实验性急性胰腺炎肺损伤中Nrf2/ARE分子的作用及BML-111对肺损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]探讨内源性抗氧化信号通路Nrf2/ARE在小鼠急性胰腺炎肺损伤中的动态表达情况以及其作用。
     [方法]96只健康雄性Babl/c小鼠,SPF级,随机分为正常对照组(CON组)、生理盐水组(NS组)和重症急性胰腺炎组(SAP组),每组又随机分为3h、6h、12h和24h共4个亚组,每个亚组8只小鼠。各组小鼠禁食12h,不禁水。CON组不做任何处理;NS组腹腔内注射生理盐水10mL/kg/次,间隔1h一次,共七次,最后一次生理盐水加倍。SAP通过腹腔内注射蛙皮素50μg/kg/次(浓度为5mg/L,10mL/kg),间隔1h一次,共七次,最后一次同时注射脂多糖10mg/kg(浓度为0.1g/L,10mL/kg)诱导。于最后一次注射后3h、6h、12h及24h处死小鼠分别采集标本,采用对-硝基苯麦芽七糖苷法检测血清淀粉酶(AMY)水平,双抗体夹心ELISA法检测血清C反应蛋白(CRP),测量肺组织水含量并计算肺脏组织湿干重比率(W/D),胰腺及肺组织行苏木素-伊红染色(H-E染色)并行病理学评分,透射电镜检查肺脏超微结构变化,实时荧光定量PCR (Real-time PCR)检测肺脏组织Nrf2、HO-1、NQO1mRNA表达,Western blot法检测肺脏组织Nrf2、HO-1、NQO1蛋白的表达。
     [结果]CON组与NS组各对应时相点比较,血清AMY、CRP、胰腺及肺脏病理学评分、肺脏干湿重比率均无明显差异,胰腺及肺脏组织病理学检查均未见明显异常。SAP组血清淀粉酶、CRP、胰腺及肺脏病理学评分、肺脏干湿重比率均较CON组及NS组增高(P<0.05)。SAP组胰腺H-E染色于3h时即可见胰腺组织结构轻度紊乱,间质水肿,血管周围和胰腺间质可见少量炎性细胞浸润,但小叶结构尚清晰;6h时上述改变更趋明显;12h及24h组小鼠胰腺组织结构更加紊乱,甚至消失,小叶结构模糊,腺泡细胞大部分坏死,可见孤岛状腺泡结构,坏死胰腺组织周围可见大量炎性细胞浸润及片状出血灶;部分血管坏死、弹力纤维崩解,可见血栓形成,还可见小脓肿形成。SAP组肺脏H-E染色于3h时即可见肺泡间隔增宽、间质毛细血管高度充血、肺泡水肿、部分肺泡腔缩小及少量炎性细胞浸润,但肺泡结构尚完整。6h时肺泡间隔明显增宽,肺组织水肿更加明显,血管和小支气管周围间质内大量中性粒细胞浸润。12h与24h时除上述表现外,部分肺泡腔内可见大量红细胞,部分肺泡萎陷,肺泡破裂融合成肺大泡。肺脏电镜检查示:CON组与NS组超微结构均未见明显异常:SAP组各时相点可见不同程度的肺泡隔及毛细血管内炎症细胞附壁,肺泡扩张融合,红细胞和活性物质泄漏到肺泡腔,Ⅱ型肺泡上皮细胞线粒体肿胀,线粒体膜模糊不清,线粒体嵴消失;胞浆内板层小体数量减少及空泡变性,上述表现在12h及24h更加明显。不论是在mRNA还是蛋白水平,SAP组小鼠肺组织中Nrf2、HO-1及NQO1的表达在诱导SAP后3h和6h与CON组及NS组相比均略有上升,在12h和24h时均表现出下降的趋势,但所有差异均无统计学意义。
     [结论]内源性抗氧化信号通路Nrf2/ARE在重症急性胰腺炎相关肺损伤中虽然可以被激活,但Nrf2及其下游抗氧化基因HO-1、NQO1的表达并没有明显增加,也没有维持足够的时长。
     [目的]探讨脂氧素受体激动剂BML-111对小鼠重症急性胰腺炎相关肺损伤的影响与可能的分子机制。
     [方法]128只健康雄性Babl/c小鼠,SPF级,随机分为4组,即①生理盐水对照组(NS组),②BML-111对照组(BML组);③重症急性胰腺炎组(SAP组);④BML-111治疗组(SAP+BML组),每组又分为3h、6h、12h及24h共4个亚组,每组8只小鼠;各组小鼠禁食24h,不禁水。NS组及BML组小鼠经腹腔内注射生理盐水10mL/kg/次,间隔1h一次,共七次,最后一次生理盐水加倍。SAP组通过腹腔内注射蛙皮素50μg/kg/次(5mg/L,10mL/kg),间隔1h一次,共七次,最后一次同时注射脂多糖10mg/kg (0.1g/L,10mL/kg); SAP+BML组于诱导SAP之前1h经腹腔注射BML-111(1mg/kg即10mL/kg),BML组于第一次注射生理盐水前1h经腹腔注射BML-111(1mg/kg即10mL/kg), NS组及SAP组于第一次注射生理盐水或蛙皮素之前1h经腹腔注射BML-111的溶媒(0.4%DMSO溶液,10mL/kg)。分别于最后一次注射后3h、6h、12h、24h处死小鼠采集标本,采用对-硝基苯麦芽七糖苷法检测血清AMY水平;双抗体夹心ELISA法检测血清IL-10、TNF-α、IL-β含量;比色法检测肺脏组织SOD、 MPO、MDA含量;胰腺及肺组织行苏木素-伊红染色(H-E染色)并行病理学评分;透射电镜观察肺脏超微结构;测量肺组织水含量并计算肺脏组织湿干重比率(W/D);采用real-time PCR法检测肺脏组织Nrf2、HO-1、 NQO1mRNA水平;Western blot法检测肺脏Nrf2、HO-1、NQO1蛋白。
     [结果]与NS组及BML组各对应时相点比较,SAP组小鼠血清淀粉酶、TNF-α、IL-1β及肺组织MPO、MDA水平、肺组织湿干重比率均显著增加(P<0.05);血清IL-10及肺组织SOD水平均下降(P<0.05);胰腺及肺脏H-E染色均符合上述SAP及相关肺损伤的表现;胰腺和肺组织的病理学损伤评分亦均显著增高(P<0.05);肺脏透射电镜检查亦符合肺损伤的病理诊断。与SAP组各对应时相点比较,SAP+BML组小鼠血清淀粉酶、TNF-α、IL-1β及肺组织MPO、MDA、肺组织湿干重比率、胰腺及肺的病理学损伤评分均明显降低(P<0.05);血清IL-10及肺组织SOD水平则增高(P<0.05);肺组织中Nrf2、 HO-1及NQO1的表达均显着增加(P<0.05);胰腺及肺组织病理学改变亦较SAP组有所改善。
     [结论]BML-111预处理对蛙皮素诱导的胰腺炎相关肺损伤具有一定的保护作用,这种作用除归因于BML-111通过激活Nrf2/ARE信号转导通路,诱导下游抗氧化酶HO-1及NQO1的表达所发挥的抗氧化作用外,还可能与BML-111对促炎因子TNF-α、IL-1β及抗炎因子IL-10的调节有关。
Objective:To investigate the role of endogenous antioxidant signaling pathway Nrf2/ARE in acute pancreatitis associated lung injury (APALI) induced by cerulein with subsequent LPS administration in mice.
     Methods:Ninety-six Babl/c mice were randomly allocated to three experimental groups:the normal control group (CON group), the normal saline group (NS group) and the severe acute pancreatitis group (SAP group). Each group was randomly divided into4time units (3,6,12,24h) with8mice in each time unit. Twenty-four hours before the start of the experiment, the mice were deprived of food but allowed access to water. The CON group mice received no treatment. In the NS group, mice were injected intraperitoneally (i. p.)10mL/kg BW normal saline repeatedly every1h (7injections in total) and the injection dosage were doubled at the last time. In the SAP group, mice were injected intraperitoneally50μg/kg BW cerulein (10mL/kg of BW) repeatedly every1h (7injections in total) and10mg/kg of BW LPS (10mL/kg of BW, i. p.) after the last dose of cerulein immediately. Eight mice of each group were anesthetized with sodium pentobarbital (90mg/kg BW, i.m.), then were executed at3,6,12and24h after the last injection. Serum amylase was assayed by P-nitrophenyl malt seven glycoside method, C-reactive protein (CRP) were measured by enzyme linked immunosorbent assay (Elisa), histological score of the pancreas and lung and the wet-to-dry weight ratio of lung were evaluated. The severity of lesions was evaluated by pancreatic and lung histology. Expression of Nrf2, HO-1, and NQO1in lung tissue was evaluated by real-time PCR and western blot analysis, respectively.
     Results:Compared with CON and NS group, the serum amylase, CRP, histological score of the pancreas and lung and the wet-to-dry weight ratio of lung increased significantly in SAP group(P<0.05). In SAP group mice, the pathology of pancreas showed interstitial edema, minor inflammatory cells infiltration both around vessels and in the pancreatic mesenchyme at3h while lobules of it were still clear to observe. All the changes above were more obvious at6h. The organizational structure of the pancreas was more disturbed at12h and24h as there was no discernable normal lobular architecture, and massive acinar cell necrosis, hemorrhage, vascular necrosis, elastic fiber disintegration, thrombosis, together with microabscess could be seen in the necrotic pancreas; The pathology of lung showed edema, congestion, widened alveolar septa at3h and6h. Besides, RBC exudation, severe inflammatory cell infiltration, severe hemorrhage and alveolar collapse were observed at12h and24h. Ultrastructure of lung tissue showed complete mitochondrial outer membrane and distinct mitochondrial cristae in type II alveolar epithelial cells, and there was no evacuation phenomenon in laminated bodies in the control and NS group. In the SAP group, mitochondria in type II alveolar epithelial cells swelled with membranes indiscernible and most of mitochondrial cristae disappeared at3h and6h; At12h and24h, alveoli were clearly dilated and merged, a large number of red blood cells and active substance leaked into the alveolar space, vacuolar degeneration could be seen in lamellar bodies in type II alveolar epithelial cells. In SAP group mice, mRNA expression of Nrf2, HO-1and NQO1was slightly increased at3and6h compared with it of the CON group mice at the corresponding time point, however, it decreased somewhat at12and24h, but there were all no statistical significance. The expression of protein in the SAP group mice had a similar trend as its mRNA.
     Conclusion:The endogenous antioxidant signaling pathway Nrf2/ARE can be activated in SAP, but expression of Nrf2and its downstream antioxidant gene HO-1and NQO1were not increased significantly and cannot maintain adequate time.
     Objective:To investigate the effects of BML-111on acute pancreatitis associated lung injury (APALI) induced by cerulein with subsequent LPS administration in mice and its possible mechanisms.
     Methods:One hundred twenty-eight mice were randomly allocated to four experimental groups:the SAP group (SAP group), the BML-111pretreatment group (SAP+BML group), the BM-111control group (BML group) and the normal saline group (NS group). Each group was randomly divided into4time units (3,6,12,24h) with8mice in each time unit. Twenty-four hours before the start of the experiment, the mice were deprived of food but allowed access to water. In the NS and BML group, mice were injected intraperitoneally (i. p.)10mL/kg BW normal saline repeatedly every1h (7injections in total) and the injection dosage were doubled at the last time. In the SAP group, mice were injected intraperitoneally50μg/kg BW cerulein (10mL/kg of BW) repeatedly every1h (7injections in total) and10mg/kg of BW LPS (10mL/kg of BW, i. p.) after the last dose of cerulein immediately, and one hour before the first injection of cerulein, the mice received intraperitoneal injections of0.4%DMSO (the menstruum for BML-111,10mL/kg BW). In the BML-111pretreatment group, the mice were administered BML-111(dissolved in0.4%DMSO solution,1mg/kg,10mL/kg BW) one hour before the first cerulein administration instead of0.4%DMSO, and the other was same as the SAP group. In the BML-111control group, identical to the BML-111pretreatment group were performed, except that the normal saline was administered instead of cerulein and LPS. In the NS group, identical to the SAP group except that the normal saline was administered instead of cerulein and LPS. Eight mice of each group were anesthetized with sodium pentobarbital (90mg/kg BW, i.m.), then were executed at3,6,12and24h after the last injection. Serum levels of amylase was assayed by P-nitrophenyl malt seven glycoside method, and TNF-a, IL-1β and IL-10were measured by enzyme linked immunosorbent assay (Elisa). Histological score of the pancreas and lung and the wet-to-dry weight ratio of lung were evaluated. Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) of lung tissue were assayed by colorimetric analysis. Expression of Nrf2, HO-1and NQOl in lung tissue was evaluated by real-time PCR and western blot analysis, respectively.
     Results:The findings revealed that injury of pancreas and lung was typically induced by cerulein. BML-11pretreatment significantly reduced the levels of serum amylase, TNF-a, IL-1β, lung MPO and MDA, the wet-to-dry weight ratio and the pathology injury scores of the lung, which increased in the SAP group. The expressions of Nrf2, HO-1, NQ01and activity of SOD in lung tissue increased in the SAP+BML group compared with those in the SAP group, and the serum levels of IL-10were markedly increased.
     Conclusion:BML-111may play a critical protective role on APALI induced by cerulein. The underlying mechanisms of protective role may be attributable to its antioxidant and anti-inflammatory effects through activation of Nrf2/ARE pathway. BML-111pretreatment protected APALI induced by cerulein and these effects may attribute to the antioxidant effect of the antioxidant enzymes that were induced by activation of Nrf2/ARE signaling pathways. In addition, anti-inflammatory effect of BML-111may also be one of the reasons for these protective effects on APALI.
引文
[1]Shen HN, Lu CL. Incidence, resource use, and outcome of acute pancreatitis with/without intensive care:a nationwide population-based study in Taiwan. Pancreas.2011,40(1): 10-15.
    [2]Wang X, Cui Z, Zhang J, et al. Early predictive factors of in hospital mortality in patients with severe acute pancreatitis. Pancreas.2010,39(1):114-115.
    [3]Frossard JL, Steer ML, Pastor CM. Acute pancreatitis. Lancet.2008,371(9607):143-152.
    [4]Bradley EL 3rd. A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13,1992. Arch Surg.1993,128(5):586-590.
    [5]孙备,董承刚,王刚等.重症急性胰腺炎死亡的高危因素分析.中华外科杂志.2007,(23):1619-1622.
    [6]Barreto SG, Rodrigues J. Acute pancreatitis in Goa--a hospital-based study. J Indian Med Assoc.2008,106(9):575-6578.
    [7]Barreto SG, Rodrigues J. Comparison of APACHE II and Imrie Scoring Systems in predicting the severity of Acute Pancreatitis. World J Emerg Surg.2007,2:33.
    [8]急性胰腺炎协作组.中国6223例急性胰腺炎病因及病死率分析.胰腺病学.2006,(06):321-325.
    [9]Sha H, Ma Q, Jha RK. Trypsin is the culprit of multiple organ injury with severe acute pancreatitis. Med Hypotheses.2009,72(2):180-182.
    [10]Lund H, Tonnesen H, Tonnesen MH, Olsen O. Long-term recurrence and death rates after acute pancreatitis. Scand J Gastroenterol.2006,41(2):234-238.
    [11]Andersson R, Andren-Sandberg A. Fatal acute pancreatitis. Characteristics of patients never reaching hospital. Pancreatology.2003,3(1):64-66.
    [12]Pastor CM, Matthay MA, Frossard JL. Pancreatitis-associated acute lung injury:new insights. Chest.2003,124(6):2341-2351.
    [13]Polyzogopoulou E, Bikas C, Danikas D, Koutras A, Kalfarentzos F, Gogos CA. Baseline hypoxemia as a prognostic marker for pulmonary complications and outcome in patients with acute pancreatitis. Dig Dis Sci.2004,49(1):150-154.
    [14]Napolitano LM. Pulmonary consequences of acute pancreatitis:critical role of the neutrophil. Crit Care Med.2002,30(9):2158-2159.
    [15]Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg.2002,9(4):401-410.
    [16]Pitchumoni CS, Patel NM, Shah P. Factors influencing mortality in acute pancreatitis:can we alter them. J Clin Gastroenterol.2005,39(9):798-814.
    [17]Takeyama Y. Significance of apoptotic cell death in systemic complications with severe acute pancreatitis. J Gastroenterol.2005,40(1):1-10.
    [18]燕晓雯,李维勤,王浩,李宁,黎介寿.急性重症胰腺炎相关肺损伤的病理生理改变及相关机制研究.中国急救医学.2006,(09):675-677.
    [19]Alsfasser G, Antoniu B, Thayer SP, Warshaw AL, Fernandez-del CC. Degradation and inactivation of plasma tumor necrosis factor-alpha by pancreatic proteases in experimental acute pancreatitis. Pancreatology.2005,5(1):37-43.
    [20]Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Intern Med.2009,48(9):621-630.
    [21]Tadao M, Yuji O. Role of free radicals in the development of severe acute pancreatitis. Nihon Rinsho.2004,62(11):2015-2020.
    [22]Gomez-Cambronero LG, Sabater L, Pereda J, et al. Role of cytokines and oxidative stress in the pathophysiology of acute pancreatitis:therapeutical implications. Curr Drug Targets Inflamm Allergy.2002,1(4):393-403.
    [23]Pereda J, Sabater L, Aparisi L, et al. Interaction between cytokines and oxidative stress in acute pancreatitis. Curr Med Chem.2006,13(23):2775-2787.
    [24]Chen C, Xia SH, Chen H, Li XH. Therapy for acute pancreatitis with platelet-activating factor receptor antagonists. World J Gastroenterol.2008,14(30):4735-4738.
    [25]Aoun E, Chen J, Reighard D, Gleeson FC, Whitcomb DC, Papachristou GI. Diagnostic accuracy of interleukin-6 and interleukin-8 in predicting severe acute pancreatitis:a meta-analysis. Pancreatology.2009,9(6):777-785.
    [26]Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep.2005,7(4):308-316.
    [27]Czako L, Hegyi P, Takacs T, et al. Effects of octreotide on acute necrotizing pancreatitis in rabbits. World J Gastroenterol.2004,10(14):2082-2086.
    [28]Telek G, Regoly-Merei J, Kovacs GC, et al. The first histological demonstration of pancreatic oxidative stress in human acute pancreatitis. Hepatogastroenterology.2001, 48(41):1252-1258.
    [29]刘建生,付极,袁耀宗.急性胰腺炎与内皮素、一氧化氮和氧自由基关系研究.中国医师杂志.2003,(01):28-29.
    [30]Leung PS, Chan YC. Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal.2009,11(1):135-165.
    [31]Mohseni SMSS, Vahidi H, Abdolghaffari AH, Nikfar S, Abdollahi M. Antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis:a systematic review. World J Gastroenterol.2009,15(36):4481-4490.
    [32]Jeong WS, Jun M, Kong AN. Nrf2:a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal.2006,8(1-2):99-106.
    [33]Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention. Mutat Res.2005,591(1-2): 93-102.
    [34]甯交琳.Nrf2在大鼠肢体爆炸伤后短暂低温肺保护中的作用及机制[博士论文].重庆:第三军医大学.2008.
    [35]Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage:activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol.2008,591(1-3):66-72.
    [36]Kim SK, Yang JW, Kim MR, et al. Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med.2008, 45(4):537-546.
    [37]Lee JM, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol.2004,37(2):139-143.
    [38]Lee JM, Li J, Johnson DA, et al. Nrf2, a multi-organ protector. FASEB J.2005,19(9): 1061-1066.
    [39]Kwak MK, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents:role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol.2002,22(9):2883-2892.
    [40]Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keapl recruits Neh2 through binding to ETGE and DLG motifs:characterization of the two-site molecular recognition model. Mol Cell Biol.2006,26(8):2887-900.
    [41]Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR. Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med.2005,38(3): 325-343.
    [42]Karapetian RN, Evstafieva AG, Abaeva IS, et al. Nuclear oncoprotein prothymosin alpha is a partner of Keapl:implications for expression of oxidative stress-protecting genes. Mol Cell Biol.2005,25(3):1089-1099.
    [43]Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keapl. J Biol Chem.2005,280(37):32485-32492.
    [44]Velichkova M, Hasson T. Keapl regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crml-dependent nuclear export mechanism. Mol Cell Biol. 2005,25(11):4501-4513.
    [45]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keapl-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol.2007,47:89-116.
    [46]Goh J, Godson C, Brady HR, Macmathuna P. Lipoxins:pro-resolution lipid mediators in intestinal inflammation. Gastroenterology.2003,124(4):1043-1054.
    [47]张力,叶笃筠.脂氧素与炎症消退.生命的化学.2004,(01):61-63.
    [48]Chiang N, Arita M, Serhan CN. Anti-inflammatory circuitry:lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids.2005,73(3-4): 163-177.
    [49]Ryan A, Godson C. Lipoxins:regulators of resolution. Curr Opin Pharmacol.2010,10(2): 166-172.
    [50]Zipper LM, Mulcahy RT. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun.2000,278(2): 484-492.
    [51]Levy BD, Fokin VV, Clark JM, Wakelam MJ, Petasis NA, Serhan CN. Polyisoprenyl phosphate (PIPP) signaling regulates phospholipase D activity:a 'stop' signaling switch for aspirin-triggered lipoxin A4. FASEB J.1999,13(8):903-911.
    [52]Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge:lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol.2000,164(4):1663-1667.
    [53]Mullberg J, Althoff K, Jostock T, Rose-John S. The importance of shedding of membrane proteins for cytokine biology. Eur Cytokine Netw.2000,11(1):27-38.
    [54]金胜威,张力,叶笃筠,吴萍,周晓燕,姚尚龙.脂氧素对脂多糖诱导的巨噬细胞游离钙浓度变化及活性氧的影响.中国病理生理杂志.2005,21(8):1651-1651.
    [55]Gewirtz AT, Collier-Hyams LS, Young AN, et al. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol.2002,168(10):5260-5267.
    [56]Zhang L, Zhang X, Wu P, et al. BML-111, a lipoxin receptor agonist, modulates the immune response and reduces the severity of collagen-induced arthritis. Inflamm Res. 2008,57(4):157-162.
    [57]Wu SH, Lu C, Dong L, Zhou GP, He ZG, Chen ZQ. Lipoxin A4 inhibits TNF-alpha-induced production of interleukins and proliferation of rat mesangial cells. Kidney Int.2005,68(1):35-46.
    [58]Fierro IM, Colgan SP, Bernasconi G, et al. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration:comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J Immunol.2003,170(5):2688-2694.
    [59]Jozsef L, Zouki C, Petasis NA, Serhan CN, Filep JG. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci U S A.2002,99(20): 13266-13271.
    [60]Sodin-Semrl S, Spagnolo A, Mikus R, Barbaro B, Varga J, Fiore S. Opposing regulation of interleukin-8 and NF-kappaB responses by lipoxin A4 and serum amyloid A via the common lipoxin A receptor. Int J Immunopathol Pharmacol.2004,17(2):145-156.
    [61]El KD, Jozsef L, Pan W, et al.15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med.2009,180(4): 311-319.
    [62]Jin SW, Zhang L, Lian QQ, et al. Posttreatment with aspirin-triggered lipoxin A4 analog attenuates lipopolysaccharide-induced acute lung injury in mice:the role of heme oxygenase-1. Anesth Analg.2007,104(2):369-377.
    [63]Gewirtz A. Lipoxin analogs:novel anti-inflammatory mediators. Curr Opin Investig Drugs. 2005,6(11):1112-1115.
    [64]庞庆丰.二氯甲烷对CLP诱导大鼠急性肺损伤的保护作用.中国病理生理杂志.2010,(10):2039.
    [65]Conte FP, Menezes-de-Lima O Jr, Verri WA Jr, Cunha FQ, Penido C, Henriques MG. Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br J Pharmacol.2010,161(4):911-924.
    [66]Zhang L, Wan J, Li H, et al. Protective effects of BML-111, a lipoxin A(4) receptor agonist, on carbon tetrachloride-induced liver injury in mice. Hepatol Res.2007,37(11): 948-956.
    [67]Chen Y, Hao H, He S, et al. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice:the role of antiangiogenesis. Mol Cancer Ther.2010,9(8): 2164-2174.
    [68]Hao H, Liu M, Wu P, et al. Lipoxin A4 and its analog suppress hepatocellular carcinoma via remodeling tumor microenvironment. Cancer Lett.2011,309(1):85-94.
    [69]Gong J, Guo S, Li HB, Yuan SY, Shang Y, Yao SL. BML-111, a lipoxin receptor agonist, protects haemorrhagic shock-induced acute lung injury in rats. Resuscitation.2012,83(7): 907-912.
    [70]Grigsby B, Rodriguez-Rilo H, Khan K. Antioxidants and chronic pancreatitis:theory of oxidative stress and trials of antioxidant therapy. Dig Dis Sci.2012,57(4):835-841.
    [71]Ziegler KM, Wade TE, Wang S, Swartz-Basile DA, Pitt HA, Zyromski NJ. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse. Am J Transl Res. 2011,3(2):159-165.
    [72]Ueda T, Takeyama Y, Kuroda Y. Animal experimental models for acute pancreatitis. Nihon Rinsho.2004,62(11):1984-1988.
    [73]Laukkarinen JM, Van Acker GJ, Weiss ER, Steer ML, Perides G. A mouse model of acute biliary pancreatitis induced by retrograde pancreatic duct infusion of Na-taurocholate. Gut. 2007,56(11):1590-1598.
    [74]Sugimoto M, Takada T, Yasuda H. A new experimental pancreatitis by incomplete closed duodenal loop:the influence of pancreatic microcirculation on the development and progression of induced severe pancreatitis in rats. Pancreas.2004,28(4):e112-119.
    [75]Shimosegawa T, Gorelick FS. Inflammation and carcinogenesis in the pancreas and biliary tract:mechanisms and practice. Clin Gastroenterol Hepatol.2009,7(11 Suppl):S1-2.
    [76]Dawra R, Sharif R, Phillips P, Dudeja V, Dhaulakhandi D, Saluja AK. Development of a new mouse model of acute pancreatitis induced by administration of L-arginine. Am J Physiol Gastrointest Liver Physiol.2007,292(4):G1009-1018.
    [77]Zhang XP, Ye Q, Jiang XG, et al. Preparation method of an ideal model of multiple organ injury of rat with severe acute pancreatitis. World J Gastroenterol.2007,13(34): 4566-4573.
    [78]Sennello JA, Fayad R, Pini M, et al. Interleukin-18, together with interleukin-12, induces severe acute pancreatitis in obese but not in nonobese leptin-deficient mice. Proc Natl Acad Sci U S A.2008,105(23):8085-8090.
    [79]Pini M, Sennello JA, Cabay RJ, Fantuzzi G. Effect of diet-induced obesity on acute pancreatitis induced by administration of interleukin-12 plus interleukin-18 in mice. Obesity (Silver Spring).2010,18(3):476-481.
    [80]Elder AS, Saccone GT, Bersten AD, Dixon DL. Evaluation of lung injury and respiratory mechanics in a rat model of acute pancreatitis complicated with endotoxin. Pancreatology. 2012,12(3):240-247.
    [81]Shi-Ping Ding, Ji-Cheng Li, Chang Jin. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol,2003,9(3): 584-589.
    [82]Chan YC, Leung PS. Acute pancreatitis:animal models and recent advances in basic research. Pancreas.2007,34(1):1-14.
    [83]Wan MH, Huang W, Latawiec D, et al. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford).2012,14(2): 73-81.
    [84]Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg.1992,215(1):44-56.
    [85]Hofbauer B, Saluja AK, Bhatia M, et al. Effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis. Gastroenterology.1998, 115(5):1238-47.
    [86]Fisher JM, Gardner TB. The "golden hours" of management in acute pancreatitis. Am J Gastroenterol.2012,107(8):1146-1150.
    [87]Papachristou GI. Prediction of severe acute pancreatitis:current knowledge and novel insights. World J Gastroenterol.2008,14(41):6273-6275.
    [88]Andersson R, Andersson B, Haraldsen P, Drewsen G, Eckerwall G. Incidence, management and recurrence rate of acute pancreatitis. Scand J Gastroenterol.2004,39(9): 891-894.
    [89]Que RS, Cao LP, Ding GP, Hu JA, Mao KJ, Wang GF. Correlation of nitric oxide and other free radicals with the severity of acute pancreatitis and complicated systemic inflammatory response syndrome. Pancreas.2010,39(4):536-540.
    [90]Blum T, Maisonneuve P, Lowenfels AB, Lankisch PG. Fatal outcome in acute pancreatitis: its occurrence and early prediction. Pancreatology.2001,1(3):237-241.
    [91]Arcan O, Ciobica A, Bild W, Dobrin R, Petrariu FD, Cojocaru D. Interactions between the oxidative and nitrosative stress in nociceptive processing in rat. Rev Med Chir Soc Med Nat lasi.2012,116(3):867-874.
    [92]Lopez MA, Carrillo AA. Oxidative stress and acute pancreatitis. Rev Esp Enferm Dig. 2011,103(11):559-562.
    [93]Dabrowski A, Boguslowicz C, Dabrowska M, Tribillo I, Gabryelewicz A. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas. 2000,21(4):376-384.
    [94]Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-Activated Protein Kinases and Reactive Oxygen Species:How Can ROS Activate MAPK Pathways. J Signal Transduct.2011,2011:792639.
    [95]Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal.2006,8(1-2):76-87.
    [96]Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Eur J Pharmacol.2009, 606(1-3):162-171.
    [97]Sriram N, Kalayarasan S, Sudhandiran G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keapl signaling. Pulm Pharmacol Ther.2009,22(3):221-236.
    [98]Jung KH, Hong SW, Zheng HM, et al. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappa B in rats. J Pineal Res.2010,48(3):239-250.
    [99]Li M, Zhang X, Cui L, et al. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response:role of nrf2 and hemeoxygenase-1 expression. Biol Pharm Bull.2011,34(5):595-601.
    [100]Copple IM, Goldring CE, Kitteringham NR, Park BK. The keapl-nrf2 cellular defense pathway:mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol.2010, (196):233-266.
    [101]Chan KH, Ng MK, Stocker R. Haem oxygenase-1 and cardiovascular disease:mechanisms and therapeutic potential. Clin Sci (Lond).2011,120(12):493-504.
    [102]Calkins MJ, Jakel RJ, Johnson DA, Chan K, Kan YW, Johnson JA. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci U S A.2005,102(1):244-249.
    [103]Chen XL, Dodd G, Thomas S, et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol.2006,290(5):H1862-1870.
    [104]Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease:the therapeutic potential of Nrf2 activation. Mol Aspects Med.2011,32(4-6):234-246.
    [105]Itoh K, Mochizuki M, Ishii Y, et al. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2). Mol Cell Biol.2004, 24(1):36-45.
    [106]Kikuchi N, Ishii Y, Morishima Y, et al. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Thl/Th2 balance. Respir Res.2010,11:31.
    [107]Bogaard HJ, Natarajan R, Henderson SC, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation.2009,120(20): 1951-1960.
    [108]Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol.2008,75(11):2214-2223.
    [109]Calvert JW, Jha S, Gundewar S, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res.2009,105(4):365-374.
    [110]Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keapl/Nrf2 pathway via S-alkylation of targeted cysteines on Keapl. J Neurochem.2008,104(4):1116-1131.
    [111]Pastor CM, Frossard JL. Are genetically modified mice useful for the understanding of acute pancreatitis. FASEB J.2001,15(6):893-897.
    [112]Malmstrom ML, Hansen MB, Andersen AM, et al. Cytokines and organ failure in acute pancreatitis:inflammatory response in acute pancreatitis. Pancreas.2012,41(2):271-277.
    [113]DiMagno MJ, DiMagno EP. New advances in acute pancreatitis. Curr Opin Gastroenterol. 2007,23(5):494-501.
    [114]Weis S, Jesinghaus M, Kovacs P, et al. Genetic analyses of heme oxygenase 1 (HM0X1) in different forms of pancreatitis. PLOS ONE.2012,7(5):e37981.
    [115]Nakamichi I, Habtezion A, Zhong B, Contag CH, Butcher EC, Omary MB. Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. J Clin Invest.2005,115(11):3007-3014.
    [116]Seo SW, Bae GS, Kim SG, et al. Protective effects of Curcuma longa against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. Int J Mol Med. 2011,27(1):53-61.
    [117]Bae GS, Kim MS, Park KC, et al. Effect of biologically active fraction of Nardostachys jatamansi on cerulein-induced acute pancreatitis. World J Gastroenterol.2012,18(25): 3223-3234.
    [118]Wu ML, Ho YC, Lin CY, Yet SF. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis.2011,1(2):150-158.
    [119]Immenschuh S, Schroder H. Heme oxygenase-1 and cardiovascular disease. Histol Histopathol.2006,21(6):679-685.
    [1]Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep.2005,7(4):308-316.
    [2]Jeong WS, Jun M, Kong AN. Nrf2:a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal.2006,8(1-2):99-106.
    [3]Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal.2006,8(1-2):76-87.
    [4]Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keapl pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med.2004,36(10): 1208-1213.
    [5]Chorley BN, Campbell MR, Wang X, et al. Identification of novel NRF2-regulated genes by ChlP-Seq:influence on retinoid X receptor alpha. Nucleic Acids Res.2012,40(15): 7416-7429.
    [6]Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD (P) H:quinone oxidoreductase 1 gene:reassessment of the ARE consensus sequence. Biochem J.2003, 374(Pt 2):337-348.
    [7]Nioi P, Nguyen T, Sherratt PJ, Pickett CB. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol.2005,25(24):10895-10906.
    [8]Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells.2001,6(10):857-868.
    [9]McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem.2004,279(30):31556-31567.
    [10]Lee JM, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol.2004,37(2):139-143.
    [11]Karapetian RN, Evstafieva AG, Abaeva IS, et al. Nuclear oncoprotein prothymosin alpha is a partner of Keapl:implications for expression of oxidative stress-protecting genes. Mol Cell Biol.2005,25(3):1089-1099.
    [12]Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keapl. J Biol Chem.2005,280(37):32485-32492.
    [13]Velichkova M, Hasson T. Keapl regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crml-dependent nuclear export mechanism. Mol Cell Biol. 2005,25(11):4501-4513.
    [14]Kwak MK, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents:role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol.2002,22(9):2883-2892.
    [15]Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keapl recruits Neh2 through binding to ETGE and DLG motifs:characterization of the two-site molecular recognition model. Mol Cell Biol.2006,26(8):2887-2900.
    [16]Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keapl. Mol Cell Biol.2006,26(1): 221-229.
    [17]Umemura K, Itoh T, Hamada N, et al. Preconditioning by sesquiterpene lactone enhances H2O2-induced Nrf2/ARE activation. Biochem Biophys Res Commun.2008,368(4): 948-954.
    [18]Kang ES, Woo IS, Kim HJ, et al. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radic Biol Med.2007.43(4):535-545.
    [19]Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem.2003,278(45):44675-44682.
    [20]Kim BC, Jeon WK, Hong HY, et al. The anti-inflammatory activity of phellinus linteus (Berk.& M.A. Curt.) is mediated through the PKC delta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J Ethnopharmacol.2007,113(2):240-247.
    [21]Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC 12 cells. Biochem Biophys Res Commun.2005,331(4):993-1000.
    [22]Jain AK, Jaiswal AK. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem.2007,282(22): 16502-16510.
    [23]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keapl-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol.2007,47:89-116.
    [24]Munday R, Munday CM. Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates:comparison of allyl isothiocyanate with sulforaphane and related compounds. J Agric Food Chem.2004,52(7):1867-1871.
    [25]Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR. Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med.2005,38(3): 325-343.
    [26]Weis S, Jesinghaus M, Kovacs P, et al. Genetic analyses of heme oxygenase 1 (HMOX1) in different forms of pancreatitis. PLOS ONE.2012,7(5):e37981.
    [27]Bogaard HJ, Natarajan R, Henderson SC, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation.2009,120(20): 1951-1960.
    [28]Nakamichi I, Habtezion A, Zhong B, Contag CH, Butcher EC, Omary MB. Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. J Clin Invest.2005,115(11):3007-3014.
    [29]Seo SW, Bae GS, Kim SG, et al. Protective effects of Curcuma longa against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. Int J Mol Med. 2011,27(1):53-61.
    [30]Bae GS, Kim MS, Park KC, et al. Effect of biologically active fraction of Nardostachys jatamansi on cerulein-induced acute pancreatitis. World J Gastroenterol.2012,18(25): 3223-3234.
    [31]Li M, Zhang X, Cui L, et al. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response:role of nrf2 and hemeoxygenase-1 expression. Biol Pharm Bull.2011,34(5):595-601.
    [32]Wu ML, Ho YC, Lin CY, Yet SF. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis.2011,1(2):150-158.
    [33]Lublinghoff N, Winkler K, Winkelmann BR, et al. Genetic variants of the promoter of the heme oxygenase-1 gene and their influence on cardiovascular disease (the Ludwigshafen Risk and Cardiovascular Health study). BMC Med Genet.2009,10:36.
    [34]Immenschuh S, Schroder H. Heme oxygenase-1 and cardiovascular disease. Histol Histopathol.2006,21(6):679-685.
    [35]Zhong JL, Edwards GP, Raval C, Li H, Tyrrell RM. The role of Nrf2 in ultraviolet A mediated heme oxygenase 1 induction in human skin fibroblasts. Photochem Photobiol Sci. 2010,9(1):18-24.
    [36]Okouchi M, Okayama N, Alexander JS, Aw TY. NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia-induced brain endothelial cell apoptosis. Curr Neurovasc Res.2006,3(4):249-261.
    [37]Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage:activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol.2008,591(1-3):66-72.
    [38]Piao CS, Gao S, Lee GH, et al. Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol Res.2010,61(4): 342-348.
    [39]Kaspar JW, Jaiswal AK. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bachl that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression. J Biol Chem.2010,285(1):153-162.
    [40]Liu J, Zhou ZX, Zhang W, Bell MW, Waalkes MP. Changes in hepatic gene expression in response to hepatoprotective levels of zinc. Liver Int.2009,29(8):1222-1229.
    [41]Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005,25(44):10321-10335.
    [42]Lee JM, Li J, Johnson DA, et al. Nrf2, a multi-organ protector. FASEB J.2005,19(9): 1061-1066.
    [43]Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention. Mutat Res.2005,591(1-2): 93-102.
    [44]帘交琳.Nrf2在大鼠肢体爆炸伤后短暂低温肺保护中的作用及机制[博十论文].重庆: 第三军医大学.2008.
    [45]Kim SK, Yang JW, Kim MR, et al. Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med.2008, 45(4):537-546.
    [46]Li CQ, Kim MY, Godoy LC, Thiantanawat A, Trudel LJ, Wogan GN. Nitric oxide activation of Keapl/Nrf2 signaling in human colon carcinoma cells. Proc Natl Acad Sci U S A.2009,106(34):14547-14551.
    [47]曹宝山,朱翔,陈森,肖宇,梁莉Keapl在非小细胞肺癌中的表达及与化疗疗效相关性的研究.中国肺癌杂志.2012,(10):591-596.
    [48]刘芳,杜志银,王应雄Keapl在氧化应激方面的研究进展.中国临床药理学与治疗学.2010,(05):596-600.
    [49]Shibata T, Kokubu A, Gotoh M, et al. Genetic alteration of Keapl confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology. 2008,135(4):1358-1368,1368.e1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700