, Medina K L, Tomiyama Y, et al. Limitin: an interferon-like cytokine that preferentially influences B-lymphocyte precursors[J]. Nat Med, 2000, 6(6): 659-666.
    [32] Ishida N, Oritani K, Shiraga M, et al. Differential effects of a novel IFN-ζ/limitin and IFN-αon signals for Daxx induction and Crk phosporylation that couple with growth control of megakaryocytes[J]. Experimental Hemtology, 2005, 33: 495-503.
    [33] Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R[J]. Nat Immunol, 2003,4(1):63-68.
    [34] Kotenko S V, Gallagher G, Baurin V V, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex[J]. Nat Immunol, 2003,4(1):69-77.
    [35] Siren J, Pirhonen J, Julkunen K, et al. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28 and IL-29[J]. J Immunol, 2005, 174(4): 1932-1937.
    [36] Charles E S. Antiviral Actions of Interferons[J]. Clinical Microbiology Reviews, 2001, 14(4):778-809.
    [37] Haller O, Frese M, Kochs G. Mx proteins: mediators of innate resistance to RNA viruses[J]. Rev Sci Tech, 1998,17:220-230.
    [38] Flohr F, Schneider-Schaulies S, Haller O, et al. The centralinteractive region of human MxA GTPase is involved in GTPase activationand interaction with viral target structures[J]. FEBS Lett, 1999, 463:24-28.
    [39] Haller O, Stertz S,. Kochs G. The Mx GTPase family of interferon-induced antiviral proteins[J]. Microbes Infect, 2007, 9:1636-1643.
    [40] Dittmann J, Stertz S, Grimm D, et al. Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase[J]. J Virol, 2008, 82(7): 3624- 3631.
    [41] Chelbi-Alix M K, Chousterman S. Ethanol induces 2',5'-oligoadenylate synthetase and antiviral activities through interferon-beta production[J]. J Biol Chem, 1992, 267(3): 1741-1745.
    [42] Han J Q, Barton D J. Activation and evasion of the antiviral 2'-5' oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA[J]. RNA, 2002, 8: 512-525.
    [43] Der S D, Lau A S. Involvement of the double-stranded-RNA-dependent kinase PKR in interferon expression and interferon-mediated antiviral activity[J]. Proc Nati Acad Sci USA, 1995, 92: 8841-8845.
    [44] Smith J A, Schmechel S C, Williams B R G., et al. Involvement of the interferon- regulated antiviral proteins PKR and RNase L in reovirus-induced shutoff of cellular translation[J]. J Viol, 2005,79(4):2240-2250.
    [45] D'Cunha J, Knight E, Haas A L, et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine[J]. Proc Nati Acad Sci USA, 1996, 93: 211-215.
    [46] Zhao C, Denison C,. Huibregtse J M, et al. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways[J]. Proc Nati Acad Sci USA, 2005, 102(29):10200-10205.
    [47]刘畅,乔文涛,王琛,等.类泛素蛋白ISG15及其在先天免疫中的作用[J].生物化学与生物物理进展, 2006, 33(11): 1023-1029.
    [48] Malakhova O A, Zhang D E. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response[J]. J Biol Chem, 2008, 283(14): 8783- 8787.
    [49] Desai S D, Wood L M,Yu C T, et al. ISG15 as a novel tumor biomarker for drug sensitivity[J]. Mol Cancer Ther, 2008, 7(6): 1430-1439.
    [50] Samuel C E. Antiviral actions of interferons[J]. Clin Microbiol Rev, 2001, 14(4): 778-809.
    [51] Krown S E. Interferons and interferon inducers in cancer treatment[J]. Semin Oncol, 1986,13:207-217.
    [52] David G, John L. Interferon therapy in cancer: From imaginon to interferon[J]. Can Res, 1986, 46:4315-4329.
    [53] Ozaki Y, Edelstein M P, Duch D S. Induction of indoleamine 2,3-dioxygenase: A mechanism of the antitumor activity of interferon-γ[J]. Proc Nati Acad Sci USA, 1988, 85: 1242- 1246.
    [54] Gordon SC. Antiviral therapy for chronic hepatitis B and C. Which patients are likely to benefit from which agents? [J] Postgrad Med, 2000,107(2):135-138, 141-144.
    [55] Raj V. Treatment of hepatitis B[J]. Clin Cornerstone, 2001,3(6):24-36.
    [56] Jaboli M F, Fabbri C, Liva S, et al. Long-term alpha interferon and lamivudine combination therapy in non-responder patients with anti-HBe-positive chronic hepatitis B: results of an open, controlled trial[J]. World J Gastroenterol, 2003, 9(7):1491-1495.
    [57] Kumar R, Agrawal B. Novel treatment options for hepatitis B virus infection[J]. Curr Opin Investig Drugs, 2004,5(2):171-178.
    [58] De Clercq E. Antiviral drugs in current clinical use[J]. J Clin Virol, 2004, 30(2): 115-133.
    [59] Hanazaki K. Antiviral therapy for chronic hepatitis B: a review[J]. Curr Drug Targets Inflamm Allergy, 2004,3(1):63-70.
    [60]侯云德,张丽兰,张利萍,等.干扰素及其临床应用[J].中华实验和临床病毒学杂志,2007,21(4):408-411.
    [61] Wheelock E F, Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin[J]. Science, 1965,149: 310–311.
    [62] Friedman R M. Inhibition of arbovirus protein synthesis by interferon[J]. J Virol, 1968, 2(10): 1081-1085.
    [63] Friedman R M, Sonnabend J A. Mechanism of action of interferon[J]. Arch Intern Med, 1970,126(1):51-63.
    [64] Friedman R M, Ramseur J M. Inhibition of murine leukemia virus production in chronically infected AKR cells: a novel effect of interferon[J]. Proc Natl Acad Sci USA,1974, 71:3542-3544.
    [65] Friedman R M, Chang E H, Ramseur J M, et al. Interferon directed inhibition of chronic murine leukemia virus production in cell cultures: lack of effect on intracellular viral markers[J]. J Virol, 1975, 16: 569-574.
    [66] Gresser I, Bourali C, Levy J P, et al. Increased survival in mice inoculated with tumor cells and treated withinterferon preparations[J]. Proc Nati Acad Sci USA, 1969, 63: 51-57.
    [67] Lindahl P, Leary P, Gresser I. Enhancement by interferon of the specific cytotoxicity of sensitized lymphocytes[J]. Proc Nati Acad Sci USA, 1972, 69: 721-725.
    [68] Greenberg H B, Pollard R B, Lutwick L I, et al. Effect of human leukocyte interferon on hepatitis B virus infection in patients with chronic active hepatitis[J]. N Eng J Med, 1976, 295(10):517–522.
    [69] Taniguchi T, Ohno S, Fujii-Kuriyama V, et al. The nucleotide sequence of human fibroblast interferon cDNA[J]. Gene, 1980, 20:11-15.
    [70] Nagata S, Taira H, Hall A, et al. Synthesis in E coli of a polypeptide with human leukocyte interferon activity[J]. Nature, 1980, 284:316-320.
    [71] Nagata S, Mantei N, Weissmann C. The structure of one of the eight or more distinct chromosomal genes for human interferon-alpha[J]. Nature, 1980, 287 (5781): 401-408.
    [72] Derynck R, Remaut E, Saman E, et al. Expression of human fibroblast interferon gene in Escherichia coli[J]. Nature, 1980, 287:193-197.
    [73] Koren S, Fleischmann W R. Orally administered interferons suppress bone marrow function[J]. Proc Soc Exp Biol Med, 1993, 204(2):155-164.
    [74] Fleischmann W R, Fields E E, Wang J L, et al. Modulation of peripheral leukocyte counts in mice by oral administration of interferons[J]. Proc Soc Exp Biol Med, 1997, 424-430.
    [75] Fleischmann W R, Koren S. Systemic effects of orally administered interferons and interleukin-2[J]. J Interferon Cytokine Res, 1999, 19(8):829-839.
    [76] Cummins J M, Beilharz M W, Krakowka S. Oral Use of Interferon [J]. J Interferon Cytokine Res, 1999, 19(8): 853-857.
    [77] Smith G E, Summers M D, Fraser M J. Production of bata interferon in insects cells infected with a baculovirus expression vector[J]. Mol cell Biol, 1983,3: 2156-2165.
    [78] Maeda S, Kawai T, Obinata M, et al. Production of humanα-interferon in silkworm using a baculovirus vector[J]. Nature, 1985, 315:592-594.
    [79] Chen J. Expression of human interferonαcDNA in transgenic tobacco plants [J]. Sci Sin (B). 1990,3:253-260.
    [80] Smirnov S P, Teverovskaia E K, Krasheninnikova L V, et al. Design of an expression integrative vector and its application for introducing the human recombinant alfa interferon gene into plants[J]. Genetika, 1990,26(12): 2111-2121.
    [81]朱祯,李向辉,孙勇如,等.转基因水稻植株再生及外源人α-干扰素cDNA的表达[J].中国科学(B辑),1992,22(2):149-155.
    [82] Edelbaum O, Stein D, Holland N, et al. Expression of active human interferon- beta in transgenic plants[J]. Interferon Res, 1992,12(6):449-453.
    [83] Rudas V A, Piven' N M, Rivkin M I, et al. The genetic transformation of Lycopersicon peruvianum var. dentatum by using Agrobacterium tumefaciens carrying a plasmid with the human beta-interferon gene[J]. Tsitol Genet, 1997, 31(2): 17-22.
    [84] Ohya K, Matsumura T, Ohashi K, et al. Expression of two subtypes of human IFN-alpha in transgenic potato plants[J].J Interferon Cytokine Res, 2001, 21(8): 595-602.
    [85] Sawahel W A. The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation[J]. Cell Mol Biol Lett, 2002,7(1):19-29.
    [86]曾庆平,冯丽玲,杨瑞仪,等.重组人细胞因子基因在转基因中药细胞中的瞬时表达[J].中草药, 2003,34(1):63-66.
    [87] Spander B D. Stureture and function of cholera toxin and related Escherichia coli heat-lable enterotoxin[J]. Miocrl Rew, 1992, 56:622-643.
    [88] Osek J, Lebens M, Holmgren J. Improved medium for large-scale production of recombinant cholera toxin B subunit for vaccine purposes[J]. J Micro Met, 1995, 24(2): 117-123.
    [89] Johansson E L, Rask C, Fredrisson M, et al. Antibodies and antibody-secreting cells in the femal genital tract after vaginal or intranasal immunization with cholera toxin B subunit or conjugates[J]. Infect Immun, 1998, 66(2):514-520.
    [90] Wu H Y, Russel M W. Induction of mucosal and system immune response by intranasal immunization using recombinant cholera B subunit as an adjuvant[J]. Vaccine, 1998, 16(2-3):286-292.
    [91] Geus B, Dol-Bosman M, Scholten J W, et al. A comparison of natural and recombinant cholera toxin B subunit as stimulatory factors in intranasal immunization[J].Vaccine, 1997,15(10),1110-1113.
    [92] Bessen D, Fishcetti V. Influence of intranasal immunization with syntheticpeptides or responding to conserved epitopes of M protein on mucosal colonization by group A streptococci[J]. Infect Immun, 1988, 56: 2666- 2672.
    [93] Sadehgi H, Bregenholt S, Wegmann D,et al. Genetic fusion of human isulin B-chain to the B-subunit of cholera toxin enhances in vitro antigen presentation and induction of bystander suppression in vivo[J]. Immunology, 2002, 106: 237-245.
    [94] SanchezJ, Johansson S. Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination[J]. Research in Microbiology, 1990, 141(7-8): 971-979.
    [95] Tae-Geum K, Gruber A, William H R, et al. HIV-1 gp120 V3 cholera toxin B subunit fusion gene expression in transgenic potato[J]. Protein Expression and Purification. 2004, 37(1): 196-202.
    [96] Weiner H L. Oral tolerance[J]. Proc Natl Acad Sci USA, 1994, 91:10762- 10765.
    [97] Sun J B, Radk C, Olsson T, et al. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic proteinconjugated to cholera toxin Bsubunit[J]. Proc Natl Acad ScinUSA, 1996, 93:7196-7201.
    [98] Bergerot I, Ploix C, Petersen J, et al. A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes[J]. Proc Natl Acad Sci USA, 1997, 94: 4610-4614.
    [99] Arakawa T, Chong D K, Merritt J L, et al. Expression of cholera toxin B subunit oligomers in transgenic potato plants[J]. Transgenic Res, 1997, 6:403-413.
    [100] Arntzen C J. Edible vaccines produced in transgenic plants. The Jorden Report: Accelerated Development of vaccines, 1996:43-48.
    [101]王铁生.中国人参[M].辽宁科学技术出版社, 2001.
    [102]靳朝东.中草药. 1996,27: 632-634.
    [103] Kiefer D, Pantuso T. Panax ginseng[J]. Am Fam Physician, 2003, 68(8): 1539-1542.
    [104] Mizuno M, Yamada J, Terai H, et al. Differences in immunomodulating effectsbetween wild and cultured Panax ginseng[J]. Biochem Biophys Res Commun, 1994, 200(3):1672-1678.
    [105] See D M, Broumand N, Sahl L, et al. In vitro effects of Echinacea and ginseng on natural killer and antibody-dependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients[J]. Immunopharmacology, 1997, 35(3):229-235.
    [106] Song Z, Wu H, Mathee K, et al. Gerimax ginseng regulates both humoral and cellular immunity during chronic Pseudomonas aeruginosa lung infection[J]. J Altern Complement Med,2002,8(4):459-466.
    [107] Kenarova B, Neychev H, Hadjiivanova C, et al. Immunomodulating activity of ginsenoside Rg1 from Panax ginseng[J]. J Pharmacol, 1990, 54(4):447-454.
    [108] Liu J, Wang S, Liu H, et al. Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly[J]. Mech Ageing Dev, 1995, 83(1):43-53.
    [109] Liu M, Zhang J T. Studies on the mechanisms of immunoregulatory effects of ginsenoside Rg1 in aged rats[J]. Yao Xue Xue Bao,1996,31(2):95-100.
    [110] Wang H, Actor JK, Indrigo J, et al. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages[J]. Clin Chim Acta, 2003,327(1-2):123-128.
    [111] Lee E J, Ko E, Lee J, et al. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation[J]. Int Immunopharmacol, 2004, 4(2): 235-244.
    [112] Gao H, Wang F, Lien E J, et al. Immunostimulating polysaccharides from Panax notoginseng[J]. Pharm Res, 1996,13(8):1196-1200.
    [113] Smolina T P, Solov'eva T F, Besednova N N. Immunotropic activity of Panaxans- bioglycans isolated from ginseng[J]. Antibiot Khimioter, 2001, 46(7): 19-22.
    [114] Shin J Y, Song J Y, Yun Y S, et al. Immunostimulating effects of acidic poly- saccharides extract of Panax ginseng on macrophage function[J]. Immuno-pharmacol Immunotoxicol. 2002 ,24(3):469-482.
    [115] Zhou D L, Kitts D D. Peripheral blood mononuclear cell production of TNF-alpha in response to North American ginseng stimulation[J]. Can J Physiol Pharmacol, 2002 ,80(10):1030-1033.
    [116] Lim T S, Na K, Choi E M, et al. Immunomodulating activities of polysaccharides isolated from Panax ginseng[J]. J Med Food, 2004,7(1):1-6.
    [117] Mitra S K, Chakraborti A, Bhattacharya S K. Neuropharmacological studies on Panax ginseng[J]. Indian J Exp Biol,1996,34(1):41-47.
    [118] Mochizuki M, Matsuzawa K, Satok, et al. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rh2, 2O(R)- and 2O(S)- ginsenoside Rg3 of Red ginseng [J]. Biol Pharm Bull, 1995,18(9):1197-1202.
    [119] Sbikiu K, Akedo H, Mukiu M, et al. Inhibition of in vitro tumor cell invesion by ginsenoside Rg3 [J]. Jpn J Cancer Res,1996,87(4):357-362.
    [120] Lee YS, Chung IS, Lee IR, et al. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng[J]. Anticancer Res,1997,17(1A):323-331.
    [121] Chang YS, Seo EK, Gyllenhaal C, et al. Panax ginseng: a role in cancer therapy[J]? Integr Cancer Ther, 2003,2(1):13-33.
    [122] Attele A S, Zhou Y P, Xie J T, et al. Antidiabetic Effects of Panax ginseng Berry Extract and the Identification of an Effective Component[J]. Diabetes, 2002,51:1851-1858.
    [123] Avakian E V, Evonuk E. Effect of Panax ginseng extract on tissue glycogen and adrenal cholesterol depletion during prolonged exercise[J]. Planta Med, 1979, 36(1): 43-48.
    [124]张树臣.中国人参[M].上海科学教育出版社, 1997.
    [125] Coleman C I, Hebert J H, Reddy P. The effects of Panax ginseng on quality of life[J]. J Clin Pharm Ther, 2003, 28(1):5-15.
    [126] Choo M K, Park E K, Han M J, et al. Antiallergic activity of ginseng and its ginsenosides[J]. Planta Med, 2003,69(6):518-522.
    [127] Kwon S Y, Jo S H, Lee O S, et al. Transgenic ginseng cell lines that produce high levels of a human lactoferrin[J]. Planta Med, 2003,69(11):1005-1008.
    [128] Choi Y E, Jeong J H, In J K, et al. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer[J]. Plant Cell Rep, 2003, 21(6): 563-568.
    [129] Venkateswarlu H, Nazar R N. Evidence for T-DNA mediated gene targeting to tobacco chloroplasts[J]. Biotechnol, 1991,9:1103-1105.
    [130] Daniell H. New tools for chloroplast genetic engineering[J]. Nat Biotechnol, 1999,17:855-856.
    [131] Bogorad L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products[J]. Trends Biotechnol, 2000,18(6):257-263.
    [132]宋经元,张荫麟,任春玲.农杆菌介导的药用植物的转化[J].中国中药杂志, 2000,25(2):73-76.
    [133] Lei H T, Song J J, Qi J J, et al. Genetic transformation of hairy roots in Trichosanthes kirilowii Maxim by Ti and Ri plasmids[J]. Zhongguo Zhong Yao Za Zhi, 2001,26(3):162-165.
    [134]孙传宝,朱春宝,朱宝泉,等.利用根瘤农杆菌LBA4404 Ti质粒介导高效转化产黄青霉及克隆vgb基因[J].中国抗生素杂志, 2002, 27(2):87-107.
    [135] Gelvin S B. Agrobacterium-mediated plant transformation: the biology behind the“gene-jockeying”tool[J]. Microbiology and Molecular Biology Reviews, 2003,67(1):16-37.
    [136] Zaenen I, Van Larebeke N, Teuchy H, et al. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains[J]. J Mol Biology, 1974, 86(1): 109-127.
    [137] Van Larebeke N, Engler G, Holsters M, et al. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability[J]. Nature, 1974,252: 169-170.
    [138] Chilton M D, Drummond M H, Merio D J, et al. Stable incorporation of plasmidDNA into higher plant cells: the molecular basis of crown gall tumorigenesis[J]. Cell, 1977,11(2):263-271.
    [139] Hoekema A, Hirsch P K, Hooykass P J, et al. A binary plant vector strategy based on separation of vir- and T-region of Agrobacterium tumefaciens Ti-plasmid[J]. Nature, 1983, 303:179-180.
    [140] Wang K, Herrera E L, Montagu M V, et al. Right 25bp termins sequence of the nopaline T-DNA is essential[J]. Cell, 1984,38:35-41
    [141] Bruno Tinland. The integration of T-DNA into plant genomes[J]. Trends in Plant Science,1996,1(6):178-184.
    [142] RossiL, Hohn B, Tinland B. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens[J]. Proc Natl Acad Sci USA,1996,93:126-130.
    [143] Rossi L, Ziemienowicz A, Merkle T, et al. Import of Agrobacterium T-DNA into plant nuclei: Two distinct functions of VirD2 and VirE2 proteins[J]. Plant Cell, 2001,13:369-383.
    [144] Dumas F, Duckely M, Pelczar P, et al. An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells[J]. Proc Natl Acad Sci USA, 2001, 98(2): 485-490.
    [145] Arakawa T, Langridge W H R. Plants are not just passive creatures[J]. Nature Med, 1998, 4: 550.
    [146] Daniell H, Streatfield S J, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants[J]. Trends Plant Sci, 2001, 6:219-226.
    [147] Commandeur U, Twyman R M, Fisher R, et a1. The biosafety of molecular farming in plant[J]. Agr Biotech Net, 2003, 5:110-1l1.
    [148] Hiatt A C, Cafferkey R, Bowdish K. Production of antibodies in plants[J]. Nature, 1989,342:76-78.
    [149] Hull A K, Criscuolo C J, Mett V, et a1. Human-derived, plant-produced monoclonal antibody for the treatment of anthrax[J]. Vaccine, 2005,23(17-18):2082-2086.
    [150] Makvandi-Nejad S, McLean M D, Hirama T, et a1. Transgenic tobacco plants expressing a dimefic single-chain variable fragment (scFv) antibody against Salmonella enterica serotype Paratyphi B[J]. Transgenic Research, 2005,14(5): 785-792.
    [151] Ismaili A, Jalali J M, Rasaee M J, et a1. Production and characterization of anti-(mucin MUC1) single domain antibody in tobacco (Nicotiana tabacum cuhivar Xanthi) [J]. Biotechnol Appl Biochem,2007,47:11-l9.
    [152] Galeffi P, Lombardi A, Pietraforte I, et a1. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems[J]. J Transl Med, 2006,4:39.
    [153] Xu B, Copolla M, Herr J C, et a1. Expression of a recombinant human sperm-agglutinating mini-antibody in tobacco (Nicotiana tabacum L)[J]. Soc Reprod Fertil Suppl, 2007,63: 465-477.
    [154] Kumar G B, Srinivas L, Ganapathi T R, et a1. Hepatitis B surface antigen expression in transgenic tobacco (Nicotiana tabacum) plants using four different expression cassettes[J]. Plant Cell, Tissue and Organ Culture, 2006,84(3): 315-323.
    [155] Shekhawat U K S, Ganapathi T R, Kumar G B, et a1. Sucrose-inducible expression of hepatitis B surface antigen using potato granule-bound starch synthase promoter[J]. Plant Biotechnol Rep, 2007, 1(4):199-206.
    [156] Irene P A, Elizabeth L R, Edith R A, et a1. Expression of the rabies virus nueleoprotein in plants at high-levels and evaluation of immune responses in mice[J]. Plant Cell Rep, 2008,27(4):677-685.
    [157] Octavio G A, Elizabeth L R, Teresa O F, et a1. Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies[J]. Transgenic Res, 2006,15(4):455-463.
    [158] Hahn B S, Iksoo J, Young J J, et a1. Expression of hemagglutinin neuraminidase protein of Newcastle diease virus in transgenic tobacco[J]. Plant Biotechnol Rep,2007, 1(3):85-92.
    [159] Li Y, Sun M, Liu J, et a1. High expression of foot-and-mouth disease virus structural protein VP1 in tobacco chloroplasts[J]. Plant Cell Rep,2006, 25(12): 329-333.
    [160] Pan L, Zhang Y, Wang Y, et a1. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs[J]. Veterinary immunology and immunopathology, 2008, 121(1-2):83-90.
    [161] Dang J L, Liang B G, Jin Y S, et a1. Oral immunization with pBs VP6·transgenic alfalfa protects mice against rotavirus infection[J]. Virology, 2005,339(2):153-163.
    [162] Saldana S, Esquivel, Guadarrama F, et a1. Production of rotavirus-like particles in tomato (Lycopersicon esculentum L) fruit by expression of capsid proteins VP2 and VP6 and immunological studies[J]. Viral Immunol, 2006,19(1):42-53.
    [163] Pogrebnyak N, Golovkin M, Andrianov V, et a1. Severe acute respiratory syndrome (SARS) S protein production in plants: development of recombinant vaccine[J]. Proc Natl Acad Sci USA, 2005, 102(25):9062-9067.
    [164] Li H Y, Ramalingam S, Chye M L, et a1. Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines[J]. Exp Biol Med (Maywood), 2006, 231(8):l346-1352.
    [165] DU G, Song C, Zhang G, et a1. Transgenic Lycium barbarum L established as HIV capsid protein expression system[J]. Plant Molecular Biology Reporter, 2005, 23(12):411-416.
    [166] Ramirez Y J, Tasciotti E, Gutierrez-Ortega A, et a1. Fruit-specific expression of the human immunodefieiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice[J]. Clin Vaccine Immunol, 2007, 14(6):685-692.
    [167] Adab S M, Ezzine A, Khedija I B, et a1. Expression of Human Papillomavirus Type 16 Major capsid protein L1 in transgenic Arabidopsis thaliana[J]. PlantMol Biol Rep, 2007,25(3-4):133-144.
    [168] Dorokhov Y L, Sheveleva A A, Frolova O Y, et a1. Superexpression of tuberculosis antigens in plant leaves[J]. Tuberculosis (Edlnb), 2007, 87(3): 218-224.
    [169] Kang T J, Han S C, Yang M S. Expression of the B subunit of E.coli heat·labile enterotoxin in tobacco using a herbicide resistance gene as a selection marker[J]. Plant Cell, Tissue and Organ Culture, 2005,81(2):165-174.
    [170] Sofia G R E, Rosales M S, Mereado C M, et a1.Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis an d tetanus exotoxins,encoded by a synthetic gene[J]. Plant Cell Rep, 2007, 26(7): 961-968.
    [171] Hernandez M, Cabrera-Ponce J L, Fragoso G, et a1. A new highly efective anticysticercosis vaccine expressed in transgenic papaya[J]. Vaccine, 2007, 25 (21): 4252-4260.
    [172] Huang L, Liu Y K, Lu C A, et a1. Production ofhuman serum albumin by sugar starvation induced promoter and rice cell culture[J]. Transgenic Research, 2005, 14(5):569-581.
    [173] Nandi S, Yalda D, Lu S, et a1. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain[J]. Transgenic Research, 2005, 14(3):237-249.
    [174] Sardana R, Dudani A K, Tackaberry E, et a1. Biologically active human GM-CSF produced in the seeds of transgenic rice plants[J]. Transgenie Res, 2007,16(6):713-721.
    [175] Kim T, Back M, Lee E, et a1. Expression of human growth hormone in transgenic rice cell suspension culture[J]. Plan t Cell Rep, 2008,27(5):885-891.
    [176] Bai J, Zeng L, Hu Y, et a1. Expression and characteristic of synthetic human epidermal growth factor (hEGF) in transgenic tobacco plants[J]. Biotechnol Lett, 2007, 29(12):2007-2012.
    [177] Gutie A, Ortega R, Montes C. Expression of functional interleukin-12 frommouse in transgenic tomato plants[J]. Transgenie Research, 2005,14(6):877-885.
    [178]任琦.人参愈伤组织细胞表达人干扰素-α2b的研究[D].长春:长春生物制品研究所, 2004.
    [179] www.kazusa.or.jp/codon/
    [180] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual Second Ed [M]. New York: Cold Spring Habor Laboratory Press. 1989.
    [181] Antonelli G, Currenti M, Turriziani O, et al. Neutralizing antibodies to interferon-alpha: relative frequency in patients treated with different interferon preparations[J]. J Infect Dis, 1991,163(4):882-885.
    [182] Komori T, Imayama T, Kato N, et al. Current status of binary vectors and superbinary vectors. Plant Physiology, 2007, 145(4):1155-1160.
    [183]王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社, 2002.
    [184]余云舟,杜娟,王罡,等.重组质粒导入根癌农杆菌冻融法的研究[J].吉林农业大学学报,2003,25(3):257-259,262.
    [185] Veliky I A, Martin S M. A fermenter for plant cell suspension cultures[J]. Can J Microbiol, 1970,16:223-226.
    [186] Stachel S E, Messens E, Van Meontagu M, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens[J]. Nature, 1985, 318:624-629.
    [187] Sheikoleslam S N, Weeks D P. Acetosyringone promotes high effeciency transformation of Arabidopsis Thaliana explants by Agrobacterium tumefaciens[J]. Plant Mol Biol, 1987, 8:291-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700