青藏高原东缘几种树苗对增强紫外线-B和氮供应的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气臭氧的损耗导致了地球表面具有生物学效应的紫外线-B(UV-B)辐射增强。同时,大气成分变化中除了UV-B辐射增强外,氮沉降是一个新近出现而又令人担忧的环境问题,其来源和分布正在迅速扩展到全球范围,并不断向陆地和水生生态系统沉降。本试验在四川省境内的中国科学院茂县生态站内进行,以云山、冷杉、色木槭和红椋子幼苗为模式植物,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究了青藏高原东缘4种树苗对全球变化—增强UV-B辐射和氮供应(氮沉降)的响应。该试验为室外盆栽试验,包括四个处理:(1)大气UV-B辐射+无额外的氮供应(C);(2)大气UV-B辐射+额外的氮供应(N);(3)增强UV-B辐射+无额外的氮供应(UV-B);(4)增强UV-B辐射+额外的氮供应(UV-B+N)。其目的:一方面有助于丰富我国对全球变化及区域响应研究的全面认识,进一步完善在全球气候变化条件下臭氧层削减和氮沉降对陆地生态系统影响的内容;另一方面,在一定程度上有助于我们更好的理解在全球变化下森林更新的早期过程。具体结果如下:
     增强的UV-B辐射在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有显著的影响。UV-B辐射增强对幼苗的影响不仅与物种有关,而且,还与氮营养水平相关。总体表现为,高的UV-B辐射导致了色木槭和红椋子幼苗叶片的皱缩和卷曲,并降低了色木槭幼苗的叶片数和叶重,在额外的氮供应下,云杉、冷杉和红椋子的叶重也显著地降低了;色木槭和红椋子幼苗叶片的解剖结构受到了增强的UV-B辐射的影响,增强的UV-B辐射显著地降低了色木槭叶片的栅栏组织厚度,提高了红椋子叶片的厚度;增强的UV-B辐射显著地降低了4种幼苗的单株总生物量、植物地下部分的生长、总叶绿素含量[Chl(a+b)]、净光合速率和最大量子产量(Fv/Fm),提高了4种幼苗叶片的膜脂过氧化(MDA含量),改变了植物体不同器官中的矿质元素含量:增强的UV-B辐射提高了冷杉、色木槭和红椋子叶片中的过氧化氢含量(H_2O_2)、超氧负离子(O_2~-)生成速率,在额外的氮供应下,云杉叶片中的活性氧含量也显著地提高了;在无额外的氮供应条件下,增强的UV-B辐射显著地提高了4种幼苗叶片中的UV-B吸收物质、脯氨酸含量和抗氧化酶的活性(SOD、POD、CAT、GR和APX)。在额外的氮供应条件下,UV-B辐射的增强却显著地降低了冷杉叶片中脯氨酸含量和红椋子叶片中UV-B吸收物质含量,但是,在4种幼苗叶片中,5种抗氧化酶的活性对UV-B辐射的增强没有明显的规律性,增强的UV-B辐射显著地提高了云杉叶片中的POD、SOD和GR的活性,提高了冷杉叶片中的POD和GR活性,提高了色木槭叶片中的POD、SOD和CAT活性和红椋子幼苗叶片中的POD和SOD活性。从这些结果可知,植物在遭受高的UV-B辐射导致的过氧化胁迫时,植物体内形成了一定的保护机制,但是,这种保护不能抵抗高的UV-B辐射对植物的伤害。
     额外的氮供应在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有一定的影响,不同幼苗对额外的氮供应响应不同,并且受到UV-B辐射水平的影响。在当地现有的UV-B辐射水平下,额外的氮供应显著地提高了幼苗的单株总生物量、植物地下部分的生长、Chl(a+b)、净光合速率(红椋子除外)、UV-B吸收物质(冷杉除外)、脯氨酸含量(红椋子除外)和部分抗氧化酶的活性,降低了H_2O_2的含量、O_2~-的生成速率和MDA含量(红椋子除外),改变了植物体内部分矿质元素含量,显著地提高了云杉和冷杉叶片中的Fv/Fm。这些指标总体表明,在当地现有大气UV-B辐射水平下,额外的氮供应对植物的生长和发育是有利的。在增强的UV-B辐射水平下,4种幼苗的生长形态和光合大部分指标都没有受到额外氮供应的影响,额外的氮供应提高了红椋子幼苗的单株总生物量和Chl(a+b)含量,提高了冷杉和色木槭叶片中的活性氧含量和MDA含量,却降低了红椋子叶片中的活性氧含量;额外的氮供应也提高了云杉、色木槭和红椋子叶片中UV-B吸收物质和脯氨酸含量,降低了冷杉叶片中UV-B吸收物质和脯氨酸含量;在抗氧化酶活性方面,额外的氮供应降低了云杉、冷杉叶片中5种抗氧化酶的活性和红椋子叶片中POD和GR的活性,提高了色木槭叶片中的POD和SOD的活性;4种幼苗植物体内的矿质元素含量对额外的氮供应没有显著的规律性。从这些结果可知,在高的UV-B辐射下,额外的氮供应提高了云杉、冷杉和色木槭幼苗对高的UV-B辐射的敏感性,然而,额外的氮供应却促进了红椋子幼苗的生长,原因可能是,在高的UV-B辐射下,额外的氮供应增加了红椋子叶片的厚度、叶重和叶片数,降低了叶片中活性氧含量的结果。表明在高的UV-B辐射水平下,额外的氮供应降低了红椋子幼苗对高的UV-B辐射的敏感性。
     在全球变化的趋势下,UV-B辐射增强和氮沉降可能同时存在,我们的研究表明,与大气UV-B辐射+无额外的氮供应处理相比,增强UV-B辐射+额外的氮供应处理显著地降低了幼苗的单株总生物量(红椋子除外)、Chl(a+b)、净光合速率、Fv/Fm(冷杉除外)和MDA含量(红椋子除外),提高了活性氧含量(云杉除外)、UV-B紫外吸收物质含量(冷杉除外)、脯氨酸含量和部分抗氧化酶的活性,改变了植物体不同器官中的矿质元素含量。结果表明,在当地现有条件下,全球变化(UV-B辐射增强和氮沉降)对云杉、冷杉和色木槭幼苗的生长是不利,尽管植物体内一些抗氧化性指标提高了,然而,却对红椋子幼苗的单株总生物量的累积没有显著的影响。
The depletion of the ozone led to the increase of ultraviolet-B (UV-B) with biological effects in the earth's surface. At the same time, except for enhanced UV-B radiation, nitrogen deposition was an anxious environmental problem at present, rapidly expanding to the global scope and continuously depositing to land and aquatic ecosystem. The experiment was conducted in Maoxian Ecological Station of Chinese Academy of Sciences, Sichuan province, China. Picea asperata, Abies faxoniana, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings were selected as model plants to assess the effects of enhanced UV-B radiation and supplemental nitrogen supply on growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings in east Qinghai-Tibetan Plateau. The experiment was potted outdoor, including 4 treatments: (1) ambient UV-B without supplemental nitrogen (control, C); (2) ambient UV-B with supplemental nitrogen (N); (3) enhanced UV-B without supplemental nitrogen (UV-B); (4) enhanced UV-B with supplemental nitrogen (UV-B+N). One hand, it was helpful for enriching our country to comprehensive understanding of the researches in the global change and the region response, further perfecting the effects of the depleted ozone layer and nitrogen deposition on land ecosystem under the global change; the other hand, it was favorable for us to better understanding of the early process of forest renews under the global change. The results were as follows:
     Enhanced UV-B radiation had significant effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings. The effects of enhanced UV-B on plants were not only related with species, but also related with nitrogen nutrient level. Generally, the increase of UV-B radiation led to the shrinkage and curl of leaves in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, and reduced the number of leaf and leaf weight of Acer mono Maxim seedlings, under supplemental nitrogen supply, leaf weight of Picea asperata, Abies faxoniana and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings significantly also reduced; the anatomical features of leaf in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings affected by enhanced UV-B radiation, the increase of UV-B radiation markedly reduced the palisade tissue thickness of Acer mono Maxim leaf and enhanced the leaf thickness of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings; the enhanced UV-B radiation significantly reduced total biomass per plant of 4 species seedlings, the growth of the underground parts, Chl (a+b), net photosynthetic rate and maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA content) and changed the content of mineral elements in different parts of plants; the enhanced UV-B radiation also increased the rate of superoxide radical (O_2~-) production and hydrogen peroxide (H_2O_2) content in leaves of Abies faxoniana, Acer mono Maxim, Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, under supplemental nitrogen supply, the reactive oxygen species in leaves of Picea asperata seedlings also significantly increased by enhanced UV-B radiation; under without supplemental nitrogen supply, enhanced UV-B radiation evidently induced an increase in UV-B absorbing compounds, proline content and the activities of antioxidant enzymes (SOD, POD, CAT, GR and APX) of leaves in 4 species seedlings. Under supplemental nitrogen supply, enhanced UV-B radiation induced a decrease in proline content of leaves in Abies faxoniana seedlings and UV-B absorbing compounds of leaves in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, but, there were no obvious rules in the activities of five antioxidant enzymes of 4 species seedling leaves to enhanced UV-B radiation, enhanced UV-B radiation significantly increased the activities of POD, SOD and GR in Picea asperata leaves, the activities of POD and GR in Abies faxoniana leaves and the activities of POD, SOD and CAT in Acer mono Maxim leaves. The results indicated that some protective mechanism was formed when plants were exposed to enhanced UV-B radiation, but the protection could not counteract the harm of high UV-B radiation on plants.
     Supplemental nitrogen supply had some effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits. The response of 4 species seedlings was different to supplemental nitrogen supply, and was affected by UV-B levels. Under local ambient UV-B radiation, supplemental nitrogen supply significantly increased the total biomass per plant, the growth of underground parts, Chl (a + b), net photosynthetic rate (except for Acer mono Maxim seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and the activities of some antioxidant enzymes, and reduced H_2O_2 content, the rate of O_2~-production and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and changed the content of mineral elemental in different parts; supplemental nitrogen supply also evidently increased Fv/Fm in Picea asperata and Abies faxoniana seedlings. These results indicated that supplemental nitrogen supply was favorable for the growth of plants under local ambient UV-B radiation. Under enhanced UV-B radiation, mostly parameters in growth and morphology of 4 species seedlings were not affected by supplemental nitrogen supply. Supplemental nitrogen supply increased the total biomass per plant and Chl (a + b) of Swida hemsleyi (Schneid. et Wanger.) Sojak seedling, increased the reactive oxygen species and MDA content in Abies faxoniana and Acer mono Maxim leaves, and reduced the reactive oxygen species in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves; supplemental nitrogen supply also increased UV-B absorbing compounds and proline content in Picea asperata, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, decreased UV-B absorbing compounds and proline content in Abies faxoniana leaves; in the activities of antioxidant enzymes, supplemental nitrogen supply significantly reduced the activities of antioxidant enzymes in Picea asperata and Abies faxoniana leaves and the activities of POD and GR in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, and increased the activities of POD and SOD in Acer mono Maxim leaves; the content of mineral elements in 4 species seedlings was no significantly rule to supplemental nitrogen supply. We knew from the results, under enhanced UV-B radiation, supplemental nitrogen supply made Picea asperata, Acer faxoniana and Acer mono Maxim seedlings more sensitivity to enhanced UV-B radiation, however, accelerated the growth of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings. The reason was probably that supplemental nitrogen supply increased the leaf thickness, leaf weight and leaf number, reduced the reactive oxygen content of leaf in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings grown under high UV-B radiation. This showed that supplemental nitrogen supply reduced the sensitivity of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings to high UV-B radiation.
     Under the tendency of the global change, enhanced UV-B radiation and nitrogen deposition may probably coexist. The results showed, compared with the treatment of ambient UV-B radiation without supplemental nitrogen supply, the treatment of enhanced UV-B radiation with supplemental nitrogen supply significantly reduced the total biomass per plants (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), Chl (a+b), net photosynthetic rate, Fv/Fm and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), and increased reactive oxygen content (except for Picea asperata seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content and part antioxidant enzymes, and changed the content of mineral elements of different parts. The results indicated that the global change (enhanced UV-B and nitrogen deposition) were not favorable for the growth of plants under local ambient UV-B radiation and nitrogen nutrient level,, though increased some antioxidant indexes, however, the treatment of enhanced UV-B with supplement nitrogen supply did not significantly affect on the biomass accumulation of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings
引文
[1] 卞建春,王庚辰,陈洪滨,祁栋林,吕达仁,周秀骥.2006.2003年12月青藏高原上空出现微型臭氧洞.科学通报,51:606-609.
    [2] 曹特,倪乐竟.2004.金鱼藻抗氧化酶对水体无机氮升高的响应.水生生物学报,28:299-303.
    [3] 陈兰,张守仁.2006.增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率、气孔导度、叶氮素含量及形态特性的影响.植物生态学报,30:47-56.
    [4] 陈章和,朱素琴,李韶山,郭志华,张德明。2000.UV-B辐射对南亚热带森林木本植物幼苗生长的影响.云南植物研究,22:467-474.
    [5] 杜英君,靳月华.2000.远紫外辐射对紫杉幼苗针叶膜脂过氧化及内源保护系统的影响.应用生态学报,11:660-664.
    [6] 冯虎元,安黎哲,陈书燕,王勋陵,程国栋.2002.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响.生态学报,22:1564-1568.
    [7] 郭盛磊,阎秀峰,白冰,于爽.2005.供氮水平对落叶松幼苗光合作用的影响生态学报,25:1291-1298
    [8] 侯扶江,贲桂英.1997.紫外线-β辐射对植物的影响研究进展.植物学通报,14:18-23.
    [9] 李德军,莫江明,方运霆.2004.模拟氮沉降对三种南亚热带树苗生长和光合作用的影响.生态学报,24:876-882.
    [10] 李元,王勋陵,胡之德.2000.田间增强UV-B辐射对麦田生态系统Fe营养和累积的影响.环境科学,21:36-39.
    [11] 李元,王勋陵.2000.UV-B辐射增加对麦田生态系统N、P累积和循环的影响.农业环境保护,19:129-132.
    [12] 李元,王勋陵.2001.田间增强UV-B辐射对麦田生态系统K营养和累积的影响.西北植物学报,21:313-317.
    [13] 李元.2001.增强的UV-B辐射对麦田生态系统Mg和zn累积和循环的影响.生态 学杂志,20:26-29.
    [14] 梁万福,幸亨泰.1996.土壤氮素对小麦生育期硝酸还原酶活性的影响.西北师范大学学报,32:52-56.
    [15] 刘国华,傅伯杰.2001.全球气候变化对森林生态系统的影响.自然资源学报.16:71-78.
    [16] 吕超群,田汉勤,黄耀.2007.陆地生态系统氮沉降增加的生态效应.植物生态学报,31:205-218.
    [17] 马雪华.1989.在杉木林和马尾松林中雨水的养分淋溶作用.生态学报, 9:15-20.
    [18] 聂磊,刘鸿先,彭少麟.2001.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响.植物资源与环境,10:19-24.
    [19] 潘瑞炽.2002.植物生理学.高等教育出版社(第四版),PP:55-56.
    [20] 强维亚,杨晖,陈拓.2004.镉和增强紫外线-B辐射复合作用对大豆生长的影响.应用生态学报,15:697-700.
    [21] 师生波,贲桂英,韩发.1999.不同海拔地区紫外线B辐射状况及植物叶片紫外线吸收物质含量的分析.植物生态学报,23:529-535.
    [22] 王传海,何都良,郑有飞,刘芳.2003.连续两年紫外线-B辐射增强对玉米种子发芽及幼苗生长的影响.农业生态环境,19:23-25.
    [23] 吴鲁阳,王美丽,张振文.2005.紫外线(UV)-B增强对植物的影响研究.中国农学通报.21:222-227.
    [24] 吴顺,萧浪涛.2003.植物体内活性氧代谢及其信号传导.湖南农业大学学报(自然科学版).29:450-456.
    [25] 肖凯,张荣铣,钱维朴.1998.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制.植物营养与肥料学报,4:371-378.
    [26] 许振柱,周广胜.2004.植物氮代谢及其环境调节研究进展.应用生态学报,15:511-165.
    [27] 杨志敏,颜景义,郑有飞.1996.紫外线辐射增加对大豆光合作用和生长的影响.生态学报,16:154-159.
    [28] 岳明,王勋陵.1998.紫外-B辐射增强对小麦和燕麦繁殖特性影响的研究.中国环境科学,18:68-71.
    [29] 岳明,王勋陵.1999.紫外线辐射对小麦和燕麦竞争性平衡的影响——小麦和燕麦生物量结构与冠层结构.环境科学学报,19:526-531.
    [30] 赵广琦,王勋陵,岳明,李方民2003.增强UV-B辐射和CO_2复合作用对蚕豆幼苗生长和光合作用的影响.西北植物学报,23:6-10.
    [31] 赵越,魏自民,马凤鸣.2003.不同水平铵态氮对甜菜硝酸还原酶和谷氨酰胺合成酶活力的影响.中国糖料,1:22-25.
    [32] 周青,黄晓华,施国新,戴玉锦.2001.钙对紫外辐射B胁迫下小麦幼苗若干生物学特性的影响.环境科学,22:79-82.
    [33] 周青,黄晓华,赵姬,马育国,刘小林.2002.紫外辐射(UV-BC)对47种植物叶片的表观伤害效应.环境科学,23:23-28.
    [34] 周秀骥,罗超,李维亮.中国地区臭氧变化与青藏高原低值中心.科学通报,1995.40:1396-1398.
    [35] Aber JD, Magill AH, Boone R, Melillo JM, Steudler P, Bowden R. 1993. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol Appl,3:156-66.
    [36] Abroad I, Hellebust JA. 1988. The relationship between inorganic nitrogen metabolism and proline accumulation in osmo regulatory responses of two euryhaline microalgae. Plant Physiol, 88:348 - 354
    [37] Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ, 24:1337-1344
    [38] Allen DJ, Nogue' s S, Baker NR.1998. Ozone depletion and increased UV-B radiation:is there a real threat to photosynthesis? J Exp Bot, 49:1775 - 1788
    
    [39] Alscher RG, Hess JL. 1993. Antioxidants in higher plants. CRC Press , Boca Raton, pp, 31-58.
    
    [40] Andreae MO. 1993. The influence of tropical biomass burning on climate and the atmospheric environment. In: Oremland RS (Ed.) Biogeochemistry of Global Change: Radiatively Active Trace Gases. Chapman and Hall, NY, U.S.A. pp, 113 -150.
    
    [41] Barnes PW, Jordan PW, Gold WJ. 1988. Competition, morphology and canoy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct Ecol, 2: 319 - 330.
    
    [42] Bates LS, Waldren RP, Teare IK. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205 - 208.
    
    [43] Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M. 1986. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol, 82: 1169-1171
    
    [44] Binkley D, Son Y, Valentine DW. 2000. Do forests receive occult inputs of nitrogen? Ecosystems, 3:321-331.
    
    [45] Bjerke JW, Gwynn-Jones D, Callaghan TV. 2005. Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens, Environ. Exp. Bot. 53: 139 -149.
    
    [46] Bjorkman O, Demmig B.1987. Photon yield of O_2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489 - 504.
    
    [47] Bjorn LO, Callaghan TV, Johnsen J. 1997. The effects of UV-B radiation on european heathland species. Plant Ecology, 128:252-264.
    
    [48] Bowden RD, Davidson E, Savage K, Arabia C, Steudler P. 2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard forest. Forest Ecol Manage, 196: 43 - 56
    [49] Bradford MM. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248 -254
    
    [50] Briantais JM, Vernotte C, Krause GH, Weis E.1986. Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee AJ, Fork DC (eds). Light emission by plants and bacteria. New York: Academic Press, pp: 539 - 583.
    
    [51] Caldwell MM. 1981. Plant response to solar ultraviolet radiation. In: Encyclopedia of Plant Physiology, New Series, Vol. 12A, Physiological Plant Ecology I. Responses to the Physical Environment. Springer, Berlin, pp, 169 -197.
    
    [52] Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M. 2003. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environ Exp Bot, 50: 149-157.
    
    [53] Casati P, Lara MV, Andreo CS.2001. Regulation of enzymes involved in C_4 photosynthesis and the antioxidant metabolism by UV-B radiation in Egeria densa, a submersed aquatic species. Photosynthesis Res, 71: 251 - 264
    
    [54] Castro MS, Steudler P, Melillo JM, Aber JD, Bowden RD. 1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles 9: 1-10.
    
    [55] Clement JMAM, de Boer M, Venema JH, Van Hasselt PR. 2000. There is no direct relationship between N status and frost hardiness in needles of NH_3 exposed Scots pine seedlings. Phyton, 2000,40:21 ~ 33.
    
    [56] Correia CM, Moutinho-Pereira JM, Coutinho JF, Bjorn LO, Torres-Pereira JMG 2005. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study. Eur J Agron, 22: 337 - 347
    
    [57] Costa H, Gallego SM, Tomaro ML. 2002. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci, 162:939 - 945.
    
    [58] Cuadra P, Herrera R, Fajardo V. 2004. Effects of UV-B radiation on the Patagonian Jaborosa magellanica Brisben. Journal of Photochemistry and Photobiology B: Biology, 76: 61 - 68.
    
    [59] Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH. 1996. Vertical transport of dissolved organic C and N under long term N amendments in pine and hardwood forests. Biogeochemistry, 35: 471 - 505.
    
    [60] Cybulski WJ, Peterjohn WT. 1999. Effects of ambient UV-B radiation on the above-ground biomass of seven temperate-zone plant species. Plant Eco, 145: 175 -171.
    
    [61] Dai Q, Peng S, Chavez AQ, Vergara BS. 1994. Intraspecific responses of 188 rice cultivars to enhanced UV2B radiation. Environ. Ex p. Bot, 34: 433-442..
    
    [62] Day TA, Neale PJ. 2002. Effects of UV-B radiation on terrestrial and aquatic primary producers. Ann Rev Ecol Syst, 33: 371 - 396.
    
    [63] Day TA, Vogelmann TC, Delucia EH. 1992. Are some life forms more effective than others in screening out ultraviolet-B radiation? Oecologia, 83: 513 - 519.
    
    [64] De La Rose TM, Aphalo PJ, Lehto T. 2003. Effects of ultraviolet-B radiation on growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings grown in low-nutrient conditions. Global Change Biol, 9: 65 - 73.
    
    [65] De La Rose TM, Julkunen-Tiitto R, Lehto T, Aphalo PJ. 2001. Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates. New Phytologist, 150:121 - 131
    
    [66] Deckmyn G, Impens I. 1997. Combined effects of enhanced UV-B radiation and nitrogen deficiency on the growth, composition and photosynthesis of rye (Secale cereale). Plant Ecol, 128:235-240
    
    [67] Delauney AJ, Verma DPS. 1993. Proline biosynthesis and osmo-regulation in plants. Plant J, 4:215-223
    
    [68] Dueck TA, Dorel FG, Ter Horst R, Van der Eerden LJ. 1991. Effect of ammonia, ammonium sulphate and sulpher dioxide on the frost sensitivity of Scots pine (Pinus sylvestris L.). Water, Air Soil Pollut, 54: 35 - 49.
    
    [69] Emmett BA, Boxman D, Bredemeier M, Gundersen P, Kjonass OJ, Moldan F, Schleppi P, Tietema A, Wright RF. 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from NITREX ecosystem-scale experiments. Ecosystems, 1: 352-360.
    
    [70] Ernst WHO, Van de Staaij JWM, Nelissen HJM. 1997. Reaction of savanna plants from Botswana on UV-B radiation. Plant Ecology, 128: 163-170
    
    [71] Executive summary. 2003. Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment. Photochem Photobiol Sci, 2: 1 - 4.
    
    [72] Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. J Anne Rev Plant Physiol,33:317-34
    
    [73] Fedina I, Georgieva K, Velitchkova M, Grigorova I. 2006. Effects of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environ. Exp. Bot., 56: 225-230.
    
    [74] Fischbach RJ, Kossmann B, Panten H, Steinbrecher R, Heller, Seidlitz K, Sandermann H, Hertkorn N, Schitzler J. 1999. Seasonal accumulation of ultraviolet-B screening pigment in needles of Norway spruce (Picea abies (L.) Karst.). Plant, Cell Envrion, 22: 27 - 36.
    
    [75] Galloway JN, Levy H, Kasibhatla PS. 1994. Year 2020: Consequences of population growth and development on the deposition of oxidized nitrogen. Ambio 23: 120-123
    
    [76] Giese AC. 1964. Photophysiology. New York: Academic Press, pp, 203 - 245.
    
    [77] Greenberg BM, Wilson MI, Huang XD, Duxbury CL, Gerhardt KE, Gensemer RW. 1997. The effects of ultraviolet-B radiation on higher plants. In: Wang W, Gorsuch JW, Hughes JS (Eds.), Plants for Environmental Studies. CRC Lewis Publishers, Boca Raton, NY, pp, 1-35.
    
    [78] Grobe CW, Murphy TM. 1998. Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S. and G (Chlorophyta). J. Exp. Mar. Biol. Ecol., 225: 39 - 51.
    
    [79] Gustavo G. Yannarelli, Susana M. Gallego, Mana L. Tomaro. 2005. Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environ. Exp. Bot. 56:182 - 191.
    
    [80] Gwynn-Jones D, Lee JA, Callaghan TV. 1997. Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecology, 128:242-249.
    
    [81] Hanelt D, Uhrmacher S, Nultsch W.1995. The effect of photoinhibition on photosynthetic oxygen production in the brown alga Dictyota dichotoma, Bot. Acta 108:99 -105.
    
    [82] Holland EA, Braswell BH, Lamarque JF, Towsend A, Sulzman J, Muller JF, Dentener F, Brasseur G, Levy HII, Penner JE, Roelofs GJ. 1997. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosyntems. J. Geophys. Res, 102: 849-866.
    
    [83] Holland EA, Dentener FJ, Braswell BH, Sulzman JM. 1999. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 46: 7-23.
    
    [84] Hunt JE, McNeil DL. 1998. Nitrogen status affects UV-B sensitivity of cucumber. Aust J Plant Physiol,25:79-86
    
    [85] Jordan ER, Chow WS, Andeson JM. 1992. Changes in mRNA levels and polypeptide subunit of ribulose 1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant, Cell and Environ, 15:91 - 98.
    
    [86] Julkunen-Tiitto R, Haggman H, Aphalo PJ, Lavola A, Tegelberg R,Veteli T. 2005. Growth and defense in deciduous trees and shrubs under UV-B. Environ Pollut, 137:404 - 414.
    
    [87] Kaiser J. 2001. The other global pollutant: nitrogen proves tough to curb. Science, 294: 1268 -1269.
    
    [88] Ke D, Wang A, Sun G, Dong L. 2002. The effect of active oxygen on the activity of ACC synthase induced by exogenous IAA. Acta Bot Sin, 44: 551 - 556.
    [89] Keiller DR, Holmes MG. 2001. Effects of long-term exposure to elevated UV-B radiation on the photosynthetic performance of five broad-leaved tree species. Photosynth Res, 67:229 - 240.
    [90] Kilronomos JN, Allen MF. 1996. UV-B mediated changes on below-ground communities associated with the roots of Acer saccharum. Funct. Ecol, 9:923-930.
    [91] Kim HY, Kobayashi K, Nouch I. 1996. Enhanced UV-B radiation has little effect on growth, Vc values and pigments of pot - grown rices (Oryza Sativa L.) in the field. Plant Physiol, 96:1-5.
    [92] Kossuth SV, Biggs RH. 1981. Ultraviolet-B radiation effects on early seedling growth of Pinaceae species. Can J Forest Res 11: 243-248.
    [93] Kramer PJ. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Bio Science, 31: 29-33.
    [94] Krause GH.1988. Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. Physiol Plant, 74:566-574.
    [95] Kulandaivelu G, Nedunchezhian N. 1993. Synergistic effects of ultraviolet-B enhanced radiation and growth temperature on ribulose 1, 5-bisphosphate carboxylase and ~(14)CO_2 fixation in Vigna sinensis L. Photosynthetica, 29:377-383.
    [96] Laakso K, Sullivan JH, Huttunen S. 2000. The effects of UV2B radiation on epidermal anatomy in loblolly pine ( Pinus taeda L. ) and scots pine ( Pinus sylvestris L. ). Plant, Cell and Environ, 23:461 - 472.
    [97] Larssen T, Seip HM, Semb A, Mulder J, Muniz IP, Vogt RD, Lydersen E, Angell V, Dagang T, Eilertsen O. 1999. Acid deposition and its effects in China: an overview. Environmental Science and Policy, 2: 9-24.
    [98] Lavola A, Julkunen-Tiito R, Roininer H, Aphalo P. 1998. Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites. Biochem. Syst. Ecol., 26:1 - 12.
    [99] Levizou E, Manetas Y. 2001. Combined effects of enhanced UV-B radiation and additional nutrients on growth of two Mediterranean plant species. Plant Ecol, 154: 181 -186.
    
    [100] Li S, Paulsson M, Bjorn LO. 2002. Temperature-dependent formation and photorepair of DNA damage induced by UV-B radiation in suspension-cultured tobacco cells. Photochem Photobio, 66: 67 - 72.
    
    [101] Lichtenthaler HK.1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148: 350 - 382.
    
    [102] Linkens GE, Driscoll CT, Buso BC. 1996. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272: 244 - 246.
    
    [103] Mackerness SAH, Jordan BR, ThomasB. 1999. Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV2B: 280~320 nm) in green and etiolated buds of pea (Pisum sativum L.). J Photochem Photobiol B B iol, 48:180 -188.
    
    [104] Mackerness SAH, Surplus SL, Jordan BR, Thomas B. 1998. Effects of supplementary ultraviolet-B radiation on photosynthetic transcripts at different stages of leaves development and light levels in pea (Pisum sativum L.): Role of active oxygen species and antioxidant enzymes. Photochem Photobiol, 68: 88 - 96.
    
    [105] Macklon AES, Sin A. 1992. Modifying effects of non-toxic levels of aluminum on the up take and transports of phosphate in ryegrass. J. Exp. Bot,,43:915-923.
    
    [106] Magill AH, Aber JD, Bemtson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler PA. 2000. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3: 328-253.
    
    [107] Magill AH, Aber JD. 1998. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation. Plant Soil, 203: 301-11.
    
    [108] Magill, AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol. Appl, 7: 402-415.
    [109] Mantai KE, Bishop NI. 1967. Studies on the effects of ultraviolet irradiation on photosynthesis and on he 520nm light-dark difference spectra in green algae and isolated chloroplasts, Biochim Biophys Acta, 131: 350 - 356.
    
    [110] Matson PA , McDowell WH, Townsen AR, Vitousek PM. 1999. The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry, 46: 67 -83.
    
    [111] Matson PA, Lohse KA, Hall SJ. 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 31:113-119.
    
    [112] Matthews E.1994. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochemical Cycles, 8: 411-439
    
    [113] Mazza CA, Battista D, Zima AM, Szwarcberg-Bracchitta M, Cicidano CV, Acevedo A, Scopel AL, Ballare CL. 1999. The effects of solar ultraviolet - B radiation on the growth and yield of barely are accompanied by increased DNA damage and antioxidant response. Plant, Cell and Environ, 22 :61 - 70.
    
    [114] McDowell WH, Currie WS, Aber JD, Yano Y. 1998. Effects of chronic nitrogen amendments on production of dissolved organic carbon in forest soils.Water Air Soil Pollut, 105:175-82.
    
    [115] McNulty SG, Aber J D, Newman SD. 1996. Nitrogen saturation in a high elevation New England spruce-fir stand. For. Ecol. Manage, 84: 109 -121.
    
    [116] Melillo JM, Gosz JR. 1983. Interaction of biogeochemical cycles in forest ecosystems. In: Bolin B, Cool RB (eds). The Major Biogeochemical Cycles and Their Interactions. John Wiley and Sonsm, Chichester, UK, pp: 177-222.
    
    [117] Mirecki RM, Teramura AH. 1984. Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol, 74: 475 - 480.
    
    [118] Mishra NP, Mishra RK, Singhal GS. 1993. Changes in the activities of antioxidant enzymes during exposure of intact wheat leves to strong visible light at different temperature in the pesence of protein synthesis inhibitors. Plant Physiol, 102: 903 - 910.
    
    [119] Mitchell JFF, Mananbe S, Meleshlo V, Tolioka T. 1990. Equilibrium climate change and its implications for the future. In Climate Change. The IPCC Scientific Assessment, Houghton JT, Jenkins GJ, Ephraums JJ (eds), Cambridge University Press, Cambridge, pp, 131-172.
    
    [120] Mooney H, Vitousek PM, Matson PA. 1987. Exchange of materials between terrestrial Eco systems and the atmosphere. Science, 238: 926 - 932.
    
    [121] Nadelhoffer KJ, Downs MR, Fry B. 1999. Sinks for N additions to an oak forest and a red pine plantation at the Harvard Forest, Massachusetts, USA. Ecol Appl 9: 72 - 86.
    
    [122] Naidu BP, Sullivan JH, Teramura AH, DelLucia EH. 1993. The effects of ultraviolet-B radiation on photosynthesis of different aged needles in field-grown loblolly pine. Tree Physiol, 12:151 -162.
    
    [123] Nakaji T, Fukami M, Dokiya Y, Izuta T. 2001. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus desiflora seedlings. Trees, 15:453-461.
    
    [124] Nedunchezhian N, Kulandaivelu G. 1996. Effects of ultraviolet-B enhanced radiation and temperature on growth and photo chemical activities in Vigna agriculture. Biological Plant, 38: 205-214.
    
    [125] Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD. 2002. Variable effects of nitrogen additions on the stability and turnover of organic carbon. Nature, 419: 915-917.
    
    [126] Newshama KK, Splattb P, Coward PA. 2001. Negligible influence of elevated UV-B radiation on leaf litter quality of Quercus robur. Soil Biology Biochemistry, 33:659 - 665.
    
    [127] Nihlgard B. 1985. The ammonium hypothesis-an additional explanation to the forest dieback in Europe. Ambio, 14:2-8.
    [128] Pancotto VA, Sala OE, Cabellow M, Lopez N, Robson TM, Ballare C.Caldwell MM, Scopel A. 2003. Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Global Change Biol, 9: 1465 - 1474.
    
    [129] Pinto ME, Casati P, Hsu TP, Ku MS, Edwards GE. 1999. Effects of UV-B radiation on growth, photosynthesis, UV-B absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions. J Photochem Photobiol B, 48: 200-209
    
    [130] Prochazkova D, Sairam RK, Srivastava GC, Singh DV. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci, 161: 765 - 771.
    
    [131] Pruvot G, Masimino J, Peltier G, Rey P. 1996. Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought-induced proteins in Solanum tuberosum. Plant Physiol, 97:123 -131.
    
    [132] Queiroz CGS, Alonso A, Mares-Guia M, Magalha¨es AC. 1998. Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biol Plant 41: 403-413.
    
    [133] Rai LC, Tyagi B, Rai PK, Mallick N. 1998. Interactive effects of UV-B and heavy metal (Cu and Pb) on nitrogen and phosphorus metabolism of a N2-fixing cyanobacterium Anabaena doliolum. Environ Exper Bot, 39: 221-231.
    
    [134] Ramalho JC, Campos PS, Teixeira M, Nunes MA.1998. Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Sci 135: 115 - 124
    
    [135] Rao MV, Paliyath G, Ormrod DP. 1996. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol, 110: 125-136.
    
    [136] Rios-Gonzalez K, Laszlo Erdei, Lips SH. 2002. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci. 162:923-930.
    [137] Robson TM, Pancotto VA, Flint SF, Ballare CL, Sala OE, Scopel AL, Caldwell MM. 2003. Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytologist, 160: 379 - 389.
    
    [138] Runeckles VC, Krupa SV. 1994. The impact of UV-B radiation and ozone on terrestrial vegetation. J. Environ.Pollut. 83:191 - 213.
    
    [139] Sager EPS and Hutchinson TC. 2005. The effects of UV-B, nitrogen fertilization, and springtime warming on sugar maple seedlings and the soil chemistry of two central Ontario forests. Can. J. For. Res./Rev. can. rech. for. 35: 2432 - 2446
    
    [140] Sanchez E, Ruiz JM, Romero L. 2002. Proline metabolism in response to nitrogen toxicity in fruit of French Bean plants (Phaseolus vulgaris L. cv. Strike). Sci Hort, 93: 225 -233
    
    [141] Santos I, Fidalgo F, Almeida JM. 2004. Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Sci, 167: 925 - 935
    
    [142] Saradhi PP, Alia SA, Prasad KV, Arora S (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1 - 5
    
    [143] Schmitz-Eiberger M, Noga G 2001. UV-B-radiation- influence on antioxidative components in Phaseolus vulgaris-leaves. Journal of applied botany, 75:210-215.
    
    [144] Schulze ED. 1989. Air pollution and forest decline in a spruce (Picea abies) forest. Science, 244: 776 - 783.
    
    [145] Searles PS, Flint SD, Caldwell MM. 2001. A meta-analysis of plant field studies stimulating stratospheric ozone depletion. Oecologia, 127:1-10.
    
    [146] Shellv K, Heraud P, Beardall J. 2002. Nitrogen limitation in Dunaliella tertiolecta (Chlorophycear) leads to increased susceptibility to damage by ultraviolet-B radiation but also increased repair capacity. Journal of Phycology. 38: 713-720.
    
    [147] Singh A. 1996. Growth, physiological, and biochemical responses of three tropical legumes to enhanced UV-B radiation. Can J Bot, 74: 135-139.
    [148] Sullivan JH, Teramura AH, Dillenburg LR. 1994. Growth and photosynthetic responses of field-grown sweetgum (Liquidambar styraciflua; Hamamelidaceae) seedlings to UV-B radiation. Am J Bot, 81: 826-832.
    [149] Sullivan JH, Teramura AH. 1984. Effects of ultraviolet-B radiance on soybean. Plant Physiol, 74:475 - 480.
    [150] Sullivan JH, Teramura AH. 1988. Effects of ultraviolet-B irradiation on seeding growth in the pincease. Amer J Bot, 1988, 75:225 - 230
    [151] Sullivan JH, Teramura AH. 1990. Field study of interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol, 92:141 - 146.
    [152] Sullivan JH, Teramura AH. 1992. The effects of ultraviolet-B radiation on loblolly pine. Ⅱ. Growth of field-grown seedlings, Trees, 6:115 - 120.
    [153] Sullivan JH, Teramura AH. 1994. The effects of UV-B radiaton on lobloily pine. 3. Interaction with CO2enhancedment. Plant Cell Environ 17:311 - 317.
    [154] Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O. 1997. Induction and repair of damage to DNA in cucumber cotyledons irradiated with UV-B, Plant Cell Physiol, 37:181 - 187.
    [155] Teramura AH, Murali NS. 1986. Intraspecific differences in growth and yield of soybean exposes to ultraviolet-B radiation under greenhouse and field conditions. Environ Exer Bot, 26:89 - 95.
    [156] Teramura AH, Sullivan JH, Ziska LH. 1990. Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiol, 94:470 - 475.
    [157] Tevini M, Teramura AH. 1989. UV-B effects on terrestrial plants. J. Photochem. Photobiol, 50:479 - 487.
    [158] Tosserams M, Smet J, Magendans E, Rozema J. 2001. Nutrient availability influences UV-B sensitivity of Plantago lanceolata. Plant Ecol, 154: 159-168
    
    [159] Van Breemen N, Van Dijk HFG 1988. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environ Pollut, 54: 249 - 274.
    
    [160] Verhoef HA, Verspagen JMH, Zoomer HR. 2000. Direct and indirect effects of ultravioiet-B radiation on soil biota, decomposition and nutrient fluxes in dune grassland soil systems. Biology and Fertility of Soils, 31: 366 - 371.
    
    [161] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological applications, 7: 737 - 750.
    
    [162] Warren CR, Dreyer E, Adams MA. 2003. Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stroes. Trees, 17: 359 - 366.
    
    [163] Weih M, Johanson U, Jones DG 1998. Growth and nitrogen utilization in seedlings of mountain birch (Betula pubescens ssp. tortuosa) as affected by ultraviolet radiation (UV-A and UV-B) under laboratory and natural conditions. Trees, 12:201 - 207.
    
    [164] Willekens H, van Camp W, Van Montagu M, Inze D, Langebartels C, Jr Sandermann H. 1994. Ozone, sulfur dioxide, and ultraviolet-B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol, 106: 1007-1014.
    
    [165] Wright RF, Rasmussen L. 1998. Introduction to the NITREX and EXMAN projects. Forest Ecol Manag, 101:1-7.
    
    [166] Xiaoqin Yao and Qing Liu. 2007. Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply. Physiol Plant, 129: 364-374.
    
    [167] Xiaoqin Yao, Qing Liu. Changes in morphological, photosynthetic and physiological responses of Mono Maple seedlings to enhanced UV-B radiation and to nitrogen addition. Plant Growth Regul. 2006. 50: 165-177.
    
    [168] Yu G. Bjorn LO. 1986. Differences in UV-B sensitivity, between PSII from grana lamellae and strom alamellae. J. Photochem. Photobio B.Biology, 34: 35 - 38.
    
    [169] Yue M, Li Y, Wang X. 1998. Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environ Exp Bot, 40: 187 -196.
    
    [170] Zepp RG, Callaghan TV, Erickson EJ. 2003. Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochem Photobiol Sci. 2: 51 - 61.
    
    [171] Zeuthen J, Mikkelsen TN, Paludan-Muller G, Ro-Poulsen H. 1997. Effects of increased UV-B radiation and elevated levels of tropospheric ozone on physiological processes in European beech (Fagus sylvatica). Physiol Plant, 100: 281 - 290.
    
    [172] Zhang G, Taylor GJ. 1992. Effects of biological inhibitious on kinetics of aluminum up take by excised roots and purified cell wallmaterial of aluminum tolerance and aluminum sensitive cultivars of Triticum aestivum L. J. Plant Physiol, 138: 533 - 539.
    
    [173] Zhao D, Reddy KR, Kakani VG. 2003. Growth and physiological responses of cotton (Gossy piumhirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. Plant, Cell and Environ, 26: 771 - 782.
    
    [174] Ziska LH, Terammura AH, Sullivan JH. 1992. Physiological sensitivity of plant along an elevated gradient to UV-B radiation. Am. J. Botany, 79: 863 - 871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700