动态高压微射流技术对大豆多糖组分、结构及功能特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用热提-极性pH法从台湾75-1大豆中提取大豆多糖,并以动态高压微射流技术(dynamic high pressure microfluidization,DHPM)为手段对大豆可溶性多糖(soluble soybean polysaccharides,SSPS)进行改性,研究DHPM对SSPS组分、结构及功能特性的影响。
     1、大豆多糖分离纯化实验结果表明:选择台湾75-1大豆(糖含量28.2%)为实验对象,采用热提-极性pH值法提取SSPS,确定实验条件为:碱脱蛋白料液比1:10,pH值9.5;酸提SSPS提取温度120℃,pH4.0,得率为41.83%。使用离子交换树脂色谱分离法纯化多糖,确定上样量为50mg,缓冲液pH值为6.8。分级得到两个组分SSPS-1.SSPS-2,通过HPLC凝胶色谱和紫外谱图确定SSPS-2的分子量为91.5kD,蛋白含量86.7%,为高结合蛋白含量的单一多糖。
     2、SSPS-1组分的结构分析表明:SSPS-1含有5个单峰,相对分子量分别为733kD、295 kD、25 kD、6223D及1589D,含少量蛋白的杂多糖;SSPS-1经过GC、红外扫描及甲基化分析,确定其为β-吡喃糖,且含有较多糖醛酸,主链为鼠李糖与半乳糖醛酸,连接方式为1-3-Rha及1-4-GalA,其他组成糖为阿拉伯糖、半乳糖、木糖及甘露糖等。
     3、DHPM对SSPS-1结构的影响:对SSPS-1进行DHPM处理,大分子量组分降低,小分子量组分降低,中等分子量组分增加,分析DHPM对SSPS-1的作用方式可能为:大分子向低分子量转化,低分子量向高分子量聚集。SSPS-1由原来的针状堆积排列,向末端膨大呈球形的“火柴棒”状有序排列结构转变。
     经DHPM处理的SSPS-1主链的单糖Rha和GalA含量降低,侧链部分的单糖Ara、Gal、Fuc、Man降低,Xyl、Glc、GlcA则未检出。连接主链的糖苷键(1→3)键鼠李糖及(1→4)键半乳糖醛酸含量降低,而其主要支链上的糖苷键的含量得到增加。DHPM处理会增加糖醛酸含量,但糖环构型未改变。
     4、DHPM对SSPS-1理化性质的影响:SSPS-1随着DHPM的处理次数的增加,粒径分布、Zeta电位、表观粘度,均呈现先降低,而后回升,最后降低的趋势。SSPS-1经DHPM 150MPa处理4次后的乳化性、乳化稳定性呈现出最大值。SSPS-1经处理6次后,起泡性达到最大值,SSPS-1的起泡稳定性在处理2次后达到最高峰。
     5、DHPM对SSPS-1生理功能的影响:健康小鼠喂食经DHPM处理后的SSPS-1,其粪便菌群及肠道菌群中的双歧杆菌数目和乳酸菌的数目均有所增加,大肠杆菌数目下降,即SSPS-1对有益菌(双歧杆菌、乳酸菌)有增殖效果,对有害菌(大肠杆菌)有抑制效果。SSPS-1对两种有益菌的增加比例相当,且高于有害菌的抑制比例。SSPS-1经DHPM 150MPa处理4次后,对有益菌的增殖比例最高,对大肠杆菌的抑制比例亦最高。
     SSPS-1对胆汁酸有一个吸附解析的过程,DHPM的作用使得SSPS-1对胆汁酸的吸附量增加,胆汁酸的释放延长。SSPS-1对Ca2+、Mg2+是一个动态平衡过程,SSPS-1对Cu2+、Pb2+的吸附相对稳定,呈缓慢释放的现象。
     综上所述:DHPM的作用可使分级得到的SSPS分子排布向中等分子量靠拢,进一步改变糖苷键比例、单糖组成、官能团,从而使SSPS的粒径分布、表观粘度及乳化起泡能力,对健康小鼠肠道、粪便菌群影响,对胆汁酸及Ca2+、Mg2+、Cu2+、Pb2+等金属离子的吸附能力改变。
Dynamic high pressure microfluidization (DHPM) treated on soybean soluble polysaccharides (SSPS) composition, structure and functional properties, is good for understanding the molecular structure in the role of the polysaccharide to DHPM mechanism, and comprehending SSPS diversifications in relationships between structure and function.
     1、The soybean purification experimental results showed:Taiwan 75-1 soybean (28.2% sugar content) was selected to be our experimental subjects. SSPS was extracted by high temperature-polar pH value method (compared to enzymatic method).The main points of extraction:alkali deproteinized procedure:liquid ratio 1:10, pH value 9.5; acid extracting SSPS procedure:temperature 120℃, pH4.0.The total yield is 41.83 percent. Ion exchange resin chromatography was used to purify polysaccharide, determining the sample volume was 50mg, buffer pH value is 6.8. Classification of the SSPS obtained two components of SSPS-1, SSPS-2 by detecting the molecular weight spectra and UV spectra, SSPS-2 molecular weight is 91.5kD, protein content is 86.7%,which was the high-binding protein content in single polysaccharide. SSPS-1 was conducted as the object of DHPM treatment.
     2、SSPS-1 contains five single peak, and the relative molecular weights are 733kD,295 kD, 25 kD,6223D and 1589D respectively, which was considered to be the complex polysaccharides containing a small amount of protein.lt was determined to be theβ-pyranose, and the main chain involved of rhamnose and galacturonic acid, which was connected by 1-3-Rha, and 1-4-GalA.Other components of the polysaccharides were arabinose, galactose, wood glucose and mannose through the GC, infrared scanning and methylation analysis.
     3、The analysis of the components from SSPS-1:dealed with DHPM processing, large molecular weight components of SSPS-1 decreased,and small molecular weight components lowed, with middle molecular weight fractions increased.The mode of DHPM process on SSPS-1: macromolecules intended to lower molecular weight while low molecular weight converted to high molecular weight aggregates. SSPS-1 changed into a spherical enlarged end of the "match stick"-like structure of ordered arrangement from the needle-like stacking arrangement.
     The main chain monosaccharides content of SSPS-1 treated by DHPM:Rha and GalA,dropped down and part of the single-sugar side chain such as Ara, Gal, Fuc and Man reduced, and accompanily Xyl, Glc, GlcA was not detected. The content of Glycosidic bonds connecting the main chain of (1→3) Rha and (1→4) GalA decreased, while the content of glycosidic bonds connecting the main branch chain increased. Generally DHPM processing will increase the uronic acid content, but the polysaccharides ring configuration has not changed.
     4、The physical and chemical Properties of SSPS-1 treated by DHPM:SSPS-1 treated by DHPM with the increase of dealing times,its size distribution, Zeta potential, apparent viscosity, were decreased first, then showed a small peak. The emulsification, emulsion stability of SSPS-1 treated by DHPM processing at 150MPa、4 times showed the maximum value. SSPS-1 treated by six times, reached the highest position of foaming capacity while foaming stability treated by 2 times increased to the peak.
     5、The physiological function of SSPS-1 treated by DHPM:with DHPM treatment on the SSPS-1, the bifidobacterium flora and lactic acid bacteria have increased, followed by the number of E. coli decreased in the fecal flora and intestinal bacteria of the healthy mouse. In another way,SSPS-1 increased the beneficial bacteria (bifidobacterium bacteria, lactic acid bacteria) in a multiplier effect, and decreased the harmful bacteria (E. coli) an inhibitory effects. The two beneficial bacteria increased ratio effected by SSPS-1 is higher than the percentage inhibition of harmful bacteria. SSPS-1 treated by DHPM processing at 150MPa、4 times, have an effect on beneficial bacteria with the highest proportion and the inhibition of E. coli with the highest proportion.
     The absorption of bile acid on SSPS-1, was a process of adsorption analysis. The treatment of DHPM to SSPS-1 on bile acid adsorption added to the amount of absorption, simultaneously extended the release time of bile acids. The adsorption of SSPS-1 on Ca2+, Mg2+ is a dynamic equilibrium process, whlie the process on Cu2+, Pb2+ adsorption is a relatively stable, slow-released phenomenon.
     In summary:the treatment of DHPM can make the higher and lower molecular weight of classified SSPS(SSPS-1) moved closer to the medium molecular weight.Further the SSPS-1 changed in the glycosidic bond ratio, the monosaccharide composition and the functional groups, resulting the diversification of its functional properties and physiological properties (the size distribution, the apparent viscosity,the foaming capacity and foaming stability, emulsifying capacity and emulsifying stability,the fecal flora and intestinal bacteria from a healthy mice, the bile acids and Ca2+, Mg2+, Cu2+, Pb2+ metal ions adsorption capacity).
引文
[1]杨本文泽.生物活性天然物质.北京:人民卫生出版社1984:395
    [2]Morita M. Polysaccharides of soybean seeds:Polysaccharide constituents of hot-water-extract fraction of soybean seed and anarabinogalactan as its major component[J]. Agr. Bio.l Chem. 1965,29:564-573.
    [3]王力平,杨连华.健康食品——大豆[J].新农业,2005(10):44
    [4]Nakamura A, Furuta H, Kato M, Maede H, Nagamatsu Y. Effect of soybean polysaccharides on the stability of milk protein under acidic conditions[J].Food Hydrocolloids,2003,17:333 —343.
    [5]Aspinall G O, Begbie R, Hamilton A, Whyte J C. Polysaccharides of soybeans:Extraction and fraction ation of polysaccharides from cotyledon meal[J]. Chem. Soc.(C).1967:1065—1070.
    [6]李里特,王海主编.功能性大豆食品[M]北京:中国轻工业出版社,2002(5)
    [7]Kawamura S, Narasaki T. Study on carbohydrate of soybean:Component sugars of fractionated polysaccharides, especially identification of fucose in some hemicelluloses[J]. Agr. Boi.l Chem.1961,25:527—531.
    [8]Narasaki T, Fujimoto K. Separation of soybean hemicelluloses by paper electrop Horesis[J]. Tech. Bull Fac. Agr. Kagawa. Univ.1964,16,73—78.
    [9]Yamaguchi F H, Muramoto M, Ota Y and Hatanaka C. Effect of hexametap hosphate on soybean pectic polysaccharide extration[J]. Biosci Biotech. Biochem.1996,60,2028—2032.
    [10]Nakamura A, TakahashiT, Yoshida R, Maeda H and Correding M.Mulsifying properties of soybean soluble polysaccharide [J].Food Hydrocolloids,2004,18,795—803.
    [11]Xu F, Watanabe Y, Adachi S, Matsunura Y, Mori T, Maeda H, Nakamura A, and Matsuno R. Microencapsulation of linoleic acid with low and high-molecular-weight component of soluble soybean polysaccharide and its oxidation process[J]. Bioscience.Biotechnology. Bio-chemistry.2003,67(9),1864—1869.
    [12]李里特著.食品物性学[M].中国农业出版社,1998,219—230.
    [13]Furuta H, Maeda H. Rheological properties of water-soluble soybean polysaccharides extracted under weak acidic condition[J].Food hydrocolloids,1999, 267—274
    [14]Kikuchi T, Ishii S, Fukushima D, and Yokotsuka T. Food chemical studies on soybean polysaccharides:Chemical and physical properties of soybean cell wall polysaccharidesand their changing during cooking[J]. Nihon Nogeikagaku Kaishi(Japanese),1971,45,228—234.
    [15]Thompson D B, Huang C, Sieglaff C.Rheological behavior of soluble polysaccharide fractions from soybean[J].Food Hydrocoll.1987,1:333—337.
    [16]Geresh S, Yarmolinsky, I.A.E. and Karpasas M. Characterization of the extracellular polysaccharide of Porphyridium:molecular weight determination and rheological properties[J].Carbohydr. Polym.2002,50,183—189.
    [17]Yoshiki Y, Okubo K. Chemilum in escence of DDMP saponin and chemilimonescence substance in soy sauce[J].Syushi Seiriseikagaku Kenkyukai Youshisyu.1994,15,26.
    [18]Takahashi T, Maeda H, Aoyama T, and Yamamoto T. Physiological effects of water-soluble soybean fiber in rats[J].Biosci.Biotech Biochem.,1999,63(8):1340—1345.
    [19]Borchers A T, Stern J S, Haclanan R M, Keen C L, Gershwin M E. Mushrooms, tumors, and immunity[J].Mushroom and Immunfty,1999,221,281—290.
    [20]袁尔东,郑建仙,陈智毅.多功能大豆纤维的降脂作用及其机理探讨[J],2000,(7):45—47
    [21]Zunft H J F, Luder W, et al. Carob pulp preparation rich in insoluble fiber lowers total and LDL cholesterol in hypercholesterolemic patients [J] European Journal of Nutrition.2003,42 (5),235—242
    [22]Carcia E, Llull D, Munoz R, Mollerach M and Lopez R. Current trends in capsular polysaccharide biosynthesis of streptococcus pneumoniae [J]. Res.Microbiol.2000,151, 429—435.
    [21]江萍.食品多糖与机体免疫[J].食品工业科技,1997(2):82
    [22]刘成梅,黎冬明,钟业俊等.瞬时高压作用对豆渣膳食纤维(SDF)在生理条件下对Cu2+、 Ca2+、Mg2+、 Pb2+吸附的影响[J].食品科学,2006,27(8):170—173
    [23]Mashihi K N,Lange W. Immunother apeutic Prospects of Infection deseases[J]. Berlin: Springer-Verlag,1990,9 (5),23—51
    [24]Misaki H, Kaluta M, et al. Studies on interrelation of structure and antitumor effects of polysaccharides[J]. Car. Res.1981,92 (5),115—129
    [25]Kojima, Blaschek W, Schutz M,et al. Antitumor activityof cell wall β-1,3/1,6-glucans from Phytophthoraspp[J].Planta Med,1992,58(1),39—42
    [26]Takagi S, Akashi M, Yasumatsu K. Determination on hydrostatic region in soybean globulin [J].Nippon Shokuhin Kogyo Gakkaishi,1979,26,133—38.
    [27]吴绍艳,张升晖,辛厚豪.魔芋葡甘聚糖的改性研究进展[J].安徽化工,2004,131(5):10—12.
    [28]许时婴,钱和.魔芋葡甘聚糖的化学结构和流变性质[J].无锡轻工业学报,1991,10(1):1—12
    [29]王兆梅,李琳,郭祀远,胡松.青多糖结构修饰研究进展[J].中国医药工业杂志2002,33(12):616—620.
    [30]Takano R, Nagai T, Wu X, et al. Sulfation of polysaccharide using monomethyl sulfate [J]. Carbohydrate Chem,2000,19 (9),1185—1190.
    [31]Alban S, Franz G. Characterization of the anticoagulant actions of a semisynthetic curdlan sulfate [J].Thromb Res,2000,99 (4),377—388.
    [32]Geresh S, Mamontov A, Weinstein J. Sulfation of extracellular polysaccharides of red microalgae:preparation,characterization and properties[J].Biochem Biophys Methods,2002,50 (223),179—187.
    [33]Colquhoun I J, Jay A J, Eagles J, et al. Structure and conformation of a novel genetically engineered polysaccharide P2[J]. Carbohydr Res,2001,330 (4),325—333.
    [34]Yoshizawa Y, Tsunehiro J, Nomura K, et al. Invitro macrophage stimulation activity of the enzyme degraded water soluble polysaccharide from amarine alga (Gracilaria verrucosa) [J]. Biosci Biotechnol Biochem,1996,60 (10),1667—1671.
    [35]Yoshizawa S, Easson D D, Ostroff GR, et al. PGG-glucans:A novel class of macrophage activity immunomodulators [J]. ACS Symp Ser,1991,469 (1),44—51.
    [36]Chen R H, Chang J R, Shyur J S. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan [J]. Carbohydr-Res,1997,299,287—294.
    [37]Lopez L L. Depolymerization method of heparin [P].U S:4987195,1991205212. (CA 1991, 111:253892e)
    [38]Cheng Y L, Chun H C, Yeh AnI, et al. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound [J]. Food Hydrocolloids,1999,13 (3),477—481.
    [39]郑建仙,耿立萍,高孔荣.蔗渣膳食纤维挤压改性的研究[J].中国粮油学报,1997,12(4):44—48
    [40]Tabata K, Ito W, Kojima T. Ultrasonic degradation of schizophyllan:an antitumor poly-saccharide produced by schizophyllum commune fries[J].Carbohydr Res,1981,89,121—135.
    [41]Kulicke W M, Iettau A L, Thielking H. Correlation between immunological activity,molar-mass and molecular structure of different(1→3)β-D-glucans[J].Carbohydr,Res.1997,297, 135—143.
    [42]刘成梅,刘伟,高荫榆等.微射流均质机流体动力学行为分析[J].食品科学,2004,25(04):58—62
    [43]张志森,唐书泽,汪勇.微射流高压均质过程动量及流场结构分析[J].包装与食品机械,2005,23(1):5—70
    [44]刘成梅.瞬时高压作用的机制及杀菌和纤维改性研究[D]:[博士学位论文].南昌:南昌大学生命科学与食品工程学院,2006.
    [45]刘伟,刘成梅,阮榕生等.高压处理过程中的压力和能量分析[J].食品科学,2003,24(07):162—164
    [46]Miehael H, Tuniek, Diane L, Van Hekken, Peter H and Cooke.Effeet of high Pressure micro-fuidization on microstructure of mozzarella cheese[J].Lebensm Wissu Teehnol,2000(33), 538—544
    [47]Lagoueyte N, Paquin P. Effeets of microfluidization on the functional Properties of xanthan gum[J].Food Hydroeolloids,1998(12),365—371
    [48]Takagi S,Akashi M,Yasumatsu K. Nippon Shokuhin Kogyo Gakkaishi[J].1979,26:133—138
    [49]Kasaai M R, Charlet G, Paquin P, et al. Fragmentation of chitosan by microfluidization process[J]. Innovative Food Science and Emerging Technologies,2003,4,403—413
    [50]Silvestri S, Gabrielson G. Degradation of tragacanth by high shear and turbulent forces during microfluidization[J]. International journal of pharmaceutics,1991,73,163—169
    [51]Laneuville S 1, Paquin P, Turgeon S L. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes[J]. Food Hydrocolloids,2000,14,305—314
    [52]Jafari S M, He Y, Bhandari B. Optimization of nano-emulsions production by micro-fluidization[J]. European Food Research and Technology,2007,255,733—741.
    [53]常远,周展明,魏家新等.高压食品技术的发展及应用[J].郑州粮食学院学报,1999,20(3):72—76
    [54]刘成梅,刘伟等.Microflidizer对膳食纤维溶液物理性质的影响[J].食品科学,2004,72-75
    [55]刘成梅,刘伟等.Microflidizer对膳食纤维的微粒粒度分布的影响[J].食品科学,2004(1):52-55
    [56]刘成梅,熊慧薇,刘伟等.IHP处理对豆渣膳食纤维的改性研究[J].食品科学,2005,26(9):112—115.
    [57]刘伟.瞬时高压作用对膳食纤维溶液物理性质影响及其杀菌机制[D].南昌大学2004
    [58]Chengmei Liu, Wei Liu, Huiwei Xiong, et al. Effect of instantaneous high pressure (IHP) treatment on solubility and rheologic properties of soybean dietary fiber[J].232nd ACS national meeting, San Francisco, America 2006.
    [59]Morris D.L. Determination of carbohydrates with Dreywood's anthrone reagent[J]. Science, 1948,107(1/2),254—254.
    [60]韩雅珊.食品化学实验指导[M].北京:中国农业大学出版社,1992:57—58.
    [61]刘树兴,唐孟忠.“米邦塔”食用仙人掌多糖分级新方法的研究[J].食品工业科技,2006(4):108—-109.
    [62]刘春兰,邓义红等.新疆雪莲水溶性多糖的分离纯化及生物活性研究[J].中药材,2008(1),31:101—104.
    [63]王艺.郁金多糖的分级分离及应用[J].中医中药,200808,46(24):95.
    [64]何传波,陈玲等,巴戟天多糖的分级纯化及结构分析[J].华南理工大学学报2005,12,33(12):29—32.
    [65]黄飞,梁智群.对山楂叶粗品多糖的分级纯化及纯度测定研究[J].广西轻工业,2007,02(2):32—33.
    [66]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2002(6):200—203
    [67]Chen Y, Xie M Y, Nie S P, et al. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum[J]. Food Chemistry,2008, 107(1):231—241.
    [68]王丽华,李元瑞,陈懿等.姬松茸多糖脱蛋白方法的研究[J].食品科技,2003,1:18—26
    [69]周林,郭祀远,郑必胜.高分子质量裂褶菌多糖的纯化及表征[J].食品与发酵工业,2008,34(12):47—50.
    [70]张维杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987.
    [71]Zhang Yi shen. Several problems about gradation purification,structural identification and biological activity of saccharide complexes[J].Chemistry of Life,1994,14(6),42—43.
    [72]孙志贤.现代生物化学理论与研究技术[M].北京:军事医学出版社,1995.
    [73]Gerwig Gerrit J, Kamerling Johannis P, Vliegenthart Johannes F G. Determinati on of the D and L configuration of neutral monosaccharides by high resolution capillary G.L. C [J]. Carbohydrate Research,1978,62,349—357.
    [74]Blakeney Anthony B, Harris Philip J, Henry Robert J, et al. A simple and rapid preparation of alditol acetates for monosaccharide analysis [J]. Carbohydrate Research,1983,113,291—299.
    [75]董群,方积年.寡糖及多糖甲基化方法的发展及现状[J].天然产物研究与开发,1995.7(2):60—65.
    [76]方积年.多糖的甲基化分析[J].国外医学(药学分册),1996,4:222
    [77]Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research,1984,131,209~217.
    [78]Blakeney A B, Harris P J, HenryR J, Stone B A. A simple and rapid preparation of alditol acetates for monosaccharide analysis [J]. Carbohydrate Research,1983,113,291—299.
    [79]郭振楚.糖类化学[M].北京:化学工业出版社,2005,5:106—105
    [80]孔繁柞.糖化学[M].北京:科学出版社,2003:640—646
    [81]周秀琴.多功能食品添加剂-水溶性大豆多糖[J].中国食品报,2005,12,13,第B04版
    [82]张彩菊,张敏.茶树菇超微粉体性质[J].无锡轻工大学学报,2004,23(3):92—94
    [83]吏俊丽.超微细化大米淀粉的制备和特性研究[D].硕士学位论文,华中农业大学,2005,6.
    [84]陈克复编译.食品流变学及其测量[M].北京: 轻工业出版社,1989
    [85]纪良宽,周裔彬,任琪.籼米淀粉的流变性及其提取纯化的研究[J].农产品加工,2006(11):10
    [86]Owen R Fennema.食品化学[M].第二版.王璋译.北京:中国轻工业出版社,1991,219,223,228—246
    [87]Chen Y, Ho C T. Effects of carnosine on volatile generation from Maillard reaction of ribose and cystein[J]. J Agric Food Chem,2002,50,2372—2376.
    [88]Juliane Floury, Anne Desrumaux, Jeremie Lardieres. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions[J]. Innovative Food Science & Emerging Technologies,2000,1,127—134
    [89]许时婴,钱和.魔芋葡甘聚糖的化学结构和流变性质[A].西南农业大学魔芋研究中心选编.中国魔芋学术论文选集[C].重庆:西南农业大学,1995,42—50.
    [90]Piyada Achayuthakan & Manop Suphantharika.Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum[J].Carbohydrate Polymers,2008,71: 9—17.
    [91]赵国玺,朱瑶.表面活性剂的作用原理[M].北京:中国轻工业出版社,2003.23—25.
    [92]Makoto Nakauma, Takahiro Funami, Sakie Noda, Sayaka Ishihara, Saphwan Al-Assaf, Katsuyoshi Nishinari, Glyn O. Phillips. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers.1. Effect of concentration, pH, and salts on the emulsifying properties[J]. Food Hydrocolloids,2008,No.7 1254—1267
    [93]梁汉萦.鱼皮中生物活性肽的制备及性质研究[D].南昌大学南昌大学硕士研究生论文 2007,12.
    [94]罗予,李金陵,蔡访勤.双歧杆菌对大鼠肠道菌群的影响[J].河南医科大学学报,1993,28(1):]2—15.
    [95]罗予,蔡访勤,赵国新等.异麦芽寡糖促进肠道分离菌生长的体外实验[J].中国微生态学杂志,2000,12(5):258.
    [96]康白主编.微生态学原理[M].大连:大连出版社,2002,207—-210.
    [97]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001,370—399.
    [98]凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999.117—128.
    [99]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002,141—158.
    [100]毛跟年,许牡丹.功能食品生理特性与检测技术[M].北京:化学工业出版社,2004.
    [101]胡国华,黄绍华.米糠膳食纤维对胆酸钠吸附作用的研究[J],中国食品添加剂,2001(2):10—12
    [102]Borycka B, Zuchowski J. Metal sorption capacity of fibre preparation from fruit pomace[J]. Polish Journal of Food and Natural Science,1998,1,67—76
    [103]李志刚.复合低聚糖对肠道菌群的调节作用研究[J].中国食品卫生杂志,1999,11(2):2—5.
    [104]金宗濂.低聚异麦芽糖改善小鼠胃肠道功能的研究[J].食品科学,2001,22(6):72—75.
    [105]付萍.不同剂量异麦芽糖调节人体肠道菌群的试验研究[J].中国微生态学杂志,1999,11(4):]98—210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700