OsMPK6双向调控水稻抗病反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物细胞分裂素激活的蛋白激酶(Mitogen-activated protein kinase,MAPK)是将外部信号转导到细胞内部的重要信号蛋白,参与植物的发育和多方面生理过程,包括病原物诱导的抗病反应。水稻MAPK基因功能的研究落后于模式植物拟南芥。Reyna和Yang(2006)根据水稻基因组序列推测基因组中存在17个MAPK成员,其中的9个MAPK基因参与水稻抗稻瘟病的抗病反应。
     拟南芥的一个MAPK基因AtMPK4是系统获得性抗性(systemic acquired resistance,SAR)的负调控因子,介导细菌、真菌、病毒的广谱抗性。水稻中存在类似于拟南芥SAR的路径。本研究从明恢63中分离和鉴定了一个与AtMPK4基因同源的全长cDNA,基因命名为OsMPK6。由这个cDNA推导出的氨基酸序列与AtMPK4的同源性有84%,聚类分析显示其与AtMPK4和烟草中的一个MAPK基因NtMPK4在同一个分组中,暗示其可能与它们具相似的功能。表达谱分析显示OsMPK6在水稻的多个组织中组成型表达。
     脱落酸(ABA)、赤霉素(GA3)和生长素(IAA)处理明恢63幼苗离体叶片,诱导OsMPK6表达量迅速上升,干旱胁迫也导致其mRNA积累,然而重金属盐(铜、镉和汞)以及高溶度的氯化钠和蔗糖并不影响其表达。低温(4℃)和高温(42℃)处理明恢63幼苗1小时和2小时,稍微诱导OsMPK6表达量上升。
     抗病信号分子水杨酸(SA)、苯(1,2,3)噻二嗪-7-硫代羧酸-S-甲酯(BTH)、2,6-二氯异烟酸(INA)、茉莉酸(JA)和乙烯(ET),还有双氧水(H_2O_2)处理明恢63幼苗的离体叶片,5分钟就迅速诱导OsMPK6上升表达。用JA和SA共同处理水稻叶片诱导OsMPK6的表达,与它们各自单独处理并没有明显的区别。放线菌酮(CHX)也诱导OsMPK6上升表达,说明CHX是OsMPK6合成的负调节因子。
     感病品种接种白叶枯菌与用水模拟接种相比,OsMPK6的表达量变化基本一致。抗病品种接种白叶枯菌,OsMPK6的表达量下降并大致维持比模拟接种更低的水平,携带不同R基因的抗病品种中表现出一样的趋势。明恢63接种不亲和稻瘟病小种V86013诱导OsMPK6上升表达。接种细菌和真菌病害诱导OsMPK6不同的表达量变化方式,暗示其可能在抗细菌和真菌病害中有着不同的调控方式。推测OsMPK6可能参与水稻的基本防卫反应,并受不同R基因的调节。
     在水稻品种中花11中超量表达OsMPK6和采用RNA干扰技术(RNAi)抑制OsMPK6的表达都显著提高水稻对白叶枯病的抗性,抗病表型在T_1中与OsMPK6的表达量共分离。OsMPK6介导的抗性减少叶片中细菌的生长量,表明OsMPK6介导的抗病性是抗病方式而不是避病方式。OsMPK6介导的白叶枯病抗性广谱没有小种特异性,植株在苗期和成株期都表现为抗病。
     超量表达OsMPK6提高水稻对白叶枯病的抗性显示OsMPK6正调控水稻抗病反应。超量表达植株抗病依赖于类病斑的形成。Northem分析表明植株出现类病斑时显著提高病程相关基因(pathogenesis-related genes)的表达量,组成型提高JA合成的重要基因OsAOS2表达,表明OsMPK6可能通过JA路径正调控抗病反应。植株没有类病斑时表现为感病,PR蛋白微弱表达。OsMPK6正调控的抗病性可能是局部抗性。
     RNAi抑制OsMPK6/突变体也提高水稻对白叶枯病的抗性显示OsMPK6负调控水稻抗病反应。其沉默植株/突变体在成株期形成类病斑,接种后诱导抗病相关基因和PR基因的显著上升表达。SA合成途径的重要基因PAL诱导上升表达,OsMPK6可能通过SA路径负调抗病反应,调控的抗病性可能是系统抗性。OsMPK6沉默植株在不形成类病斑的苗期接种也表现为抗病,OsMPK6负调控的抗病性不依赖于类病斑。抑制OsMPK6的表达不影响创伤诱导JA合成的重要基因OsAOS2的上升表达。
     虽然OsMPK6分别通过不同的途径正负调控水稻抗病反应,但是两种调控方式都通过WRKY03、NH1(like NPR1)、PR10和PR1a的途径,显示超量和抑制OsMPK6介导的抗病反应有一定的重叠。活性氧类物质(reactive oxygen species,ROS)参与了OsMPK6所调控的两条路径的抗病反应,这两条路径都导致水稻植株叶片上的细胞产生程序性死亡。超量和抑制OsMPK6的表达都提高SA在水稻植株中的含量,暗示OsMPK6可能是SA和JA途径的协调者。
     在洋葱表皮细胞内瞬时表达的结果表明OsMPK6主要定位于细胞核中,在细胞质中也有微弱的表达。
Mitogen-activated protein kinase (MAPK) cascades play important roles in diversedevelopmental and physiological processes of plants, including pathogen-induced defenseresponses. On researching MAPKs in flee, they lag behind model plant Arabidopsis.Although at least 17 rice MAPKs have been identified and nine of these MAPK geneshave been shown to be pathogen or elicitor responsive, the exact role of most of theMAPKs in host-pathogen interaction is unknown.
     AtMPK4 is an important negative gene of SAR in Arabidopsis, which confernon-specific resistance. Provious study showed there was a resistance pathway exists inrice as Arabidopsis. In this study, we isolated a rice homolog of AtMPK4 fromMinghui63, designed as OsMPK6. The deduced amino sequence from the full eDNAshared 84% sequence identity to AtMPK4 which showed the highest sequence similarity,Cluster analysis indicated it belong to the same group with AtMPK4 and NtMPK4. Theseresults hinted OsMPK6 would possess similar function as them. And OsMPK6constitutively expressed in multi tissues of rice.
     OsMPK6 expression is induced rapidly by ABA, GA3, and IAA, drought stress alsoresulted in the accumulation of OsMPK6 transcripts. However, the heavy, metals, copper,cadmium and mercury, and high concentrations of NaCI and sucrose had no distinctinfluence on the expression of OsMPK6. Low(4℃) and high(42℃) temperature slightlyinduced OsMPK6 expression at 2 and 1 h after treatment, respectively.
     As rapidly as 5 min after treatment, the plant defense signal molecules SA, BTH,INA, JA, ET and H_2O_2 induced the expression of OsMPK6. Comparing the expressionlevel of OsMPK6 after treatment with a single compound, interactions between SA, BTH,or INA and JA or ET showed no distinct effect on the expression of OsMPK6, CHX alsoinduced OsMPK6 expression at 60 to 120 min after treatment as compared to the control,which suggests that de novo synthesized negative regulator also may be involved in theregulation of OsMPK6 expression.
     Comparing with the expression level of OsMPK6 in mock-inoculated plants,incompatible host-pathogen interaction further suppressed OsMPK6 expression andcompatible host-pathogen interaction slightly induced OsMPK6 expression. OsMPK6transcripts are induced and increased after inoculated blast. The difference expression ofOsMPK6 between bacterial blight and blast infection imply OsMPK6 could be functional in different way against bacterial and fungus pathogen and OsMPK6 would participate inbasic defense response, its expression was regulated with different R genes.
     OsMPK6-overexpression and -suppression enhanced resistance to Xoo, theenhanced resistance cosegregated in T_1 family. OsMPK6-overexpression and-suppression plant conferred a broad spectrum of resistance to various Xoo strains, andshowed resistace to Xoo in rice full living stage.
     OsMPK6 positively regulate resistance response. Overexpression of OsMPK6accompanying the development of lesion mimics on the leaves also enhanced theresistance to bacterial blight, whereas the OsMPK6-overexpressed plants that were free oflesion mimics were susceptible. Northern analysis results showed that differentialexpression of some defense-related genes in OsMPK6-overexpressed plants with orwithout lesion mimics, the resistant OsMPK6-overexpressed plants enhanced OsAOS2transcripts which is a important gene composed JA, explained OsMPK6 regulateresistance response by JA pathway, or local resistance.
     OsMPK6 negatively regulate resistance response. OsMPK6-suppressedplants/mutant developed lesion mimics in adult stage, showed differential expression ofsome defense-related genes after inoculated Xoo. OsMPK6-suppressed plants enhancePAL expression that is key gene composed SA, explained OsMPK6 regulate resistanceresponse by SA pathway, or system resistance. OsMPK6-suppressed plants seedingwithout lesion mimics displayed resistance to Xoo, implied resistance does not require thedevelopment of lesion mimic. OsMPK6-suppressed plants don't change OsAOS2transcripts.
     OsMPK6 both positively and negatively regulate resistance response using differentpathway. However, all of these resistant plants had elevated salicylic acid (SA) levels.And a subset of genes in the NH1 (an Arabidopsis NPR1 homologue) pathway showedenhanced expression, resulting in Program cell death and ROS. All the data suggestedOsMPK6 might be a coordinator between JA and SA pathway.
     Observation of the onion epidermal strips under a confocal microscope showed thatOsMPK6 protein localized mainly in the nuclei and lightly in the cytoplasm
引文
1.王金生编著.分子植物病理学.北京:农业出版社,1999,212-217
    2.刘凤权,王金生.水杨酸诱导水稻抗白叶枯病研究.植物保护学报,2000,27:47-52
    3. Abbasi P A, Al-Dahmani J, Sahin F, Hoitink H A J, Miller S A. Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis, 2002, 86:156-161
    4. Agrawal G K, Jwa N S, Rakwal R. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun, 2000a, 274:157-165
    5. Agrawal G K, Rakwal R, Jwa N S. Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem Biophys Res Commun, 2000b, 278:290-298
    6. Agrawal G K, Rakwal R, Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun, 2002, 294: 1009-1016
    7. Agrawal G K, Iwahashi H, Rakwalb R. Rice MAPKs. Biochem Biophys Res Commu, 2003a, 302:171-180
    8. Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 2003b, 300:775-783
    9. Aleel K G. Plant Response to Bacterial Pathogens: Overlap between Innate and Gene-for-Gene Defense Response. Plant Physiol, 2006, 142:809-811
    10. Altschul S F, Madden T L, Schaffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402
    11. Alvarez M E. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 2000,44: 429-442.
    12. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen N H T, Zhu S, Qiu J L, Micheelsen P, Rocher A, Petersen M, Newman M A, Nielsen H B, Hirt H, Somssich I, Mattsson O, Mundy J. The MAP kinase substrate MKS1 is a regulator of plant defense responses. The EMBO J, 2005,24: 2579-2589
    13. BuchenauerH A. Systemic acquired resistance in tomato against Phytophtora infestans by pre-inoculation with tobacco necrosis virus. Phys Mol Plant Path, 1997, 50:85-101
    14. Arshad M, Frankenberger W T. Ethylene, Agricultural Sources and Applications, Kluwer/Plenum. 1992
    15. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boiler T, Ausubel F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983
    16. Beckers G J, Spoel S H. Fine-Tuning Plant Defence Signalling: Salicylate versus Jasmonate. Plant Biol (Stuttg), 2006, 8:1-10
    17. Benedetti C E, Xie D, Turner J G. Coil-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiol, 1995,109: 567-572
    18. Bent A F. Plant mitogen-activated protein kinase cascades: Negative regulatory roles turn out positive. Proc Natl Acad Sci USA, 2001, 98: 784-786
    19. Bi Y M, Kenton P, Mur L, Darby R, Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J, 1995, 8: 235-245
    20. Biles C L, Martyn R D. Local and systemic resistance induced in watermelons by formae speciales of Fusarium oxysporum. Phytopathology, 1989, 79: 856-860
    21. Bleecker A B, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol, 2000,16: 1-18
    22. Bogre L, Ligterink W, Meskiene I, Barker P, Heberle-Bors E, Huskisson N S, Hirt H. Multiple roles of MAP kinases in plant signal transduction. Trends Biol Sci, 1997, 2: 11-15
    23. Boller T. Ethylene in pathogenesis and disease resistance. In The Plant Hormone Ethylene (Mattoo, A.K. and Suttle, J.C., eds), CRC Press, 1991, 293-314
    24. Boller T. Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 189-214
    25. Bowling S A, Guo A, Cao H, Gordon A S, Klessig D F, Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 1994, 6: 1845-57
    26. Cao H, Bowling S A, Gordon S, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6: 1583-1592
    27. Cao H, Glazebrook J, Clark J D, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63
    28. Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA, 1998, 95: 6531-6536
    29. Cardinale F, Jonak C, Ligterink W, Niehaus K, Boiler T, Hirt H. Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem, 2000, 275: 36734-36740
    30. Chague V, Danit L V, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?. Mol Plant Microbe Interact, 2006, 19:33-42
    31. Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 2002,129: 706-716
    32. Chang C, Clark K, Wang X, Stewart R. 'Two-component' ethylene signaling in Arabidopsis. Symp Soc Exp Biol, 1998, 51: 59-64
    33. Chen H L, Chen B T, Zhang D P, Xie Y E, Zhang Q. Pathotypes of Pyricularia grisea in rice filds of central and southern China. Plant Dis, 2001, 85: 843-850
    34. Chen Z, Klessig D F. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc Natl Acad Sci USA, 1991, 88:8179-8183
    35. Chen Z, Silva H, Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262: 1883-1886
    36. Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factorl. Plant Physiol, 2003, 132: 1961-1972
    37. Chern M S, Fitzgerald H A, Yadav R C, Canlas P E, Dong X, Ronald P C. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J, 2001, 27: 101-13
    38. Chem M S, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005a, 18: 511-520
    39. Chern M S, Canlas P E, Fitzgerald H A, Ronald P C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J, 2005b, 43: 623-635
    40. Chou C M, Kao C H. Methyl Jasmonate, Calcium, and Leaf Senescence in Rice. Plant Physiol, 1992, 9:1693-1694
    41. Chu Z, Peng K, Zhang L, Zhou B, Wei J, Wang S. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chinese Sci Bulletin, 2003, 8: 229-235
    42. Chu Z, Ouyang Y, Zhang J, Yang H, Wang S. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by a recessive R gene, xa13. Mol Gen Genomics, 2004, 271:111-120
    43. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. 2006 Promoter mutations of an essential gene for pollen development result in disease resistance in flee. Gene Dev, 2006, 20:1250-1255
    44. Cole D L. The efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance, against bacterial and fungal diseases of tobacco. Crop Prot, 1999, 18: 267-273
    45. Creelman R A, Mullet J E. Biosynthesis and action of jasmonates in plants. Ann Rev Plant Physiol Plant Mol Biol, 1997,48: 355-381
    46. Cui J, Bahrami A K, Pringle E G, Hernandez-Guzman G, Bender C L, Pierce N E, Ausubel F M. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA, 2005,102: 1791-1796
    47. Dangl J L, Dietrich R A, Richberg M H. Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell, 1996, 8: 1793-1807
    48. Dangl J L, Jones J D. Plant pathogens and integrated defence responses to infection. Nature, 2001,411: 826-833
    49. Delaney T P, Friedrich L, Ryals J A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA, 1995, 92: 6602-6606
    50. Despre' s C, DeLong C, Glaze S, Liu E, Fobert P R. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell, 2000,12: 279-290
    51. Despre' s C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert P R. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 2003,15: 2181-2191
    52. Desveaux D, Chal A M, Brisson N. Whirly transcription factors: defense gene regulation and beyond. Trends Biol Sci, 2005,10: 95-102
    53. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J G. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J, 2002, 32: 457-466
    54. Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565-577
    55. Draper J. Salicylate, superoxide synthesis and cell suicide in plant defence. Trends PlantSci, 1997, 2: 162-165
    56. Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett, 2002, 527: 43-50
    57. Du H, Klessig D F. Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco. Plant Physiol, 1997, 113: 1319-1327
    58. Durner J, Klessig D F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA, 1995, 92: 11312-11316
    59. Ekengren S K, Liu Y, Schiff M, Dinesh-Kumar S P, Martin G B. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J, 2003, 36: 905-917
    60. Falk A, Feys B J, Frost L N, Jones J D G, Daniels M J, Parker J E. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA, 1999, 96: 3292-3297
    61. Felix G, Duran J D, Volko S, Boiler T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J, 1999, 18:265-276
    62. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Numberger T. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J, 2002, 32:375-390
    63. Feys B, Benedetti C E, Penfold C N, Turner J G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell, 1994, 6: 751-759
    64. Fitzgerald H A, Chern M S, Navarre R, Ronald P C. Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact, 2004, 17: 140-151
    65. Fitzgerald H A, Canlas P E, Chern M S, Ronald P C. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. Oryzae. Plant J, 2005, 43: 335-347
    66. Frank L H, Menke J A, van Pelt, Corne' M J, Pieterse, Klessiga D F. Silencing of the Mitogen-Activated Protein Kinase MPK6 Compromises Disease Resistance in Arabidopsis. Plant Cell, 2004,16: 897-907
    67. Frye C A, Innes R W. An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell, 1998,10: 947-956
    68. Frye C A, Tang D Z, Innes R W. Negative regulation of defense responses in plantsby a conserved MAPKK kinase. Proc Natl Acad Sci USA, 2001, 98: 373-378
    69. Fu S F, Chou W C, Huang D D, Huang H J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol, 2002,43: 958-963
    70. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signalling by the ethylene response pathway in Arabidopsis. Plant Cell, 2000, 12:1117-1126
    71. Glazebrook J, Rogers E E, Ausubel F M. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 1996,143: 973-982
    72. Gomez-Gomez L, Boiler T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell, 2000, 5: 1003-1011
    73. Gomez-Gomez L, Boiler T. Flagellin perception: a paradigm for innate immunity. Trends Biol Sci, 2002, 7: 251-256
    74. Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H,Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S. A Mitogen-activated Protein Kinase NtMPK4 Activated by SIPKK is Required for Jasmonic Acid Signaling and Involved in Ozone Tolerance via Stomatal Movement in Tobacco. Plant Cell Physiol, 2005, 46: 1902-1914
    75. Green T R, Ryan C A. Wound-induced Proteinase inhibitors in plant leaves: a possible defense mechanism against insects. Science, 1972, 175: 776-777
    76. Greenberg J T, Guo A, Lessig D F, Ausubel F M. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell, 1994,77:551-564
    77. Gupta V, Willits M G, Glazebrook J. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact, 2000, 13: 503-511
    78. Flor H H. Current status of the gene-for-gene concept. Ann Rev Phytopathol, 1971, 9: 275-296
    79. Haga K, Iino M. Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant Cell Physiol, 2004, 45:119-128
    80. Jin H, Liu Y, Yang K, Kim C, Baker B, Zhang S. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J, 2003, 33: 719-731
    81. Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006,11:192-198
    82. Hammond-Kosack K E, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol, 2003, 14: 177-193
    83. He C Z, Haw S, Fong T, Yang D, Wang G L. BWMK1, a Novel MAP Kinase Induced by Fungal Infection and Mechanical Wounding in Rice. Mol Plant Microbe Interact, 1999, 12: 1064-1073
    84. He P, Shan L, Lin N C, Martin G B, Kemmerling B, Nurnberger T, Sheen J. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell, 2006,125: 563-575
    85. Hirt H. Wounding induces the rapid and transient activation of a specific kinase pathway. Plant Cell, 1997a, 9: 75-83
    86. Hirt H. Multiple roles of MAP Kinases in plant signal transduction. Trends Plant Sci. 1997b,2: 11-15
    87. Hirt H (Ed.). Results and Problem in Cell Differention: MAP Kinases in Plant Signal Transduction. Heidelberg: Springer, 2000,29-38
    88. Hirt H. A new blueprint for plant pathogen resistance, nature biotechnology, 2002, 20: 450-451
    89. Hoffman R, Roebroeck E, Heale J B. Effects of ethylene biosynthesis in carrot root slices on 6-methoxymellein accumulation and resistance to Botrytis cinerea. Physiol Plant, 1988, 73: 71-76
    90. Huang H J, Fu S F, Tai Y H, Chou W C, Huang D D. Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol Plant, 2002, 114: 572-580
    91. Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol, 2000, 122:1301-1310
    92. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Variousabiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J, 2000, 24: 655-665
    93. Ichimuraa K, Shinozaki K, Tenab G, Sheenb J, Henryc Y, Championc A, Kreisc M, Zhang S, Hirte H, Wilsone C, Heberle-Borse E, Ellisf B E, Morrisg P C, Innesh R W, Eckeri J R, Scheelj D, Klessigk D F, Machidal Y, Mundym J, Ohashin Y, Walkero J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308
    94. Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 1996, 273: 1853-1856
    95. Jirage D, Tootle T L, Reuber T L, Frost L N, Feys B J, Parker J E, Ausubel F M, Glazebrook J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA, 1999, 96: 13583-13588
    96. Johal G S, Hulbert S, Griggs S P. Disease lesion mimic mutations in maize: A model for cell death in plants. BioEssays, 1995, 17:685-692
    97. John G T, Christine E, Alessandra D. The Jasmonate Signal Pathway. Plant cell. 2002, supplement: S153-164
    98. Johnson C, Boden E, Arias J. Salicylic Acid and NPR1 Induce the Recruitment of trans-Activating TGA Factors to a Defense Gene Promoter in Arabidopsis. Plant Cell, 2003,15: 1846-1858
    99. Johnson P R, Ecker J R. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998, 32: 227-254.
    100.Jonak C, Kiegerl S, Ligterink W, Barker P J, Huskisson N S, Hirt H. Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA, 1996, 93:11274-11279
    101.Jonak C, Okresz L, Bogre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol, 2002, 5: 415-424
    102.Jonak C, Nakagami H, Hirt H. Heavy metal stress Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 2004, 136: 3276-3283
    103.Journot-Catalino N, Somssich I E, Roby D, Kroj T. The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell, 2006,18: 3289-3302
    104.Jung Y H, Lee J H, Agrawal G K, Rakwal R, Kim J A, Shim J K, Lee S K, Jeon J S, Koh H J, Lee Y H, Iwahashi H, Jwa N S. The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43: 397-406
    105.Kauffmann S, Legrand M, Geoffroy P, Fritig B. Biological function of pathogenesis-related' proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. Embo J, 1987, 6: 3209-3212
    106.Kerschen A, Napoli C A, Jorgensen R A, Muller A E. Effectiveness of RNA interference in transgenic plants. FEBS Lett, 2004, 566: 223-225
    107.Kieber J J, Rothenburg M, Roman G, Feldmann K A, Ecker J R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 1993,72: 427-441
    108.Kim C Y, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J, 2004, 38: 142-151
    109.Kim E, Kosack H, Jones J D G. Resistance Gene-Dependent Plant Defense Responses. Plant Cell, 1996, 8: 1773-1791
    110.Kim E H K, Jane E P. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr opin Biotech, 2003, 14: 177-193
    111.Kim H S, Delaney T P. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J, 2002, 32: 151-163
    112.Kim M G, da Cunha L, McFall A J, Belkhadir Y, DebRoy S, Dangl J L, Mackey D. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell, 2005,121: 749-759
    113.Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 2000,12: 2339-2350
    114.Kirik V, Bouyer D, Schobinger U, Bechtold N, Herzog M, Bonneville J M, Hulskamp M. CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr Biol. 2001, 11: 1891-1895
    115.Kloek A P, Verbsky M L, Sharma S B, Schoelz J E, Vogel J, Klessig D F, Kunkel B N. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. Plant J, 2001, 26: 509-522
    116.Kloepper J T S, Kuc J A. Proposed definitions related to induced disease resistance. Biocontrol Science and Technology, 1992, 2: 349-351
    117.Ku ltz D. Phylogenetic and Functional Classification of Mitogen- and Stress-Activated Protein Kinases. J Mol Evol, 1998,46: 571-588
    118.Kuc J, Richmond S. Aspects of the protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium. Phytopathology, 1977, 67: 533-536
    119.Kumar A G, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H. Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem, 2002, 40: 1061-1069
    120.Kumar D, Klessig D F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA. 2003, 100: 16101-16106
    121.Kumar D, Gustafsson C, Klessig D F. Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants. Plant J, 2006, 45: 863-868
    122.Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics. 2004, 5:150-163
    123.Kunze G, Zipfel C, Robatzek S, Niehaus K, Boiler T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 2004, 16:3496-3507
    124.Kvaratskhelia M, George S J, Thorneley R N. Salicylic acid is a reducing substrate and not an effective inhibitor of ascorbate peroxidase. J Biol Chem, 1997, 272: 20998-21001
    125.LC VAN LOON EAVS. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR1 type proteins. Physiological and Molecular Plant Pathology, 1999,55:85-97
    126.Lee J, Klessig D F, Nurnberger T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesisrelated gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell, 2001, 13: 1079-1093
    127.Lee S W, Choi S H, Han S S, Lee D G. Lee B Y. Distribution of Xanthomonas oryzae pv. oryzae strains virulent to Xa21 in Korea. Phytopathology, 1999,9: 928-933
    128.Lemanceau BJDDPCOCAP: Implication of Systemic Induced Resistance in the Suppression of Fusarium Wilt of Tomato by Pseudomonas fluorescens WCS417r and by Nonpathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology, 1998,104:903-910
    129.Li X, Zhang Y, Clarke J D, Li Y, Dong X. Identification and cloning of a negative regulator of systemic acquired resistance, SNH, through a screen for suppressors of npr1-1. Cell, 1999, 98: 329-339
    130. Lieberherr D, Thao N P, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. A Sphingolipid Elicitor-Inducible Mitogen-Activated Protein Kinase Is Regulated by the Small GTPase OsRac1 and Heterotrimeric G-Protein in Rice. Plant Physiol, 2005, 138:1644-1652
    131. Ligterink W, Krol T, Zur Nieden U, Hirt H, Scheel D. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 1997, 276: 2054-2057
    132. Lin X H, Zhang D P, Xie Y F, Gao H P, Zhang Q. Identification and mapping of a new gene for bacterial blight resistance in rice based on RFLP makers. Phytopathology, 1996, 86: 1156-1159
    133. Liu G, Holub E B, Alonso J M, Ecker J R, Fobert P R. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J, 2005, 41: 304-318
    134. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet, 1997, 95: 809-814
    135. Liu X Q, Bai X Q, Qian Q, Wang x J, Chen M S, Chu C C. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res, 2005, 15: 593-603
    136. Liu X, Bai X, Wang X, Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol. 2006, (in press)
    137. Loon L C V. Induced resistance in plants and the role of pathogenesis-related proteins. Euro J Plant Path, 1997, 103: 753-765
    138. Mackey D, Holt B F, Wiig A, Dangl J L. RIN4 interacts with Pseudomonas syringae type Ⅲ effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108: 743-754
    139. Makandar R, Essig J S, Schapaugh M A, Trick H N, Shah J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact. 2006, 19: 123-129
    140. Maurhofer M. HCMP, Metraux J P, Defago G. Induction of systemic resistance of tobacco to Tobacco Necrosis Virus by the root-colonizing Pseudomonas fluorescens strain CHA0 - influence of the gacA gene and of pyoverdine production. Phytopathology, 1994, 84: 139-146
    141.McGinnis K, Chandler V, Cone K, Kaeppler H, Kaeppler S, Kerschen A, Pikaard C, Richards E, Sidorenko L, Smith T, Springer N, Wulan T. Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol, 2005, 392: 1-24
    142.Medzhitov R, Janeway C. Innate immunity: the virtues of a nonclonal system of recognition. 1997, Cell, 91: 295-298
    143.Mei C, Qi M, Sheng G, and Yang Y. Inducible Overexpression of a Rice Allene Oxide Synthase Gene Increases the Endogenous Jasmonic Acid Level, PR Gene Expression, and Host Resistance to Fungal Infection. Mol Plant Microbe Interact, 2006,19: 1127-1137
    144.Menke F L H, Pelt J A V, Pieterse C M J, Klessig D F. Silencing of the Mitogen-Activated Protein Kinase MPK6 Compromises Disease Resistance in Arabidopsis. Plant Cell, 2004,16: 897-907
    145.Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem, 1989, 185,1:19-25
    146.Mockaitis K, Howell S H. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J, 2000,24: 785-796
    147.Morris K, MacKerness S A, Page T, John C F, Murphy A M, Carr J P, Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J, 2000,23: 677-685
    148.Morris S W, Vernooij B, Titatarn S, Starret M., Thomas S, Wiltse C C, Frederiksen R A, Bhandhufalck A, Hulbert S, Uknes S. Induced resistance responses in maize. Mol Plant Microbe Interact, 1998,11: 643-658
    149.Mosher R A, Durrant W E, Wang D, Song J, Dong X. A comprehensive structure-function analysis of Arabidopsis SNH defines essential regions and transcriptional repressor activity. Plant Cell, 2006,18: 1750-1765
    150.Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 2003,113: 935-944
    151.Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nuc Acids Res, 1980, 8: 4321-4325
    152.Nakagami H, Kieger S, Hirt H. OMTK1, a Novel MAPKKK, Channels Oxidative Stress Signaling through Direct MAPK Interaction. J Biol Chem, 2004, 279: 26959-26966
    153.Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 2005, 10: 339-346
    154.Nandakumar R, Babu S, Viswanathan R, Raguchander T, Samiyappan R. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology & Biochemistry, 2001, 33: 603-612
    155.Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boiler T, Jones J D. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol, 2004 135:1113-1128
    156.Nawrath C, Heck S, Parinthawong N, Metraux J P. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell, 2002, 14: 275-286
    157.Neuenschwander U, Vernooij B, Friedrich L, Uknes S, Kessmann H and Ryals J. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance?. Plant J, 1995, 8: 227-233
    158.Niki T, Mitsuhara I, Seo S, Ohtsuba N, Ohashi Y. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiology, 1998, 39: 500-507
    159.Nishizawa Y, Kishimoto N, Saito A, Hibi T. Sequence variation, differential expression and chromosomal location of rice chitinase genes. Mol Gen Genet, 1993, 241: 1-10
    160.Nuhse T S, Peck S C, Hirt H, Boiler T. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J Biol Chem, 2000, 275: 7521-7526
    161.Nurnberger T. Signal perception in plant pathogen defense. Cell Mol Life Sci, 1999, 55:167-182
    162.Nurnberger T, Brunner F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Cur Opin in Plant Bio, 2002, 5: 318-324
    163. Nurnberger T, Birgit Kemmerling. Receptor protein kinases - pattern recognition receptors in plant immunity. Trends Plant Sci, 2006,11: 519-522
    164.O. Lorenzo R, Piqueras J J, Sanchez-Serrano R, Solano. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15:165-178
    165.O'Donnell P J, Schmelz E, Block A, Miersch O, Wasternack C, Jones J B, Klee H J. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol, 2003,133: 1181-1189
    166.Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjarvi J. The ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell, 2000,12: 1849-1862
    167.Overmyer K, Brosche M, Kangasjarvi J. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci, 2003, 8: 335-342
    168.Penninckx I A, Eggermont K, Terras F R, Thomma B P, De Samblanx G W, Buchala A, Metraux J P, Manners J M, Broekaert W F. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 1996, 8: 2309-2323
    169.Perez L M E, Rodriguez F, Rodriguez, Roson C. Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f.sp. tabacina. Crop Prot, 2003,22: 405-413
    170.Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H B, Lacy M, Austin M J, Parker J E, Sharma S B, Klessig D F, Martienssen R, Mattsson O, Jensen A B, Mundy J. Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 2000,103: 1111-1120
    171.Pieterse C M, van Wees S C, Hoffland E, van Pelt J A, van Loon L C. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 1996, 8: 1225-1237
    172.Pieterse C M, van Wees S C, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 1998,10: 1571-1580
    173.Pozo O D, Pedley K F, Martin G B. MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. The EMBO J, 2004, 23: 3072-3082
    174.Rance I, Norre F, Gruber V, Theisen M. Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein over-expression in plants. Plant Sci, 2002,162: 833-842
    175.Rao M V, Paliyath G, Ormrod D P, Murr D P, Watkins C B. Influence of salicylic acid on H_2O_2 production, oxidative stress, and H_2O_2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H_2O_2. Plant Physiol. 1997, 115: 137-149
    176.Rao M V, Lee H, Creelman R A, Mullet J E, Davis K R. Jasmonic acid signalling modulates ozoneinduced hypersensitive cell death. Plant Cell, 2000, 12: 1633-1646
    177.Reimmann C, Hofmann C, Mauch F, Dudler R. Characterization of a rice gene induced by Pseudomonas syringae pv. syringae: Requirement of the bacterial lemA gene function. Physiol Mol Plant Pathol, 1995, 46: 71-81
    178.Ren D, Yang K Y, Li G J, Liu Y, Zhang S. Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiol, 2006, 141: 1482-1493
    179.Romeis T, Piedras P, Zhang S, Klessig D F, Hirt H, Jones J D G. Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell, 1999,11:273-287
    180.Ross A F. Systemic acquired resistance induced by localized virus infections in plants. Virology, 1961,14: 340-358
    181.Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemic Acquired Resistance. Plant Cell, 1996, 8: 1809-1819
    182.Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner H Y, Johnson J, Delaney T P, Jesse T, Vos P Uknes S. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IkB. Plant Cell, 1997, 9: 425-439
    183.Sanchez-Serrano J, Schmidt R, Schell J, Willmitzer L. Nucleotide sequence of Proteinase inhibitor II encoding cDNA of potato (Solanum tuberosum) and its mode of expression. Mol Gen Genetics, 1986,203: 15-20
    184.Schraudner M, Moeder W, Wiese C, Van Camp W, InzeD, Langebartels C, SandermannJr H. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J, 1998,16: 235-245
    185.Scofield S R, Tobias C M, Rathjen J P, Chang J H, Lavelle D T, Michelmore R W, Staskawicz B J. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science, 1996,274: 2063-2065
    186.Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y. Tobacco MAP kinase: A possible mediator in wound signal transduction pathways. Science, 1995, 270: 1988-1992
    187.Seo S, Sano H, Ohashi Y. Jasmonate-Based Wound Signal Transduction RequiresActivation of WIPK, a Tobacco Mitogen-Activated Protein Kinase. Plant Cell, 1999, 11:289-298
    188.Shah J, Tsui F, Klessig D F. Characterization of a salicylic acidinsensitive mutant (sail) of Arabidopsis thaliana identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact, 1997, 10: 69-78
    189.Shah J, Kachroo P, Klessig D F. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell, 1999, 11: 191-206
    190.Sharma P C, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Gen Genomics, 2003,269: 583-591
    191.Shirasu K, Nakajima H, Rajasekhar V K, Dixon R A, Lamb C. Salicylic Acid Potentiates an Agonist-Dependent Gain Control That Amplifies Pathogen Signals in the Activation of Defense Mechanisms. Plant Cell, 1997, 9: 261-270
    192.Silverman P, Seskar M, Kanter D, Schweizer P, Metraux J P, Raskin I. Salicylic Acid in Rice (Biosynthesis, Conjugation, and Possible Role). Plant Physiol, 1995, 108: 633-639
    193.Slaymaker D H, Navarre D A, Clark D, del Pozo O, Martin G B, Klessig D F. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA, 2002, 998: 1164-1165
    194.Smith J, M'etraux J P. Pseudomonas syringae pv. syringae induces systemic resistance to Pyricularia oryzae in rice. Physiol Mol Plant Pathol, 1991, 39: 451-461
    195.Somssich I E. MAP kinases and plant defence. Trends Plant Sci, 1997, 2: 406-408
    196.Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995,270: 1804-1806
    197.Staswick P E, Su W, Howell S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA, 1992, 89: 6837-6840
    198.Staswick P E, Yuen G Y, Lehman C C. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J, 1998,15: 747-754
    199.Stepanova A N, Alonso J M. Arabidopsis ethylene signaling pathway. Sci STKE, 2005
    200.Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance. Annu Rev Phytopathol, 1997, 35: 235-270
    201.Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie, 1993, 75: 687-706
    202.Strange R N, Scott P R. Plant disease: a threat to global food security. Annu Rev Phytopathol, 2005,43: 83-116
    203.Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527
    204.Takahashi A, Kawasaki T, Henmi K, Shii K, Kodama O, Satoh H, Shimamoto K. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J, 1999,17:535-545
    205.Takahashi H, Chen Z, Du H, Liu Y, Klessig D F. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J, 1997,11: 993-1005
    206.Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell, 2004, 16: 172-184
    207.Tang D, Christiansen K M, Innes R W. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol, 2005,138: 1018-26
    208.Tang X, Frederick R D, Zhou J, Halterman D A, Jia Y, Martin G B. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science, 1996, 274: 2060-2063
    209.Tao Y, Xie Z, Chen W, Glazebrook J, Chang H, Han B, Zhu T, Zou G, Katagiri F. Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae. Plant Cell, 2003, 15: 317-330
    210.Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004, 5: 141-52
    21 l.Tena G, Asai T, Chiu W L, Sheen J. Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol, 2001,4: 392-400
    212.Delaney T P, Uknes S, Vernooij B, Friedrich L, Negrotto K W D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A Central Role of Salicylic Acid in Plant Disease Resistance. Science, 1994,266: 1247-1250
    213.Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J. Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science, 1993, 261: 754-756
    214.Ton J, DE VOS M, Robben C, Buchala A, Metraux J,Van Loon L C, Pieterse CMJ. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J, 2002, 29: 11-21
    215.Tu J, Ona I, Zhang Q, Mew T W, Khush G S, Datta S K. Transgenic rice variety IR72' with Xa21 is resistant to bacterial blight. Theor Appl Genet, 1998, 97: 31-36
    216.Tu J, Datta K, Khush G S, Zhang Q, Datta S K. Field performance of Xa21 transgenic indicarice (G za sadvaL.), IR72. Theor Appl Genet, 2000,101: 15-20
    217.Underhill D M, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol, 2002, 14: 103-110
    218.VA Vess A, Scheel D, Rosahl S. The role of salicylic acid and jasmonic acid in pathogen defence.Halim Plant Biol (Stuttg). 2006, 8: 307-313
    219.Van Camp W, Van Montagu M, Inze D. H_2O_2 and NO: redox signals in disease resistance. Trends Plant Sci, 1998, 3: 330-334
    220.van Loon L C, Bakker P A, Pieterse C M. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol, 1998, 36: 453-483
    221.Van Loon L C, Bakker P A H M. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In PGPR: Biocontrol and Biofertilization (Siddiqui, Z.A., ed.), Springer, 2005, 39-66
    222.van Loon L C, Geraats B P, Linthorst H J. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 2006,11: 184-191
    223.Verberne M C, Verpoorte R, Bol J F, Mercado-Blanco J, Linthorst H J. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol, 2000, 18: 779-83
    224.Vernooij B, Uknes S, Ward E, Ryals J. Salicylic acid as a signal molecule in plant-pathogen interactions. Curr Opin Cell Biol, 1994, 6:275-279
    225.Wang D, Weaver N D, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 2005, 308:1036-1040
    226. Wang G L, Song W Y, Ruan D L, Sideris S, Ronald P C. The cloned gene, Xa2l, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Molt Plant M icrobe Interact, 1996, 9:850~855
    227. Wen J Q, Oono K, Imai R. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol, 2002, 129:1880-1891
    228. White R F. Acetylsalicylic acid(asp~in)induces resistance to tobaccoⅡK~C virus in tobacco[J]. Virology, 1979, 99: 410-412
    229. Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79: 143-180
    230. Wiermer M, Feys B J, Parker J E. Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol, 2005, 8: 383-389
    231. Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel H J, Overmyer K, Kangasjarvi J, Sandermann H, Langebartels C. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ, 2002, 25: 717-726
    232. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection. Biochem J, 1997, 322: 681-692
    233. Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet, 1993, 239: 122-128
    234. Wu G, Shortt B J, Lawrence E B, Levine E B, Fitzsimmons K C, Shah D M. Disease resistance conferred by expression of a gene encoding H_2O_2-generating glucose oxidase in transgenic potato plants. Plant Cell, 1995, 7: 1357-1368
    235. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D. COS1: an Arabidopsis coronatine insensitivel suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell, 2004, 16: 1132-1142
    236. Xiong L Z, Yang Y N. Disease Resistance and Abiotic Stress Tolerance in Rice Are Inversely Modulated by an Abscisic Acid-Inducible Mitogen-Activated Protein Kinase. Plant Cell, 2003, 15: 745-759
    237.Xu L, Liu F, Lechner E, Genschik P, Crosby W L, Ma H, Peng W, Huang D, Xie D. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell, 2002, 14: 1919-1935
    238.Xu Y, Chang P F L, Liu D, Narasimhan M L, Raghothama K G, Hasegawa P M, Bressan R A. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 1994,6: 1077-1085
    239.Yalpani N, Silverman P, Wilson T M, Kleier D A, Raskin I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 1991, 3: 809-818
    240.Yang K Y, Liu Y D, Zhang S Q. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA, 2001, 98: 741-746
    241.Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J, 2004, 40: 909-919
    242.Yeh C M, Hsiao L J, Huang H J. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol, 2004, 45: 1306-1312
    243.Yin Z C, Chen J, Zeng L, Goh M L, Leung H, Khush G S, Wang G L. Characterizing Rice Lesion Mimic Mutants and Identifying a Mutant with Broad-Spectrum Resistance to Rice Blast and Bacterial Blight. Molr Plant Microbe Interact, 2000, 13: 869-876
    244.Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668
    245.Yu D, Liu Y, Fan B, Klessig D F, Chen Z. Is the High Basal Level of Salicylic Acid Important for Disease Resistance in Potato?. Plant Physiol, 1997,115: 343-349
    246.Yu D Q, Chen C H, Chen Z X. Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell, 2001, 13: 1527-1539
    247.Zhai W X, Li X B, Tian W Z, Cao S Y, Zhao X F, Zhao B, Zhu L H, Zhou Y L, Zhang Q, Pan X B. Introduction of a rice blight resistance gene, Xa21, into five Chinese rice Varieties through an Agrobacterium-mediated system. Sci China(Ser C), 2000,43:361-368
    248.Zhang J W, Feng Q, Jin C Q, Qiu D Y, Zhang L D, Xie K B, Yuan D J, Han B, Zhang Q F, Wang S P. Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of an elite indica rice cultivar Minghui 63. Plant J, 2005, 42: 772-780
    249.Zhang S, Klessig D F. Salicylic acid activates a 48-kDa MAP kinase in tobacco. Plant Cell, 1997, 9: 809-824
    250.Zhang S, Klessig D F. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci USA, 1998a, 95: 7225-7230
    251.Zhang S, Klessig D F. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA, 1998b, 95: 7433-7438
    252.Zhang S, Klessig D F. Pathogen-induced MAP kinases in tobacco, in: MAP Kinase in Plant Signal Transduction, H. Hirt, ed. Springer-Verlag, Heidelberg, Germany, 1999, Pages 65-84
    253.Zhang S, Klessig D F. Pathogen-induced MAP kinases in tobacco. In Results and Problems in Cell Differentiation: MAP Kinases in Plant Signal Transduction. Edited by Hirt H. Heidelberg: Springer; 2000: 65-84
    254.Zhang S P, Song W Y, Chen L L. Ruan D, Taylor N, Ronald P, Beachy R, Fauquet C. Transgenic elite indica rice varieties, resistant to Xanthomonas oryzae pv. oryza- Mol Breed, 1998,4: 551-558
    255.Zhang Y, Fan W, Kinkema M, Li X, Dong X. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR1 gene. Proc Natl Acad Sci USA, 1999, 96: 6523-6528
    256. Zhang Y, Cheng Y T, Qu N, Zhao Q, Bi D, Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J, 2006, 48: 647-656
    257. Zhou J M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig D F. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR1 gene required for induction by salicylic acid. Mol Plant Microbe Interact, 2000, 13: 191-202
    258. Zipfel C, Robatzek S, Navarro L, Oakeley E J, Jones J D, Felix G, Boiler T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428: 764-767
    259. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boiler T, Felix G. Perception of the bacterial PAMP EF-Tu by the Arabidopsis receptor kinase EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125: 749-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700