间歇运动对心肌缺血再灌注损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体运动时常因运动强度过大导致心肌相对缺血,有时引起心肌功能障碍,严重时导致心肌结构损伤。及时恢复缺血心肌组织的血供,不仅能纠正缺血引起的心肌功能障碍,而且可以使可逆性结构变化的心肌恢复正常。但实验研究和临床研究已经发现,在短时间心肌缺血后一定时间内恢复血流,有时会使原缺血心肌的损伤加重,即出现缺血再灌注损伤。减轻缺血再灌注损伤的有效方法之一是缺血预处理,即心肌在遭受一次或多次反复短暂缺血再灌后,表现出对随后而来的长时间的严重缺血再灌注损伤的抵抗能力提高。近来研究显示,运动训练能产生类似缺血预处理效应,即运动预处理。虽然人们对运动预处理进行了一些研究,但运动预处理确切机制尚不十分清楚。因此本课题采用结扎大鼠的冠状动脉制造了在体大鼠心肌缺血再灌注损伤模型,来观察高强度间歇运动训练和一次高强度间歇运动对缺血再灌注心肌的保护作用,并对间歇运动抗心肌缺血再灌注损伤的细胞分子机制进行了研究,为寻找安全有效的防治心肌缺血再灌注损伤的非创伤性手段提供实验依据。本研究共包括五个部分。
     1.间歇运动对I/R损伤大鼠心肌组织和心脏机能的影响。
     采用在体结扎冠状动脉法建立大鼠的心肌I/R模型,观察高强度间歇运动训练和一次高强度间歇运动对心肌组织损伤、心电图以及心肌血清酶指标的影响,确定高强度间歇运动对缺血再灌注心脏的保护作用。
     42只大鼠被随机分为4组,每组从成功造模大鼠中随机抽取8只纳入实验。(1)对照假手术组(CONT+SHAM组):以安静对照组造模,只开胸、穿线但不结扎。(2)对照模型组(CONT+I/R组):以安静对照组造模,结扎左前降支冠状动脉(LAD)30min,再灌注40min。(3)间歇运动训练模型组(IT+I/R组):以间歇运动训练大鼠造模,方法同对照模型组。(4)一次间歇运动模型组(OIE+I/R组):以一次间歇运动大鼠造模,方法同对照模型组。
     分别观察各组心肌组织HE染色切片,动态心电图,心功能指标和血清心肌酶(CK、HDL和AST)。
     结果显示运动训练组大鼠的心室重与体重比值显著高于安静对照组;间歇运动训练模型组和一次间歇运动模型组心肌病理性变化程度都较模型组减轻。间歇运动模型组可见心肌细胞水肿及PMN浸润,炎性细胞浸润较模型组轻,心肌受损的程度也进一步下降。一次间歇运动模型组可见点状的心肌细胞坏死,并见心肌细胞水肿变性和PMN浸润;间歇运动训练缺血再灌注损伤模型组与对照模型组相比,ST(J点)抬高程度在缺血30分钟时和再灌注40分钟时显著低于对照模型组;一次训练缺血再灌注损伤模型组大鼠的ST(J点)抬高程度在再灌注40分钟时显著低于在对照缺血再灌注损伤组。间歇运动训练缺血模型组的CK、LDH和GOT活性显著低于对照模型组;一次间歇运动模型组大鼠血清中CK和LDH活性显著低于对照组模型组,而GOT没有显著变化。缺血30分钟时,对照模型组大鼠的心功能显著低于对照假手术组,间歇运动训练组和一次间歇运动组的心功能显著高于对照缺血再灌模型组。再灌注40分钟时,对照模型组大鼠的心功能显著低于对照假手术组,间歇运动训练缺血再灌注组和一次间歇运动模型组的心功能明显高于对照缺血再灌注模型组,但一次间歇运动模型组和对照缺血再灌注模型组的LVEDP和+dp/dt_(max)无明显差异。
     结果表明,高强度间歇运动训练和一次高强度间歇运动对缺血再灌注心肌产生了延迟保护作用,可以降低缺血再灌注心肌的损伤程度,减轻缺血再灌注引起的功能损失。其中高强度的间歇运动训练对心脏的保护作用更为明显。
     2.间歇运动对I/R损伤大鼠心肌抗氧化防御系统的影响。
     本实验目的在于通过检测丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱苷肽过氧化酶(GSH-PX)来探索自由基防御体系在间歇运动预处理抗心肌缺血再灌注损伤中的作用和初步机制。
     采用上述模型和分组方法。在缺血30分钟、再灌注40分钟后取适量大鼠心肌组织,用比色法检测心肌组织中MDA、SOD和GSH-PX。
     结果显示,间歇运动训练模型组和一次间歇运动模型组SOD、GSH-PX活性均高于对照模型组;间歇运动训练和一次间歇运动缺血再灌注模型组心肌组织中MDA含量明显低于对照缺血再灌注模型组。
     结果表明,间歇运动增强了I/R心肌的抗氧化能力。结合间歇运动对I/R心脏机能的保护作用,推测增强其抗氧化能力,减少自由基的生成进而减少心肌细胞的自由基损伤,介导了运动预处理对I/R心脏的保护作用。
     3.间歇运动对I/R损伤大鼠心肌内源性保护因子的影响。
     本实验以NO和HSP70为代表,初步探索内源性保护物质在运动预处理的心脏保护作用中的介导作用和机制。
     采用上述模型和分组方法。在缺血30分钟、再灌注40分钟后取适量大鼠心肌组织,用比色法测定心肌组织中一氧化氮含量和一氧化氮合酶活性,用免疫组织化学方法和免疫蛋白印迹技术检测心肌中热休克蛋白70的表达。
     结果显示,间歇运动训练缺血再灌注模型组心肌组织中NO的含量显著高于对照模型组;和假手术组比对照缺血再灌注模型组心肌中cNOS显著降低,间歇运动训练模型组的cNOS明显高于对照模型组;而对照模型组iNOS明显高于假手术组,间歇运动训练模型组和一次间歇运动模型组的iNOS显著低于对照模型组,其中一次运动模型组要高于间歇运动训练模型组。间歇运动训练模型组和一次间歇运动训练模型组心肌中HSP70的表达明显增加高于对照缺血组。
     结果表明,间歇运动训练通过增强cNOS的表达,抑制I/R心肌iNOS的表达,增加I/R时NO生成来提高心肌抗缺血再灌注损伤的能力。一次间歇运动主要通过抑制iNOS的活性来减少I/R时NO的毒性作用,从而保护缺血再灌注心肌。作为分子伴侣的HSP70也参与了间歇运动预处理的心脏保护作用。
     4.间歇运动对I/R损伤大鼠心肌细胞凋亡及其调节基因的影响。
     本实验通过检测心肌细胞凋亡和凋亡相关的基因,旨在探讨间歇运动预处理对细胞凋亡调控的关系。
     采用上述模型和分组方法。在缺血30分钟、再灌注40分钟后取适量大鼠心肌组织,DNA凝胶电泳技术和原位末端标记技术检测心肌细胞的凋亡程度,用逆转录-多聚酶链式反应检测凋亡调控基因(Bcl-2和bax)的表达。
     结果显示,对照缺血再灌注大鼠心肌组织基因组DNA片段分布弥散,呈现凋亡改变即DNALadder,提示细胞核内NDA被核酸内切酶降解。间歇运动训练和一次间歇运动训练组NDA弥散程度较轻,未见明显DNA Ladder。间歇运动训练和一次间歇运动可降低TUNEL染色的阳性细胞比例,细胞凋亡率低于缺血再灌注损伤组。通过RT-PCR技术检测各组大鼠心肌组织中bax和bcl-2mRNA的表达发现,间歇运动训练明显促进bcl-2的基因表达,而bax的表达显著低于对照模型组,bcl-2/bax比值显著高于对照模型组,一次间歇运动组bcl-2表达高于对照模型组,Bax表达低于对照模型组,bcl-2/bax比值显著高于对照缺血组。
     实验结果表明间歇运动训练和一次间歇运动通过改变凋亡调控基因的表达而有效抑制了I/R心肌的细胞凋亡,从而表现出预处理效应。
     5.间歇运动对I/R损伤大鼠心肌细胞蛋白激酶C的影响。
     本实验主要从信号转导的角度,探讨PKC在间歇运动训练对I/R心肌保护作用中的地位和初步机制。
     采用上述模型和分组方法。在缺血30分钟、再灌注40分钟后取适量大鼠心肌组织,用免疫组织化学方法观察PKC蛋白的表达,用逆转录-多聚酶链式反应检测PKCmRNA的表达。
     结果显示,间歇运动训练模型组心肌PKC较对照模型组表达增强,一次间歇运动模型组心肌PKC较对照模型组表达增强。间歇运动训练模型组PKC表达明显高于对照缺血再灌注模型组,一次间歇运动模型组PKC表达也明显高于对照缺血再灌注模型组。
     结果表明,间歇运动训练和一次间歇运动均可激活PKC。间歇运动训练和一次间歇运动对I/R心脏的保护作用可能是通过PKC途径介导的。
When people have severity sports, cardiac function often be impaired because ofrelative ischemia, myocardium sometimes be injured. Blood stream resuming afterischemia will put cardiac function and reversibility structure damage right. Butexperiments studies discovered that blood stream resuming after brief ischemiacaused myocardium injured worse because of ischemia-reperfusion injury ofmyocardium. Ischemia precondition a available way to lighten myocardium injuryinduced by ischemia-reperfusion. IPC is a phenomenon by which a brief episode(s) ofmyocardial ischemia increases the ability of the heart to a subsequent prolongedperiod of ischemic injury. There are some researches relate to exercise precondition(EP), but its mechanism keep unknown. In this study, we want to investigate thecardioprotective effect, relational cellular and molecular mechanisms of chronicinterval training and acute interval exercise preventing ischemia-reperfusion injury ofmyocardium by Sprague-Dawley rats models was established by occlusion the coronaryartery in vivo. The study aim at offer experiment evidence for search a safe andeffective means without ravage.
     1. The effect of interval exercise on ischemia-reperfusion rats' myocardium andcardiac function.
     The model of ischemia-reperfusion injury of rat myocardium in vivo were inducedby ligateing left coronary artery. By observe the effect of high-intensity intervaltraining and once high-intensity interval exercise on myocardium, ECG and serumenzyme from myocardium; confirm the cardioprotection of high interval exercise.
     42 rats were randomly divided into four groups. 8 rats from every group thatsucceed being made model were bring into experiment. The rats in CONT+I/R GROUP from sedentary group were subjected to 30min of left anterior descendingcoronary artery (LAD) occlusion followed by 40min reperfusion. The rats inCONT+SHAM GROUP from sedentary group were operated as CONT+I/R GROUPbut didn't ligate LAD. The rats in IT+I/R GROUP were from interval training groupand the rats in OIE+I/R GROUP were from once interval exercise group, theoperation as CONT+I/R GROUP.
     The purposes of the study is having histopsthologic examination of myocardium inrats and observe developmental ECG, index of cardiac function and myocardiumenzyme in serum.
     The data showed that interval training make hearts of rat hypertrophy. The extent ofpathologic change in IT+I/R GROUP and OIE+I/R GROUP is less than that inCONT+I/R GROUP. At the time of ischemia 30min and reperfusion 40min, rise ofST(J point) and activities of CK, LDH and GOT in IT+I/P, GROUP is notable lessthan CONT+I/R GROUR But cardiac function in IT+I/R GROUP is significant higherthan CONT+I/R GROUP. Above index in OIT+I/R GROUP almost like IT+I/RGROUP, only GOT, LVDP and +dp/dt_(max) without significant changes compare withCONT+I/R GROUP.
     The result indicated interval training and once interval exercise play an importantrole in the late phase of IPC. And the effect of high-intensity interval training isstronger than once high-intensity interval exercise.
     2. The effect of interval exercise on ischemia-reperfusion rats' myocardiumantioxidant defenses capability
     The experiment aim at exploring use and mechanism of free radical defensessystem in interval exercise mediated cardioprotection against ischemia-reperfusioninjure.
     The model and grouping was used as previously described. Suitable myocardiumwas taken to examine MDA, SOD and GSH-Px by colorimetry after 30min ischemiaand 40min reperfusion.
     The data showed that activities of SOD and GSH-Px are notable higher in IT+I/R GROUP and OIT+I/R GROUP than CONT+I/R GROUP, but content of MDA issignificant less than CONT+I/R GROUP.
     The result indicated interval exercise increase antioxidant defenses capability in I/Rmyocardium, considering cardioprotection from interval exercise we presuming byreduction free radical damage and increase antioxidant defenses capability maybemediate cardioprotection of EP against I/R injury.
     3. The effect of interval exercise on ischemia-reperfusion rats' myocardiumendogenous protective factors
     The experiment study NO and HSP70, aim at exploring use and mechanism ofendogenous protective factors in interval exercise mediated cardioprotection againstischemia-reperfusion injure.
     The model and grouping was used as previously described. Suitable myocardiumwas taken to examine NO and NOS by colorimetry, Expression Levels of HSP70 byimmunohistochemical and Western Blot means after 30min ischemia and 40minreperfusion.
     The data showed that content of NO and activity of cNOS is higher in IT+I/RGROUP than CONT+I/R GROUP, but activity iNOS is less than CONT+I/R GROUP.Content of NO and activity of iNOS is higher in OIT+I/R GROUP than CONT+I/RGROUP, but activity cNOS is less than CONT+I/R GROUP. Expression Levels ofHSP70 in IT+I/R GROUP and OIT+I/R GROUP is significant higher than CONT+I/RGROUP.
     The result indicated interval training enhance myocardium ability against I/R injuryby increasing expression of cNOS but restraining expression of iNOS, increasing NOcontent. Once interval exercise mainly restrain expression of iNOS and reducetoxicity of NO. As molecular chaperone HSP70 participate in cardioprotection.
     4. The effect of interval exercise on ischemia-reperfusion rats' cardiac myocyteapoptosis and correlative regulation gene
     The experiment examine cardiac myocyte apoptosis and correlative regulation gene,aim at exploring effect of interval exercise precondition on cardiac myocyteapoptosis.
     The model and grouping was used as previously described. Suitable myocardiumwas taken to examine DNA Ladder by gel electrophoresis, apoptosis degree byTUNEL, expression of Bcl-2/bax by RT-PCR.
     The data showed that apoptosis degree in IT+I/R GROUP and OIT+I/R GROUP issignificant less than CONT+I/R GROUP. Interval training promote gene expression ofBcl-2 and restrain gene expression of bax. Once interval exercise only promoteexpression of Bcl-2.
     The result indicated interval training and once interval exercise efficiently restraincardiac myocyte apoptosis in I/R heart by altering expression of regulation gene.Thereby precondition come forth.
     5. The effect of interval exercise on ischemia-reperfusion rats' cardiac myocyteapoptosis and correlative regulation gene
     The experiment at the point of signaling transduction, aim at exploring station andmechanism of protein kinase C in interval exercise mediated cardioprotection againstischemia-reperfusion injure.
     The model and grouping was used as previously described. Suitable myocardiumwas taken to examine PKC protein by immunohistochemical means, examinePKCmRNA expression by RT-PCR technique.
     The data showed that expression of PKC in IT+I/R GROUP and OIT+I/R GROUPis significant higher than CONT+I/R GROUP.
     The result indicated interval training and once interval exercise efficiently activatePKC and its' expression. Cardioprotection induced by interval training and onceinterval exercise maybe mediated by PKC signal pathway.
引文
1. Li GC, Vasquez BS, Gallagher KP, et al. Myocardial protection with preconditioning[J]. Cimdatinn 1990;82:609-619.
    2. Schott RJ, Rohmann S, Braun ER, et al. Ischemic preconditioning reduces infarct size in swine myocardium[J]. Circ Res 1990,66:1132-1142.
    3. Cohen MV, Liu GS, Downey JM. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits[J]. Circulation. 1991;84:341-349.
    4. Ovize M, Pryzklenk K, Hale S, et al. Preconditioning does not attenuate myocardial stunning[J]. Circulation 1992;85:2247-2254.
    5. Murry CE, Richard VJ, Jennings RB, et al. Myocardial protection is lost before contractile function recovers from ischemic preconditioning[J]. Am J Physiol 1991;260:H796-804.
    6. Deutch E, Berger M, Kussmal WG, et al. Adaptation to ischemia during PTCA. Clinical, hemodynamic and metabolic features[J]. Circulation 1990; 82:2044-2051
    7. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J]. Circulation. 1986;74: 1124-36
    8. Bolli R. The late phase of preconditioning [J]. Circ Res. 2000; 87: 972-983
    9. Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor to KATP channel[J]. Ann Rev. Physiol. 2000;62: 79-109
    10. Pagliaro P, Gattullo D, Rastaldo R, et al. Ischemic preconditioning: from the first to the second window of protection[J]. Life Sciences 2001 ;69: 1-15
    11. Shinmura K, Tang XL, Takano H, et al. Nitric oxide donors attenuate myocardial stunning in conscious rabbits[J]. Am. J. Physiol. 1999;277: H2495-2503
    12. Fukai T, Siegfried MR, Ushio-Fukai M, et al. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training[J]. J Clin. Invest. 2000; 105:1631-1639
    13. Simon Maybaum, Michael Han, Jacob Mogilevsky, et al. Improvement in ischemic parameters during repeated exercise testing: A possible model for myocardial preconditioning [J]. Am J Cardiol. 1996; 78: 1087- 109
    14. Bowles DK, Farrar RP, Starans. JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart[J]. Am. J. Physiol. 1992; 263:H804-H809
    15. Fu FH, You CY, Kong ZW. Acute changes in selected serum enzyme and metabolite concentrations in 12- to 14-yr.-old athletes after an all-out 100-m wimming sprint[J]. Percept Mot Skills. 2002;95(3 Pt 2):1171-1178.
    16. Unal M, Erdem S, Deniz G. The effects of chronic aerobic and anaerobic exercises n lymphocyte subgroups[J]. Acta Physiol Hung. 2005;92(2): 163-171
    17. Li K, He H, Li C, et al. Myocardial α1-adrenoceptor: inotropic effect and physiologic and pathologic implications[J]. Life Sciences Including Pharmacology. 1997;60(16): 1305-1318
    18. Buttrick PM. Mechanical overload is a major factor for cardiac hypertrophy [J]. J Mol Cell Cardiol. 1996; 26(6): 116-122
    19. Chee CE, Anastassiades CP, Antonopoulos AG, et al. Cardiac hypertrophy and how it may break an athlete's heart-the Cypriot case[J]. Eur J Echocardiogr. 2005;6(4):301-307
    20. Hashimoto T, Sugiyama A, Taguchi S. Hypoxia-induced adaptational shift in MHC-beta isoform expression in rat ventricles[J]. Japan J Physiol. 2005;55(2):109-115
    21. Murray CJ, Lopez AD. Alternate projections of mortality and disability by cause 1990-2020: global burden of disease study[J].Lancet. 1997;349:1498-1504
    22.丁延峰,李冬亮,何瑞荣.非心脏性预处理的心肌保护作用[J]国外医学生理、病理科学与临床分册,2002,22(2):142-144
    23. Wolfrum S, Schneider K, Heidbreder M, et al. Remote preconditioning protects the heart by activating myocardial PKCE isoform[J]. Cardiovasc Res. 2002; 55:583-589
    24. Schiller NB, Foster E. Analysis of left ventricular systolic function[J]. Heart. 1996,75(6 Suppl 2): 17-26
    25. Yamamoto K, Redfield MM, Nishimura RA. Analysis of left ventricular diastolic function[J]. Heart. 1996;75(6 Suppl 2):27-35
    26. Bull DA, Maurer J. Aprotinin and preservation of myocardial function after ischemia-reperfusion injury[J]. Ann Thorac Surg. 2003; 75(2): S7352-9.
    27.罗真春,凌宗秀.心肌缺血再灌注损伤的研究进展[J].现代医药卫生.2004,20(11):970-971
    28. Holubarsch C, Goulette RP, Litten RZ, et al. The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium[J]. Circulation Research. 1985;56:78-86
    29. Schaub, Marcus C. Expression and localisation of myosin light chain kinase and phosphatase in cardiac development and hypertrophy[J]. Journal of Molecular and Cellular Cardiology. 2002;34(6): A56-62
    30. Motoyuki I,Takashi M,Seiji M, et al. Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat[J]. Am J Physiol Regulatory Integrative Comp Physio. 2001;1281:R2029-R2036
    31. Anversa Piero, Leri Annarosa, Kajstura Jan, et al. Myocyte Growth and Cardiac Repair[J].Journal of Molecular and Cellular Cardiology. 2002;34(2):91-105
    1. Maybaum S, Ilan M, Mogilevsky J, et al. Improvement in ischemic parameters during repeated exercise testing: a possible model for myocardial preconditioning[J]. Am J Cardiol. 1996; 78(10): 1087-1091
    2. Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem Biol Interact. 2006;160: 1-40
    3. Powers SK, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium[J]. Am J Physiol. 1993; 265:H2094-H2098
    4. Ji LL, Fu RG, Mitchell EW, et al. Cardiac hypertrophy alters myocardial response to ischaemia and reperfusion in vivo[J]. Acta Physiol Scand. 1994;151:279-290
    5. Valko M, Morris H, Cronin M T D.. Metals, toxicity and oxidative stress[J]. Curr Med Chem. 2005; 12: 1161-1208
    6.华冲,和时.心肌缺血再灌注损伤与生物膜损伤.基础医学与临床[J].1993;13(1):26—29
    7. Ridnour LA, Isenberg JS, Espey MG, et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1[J]. Proc Natl Acad Sci USA. 2005; 102:13147-13152.
    8. Timothy JG, James RS. Reduction of myocardial ischemic injury with oxygen derived free radical scarvengers[J].Surgery.1993;94(3):423-427
    9. Bandyopadhyay D,Chatopadyay A, Ghosh G, et al. Oxidative stress-induced ischemic heart disease: protection by antioxidan[J].Curr Med Chem. 2004;11(3):369-387
    10. Zhu HF, Dong JW, Zhu WZ, et al. ATP dependent potassium channels involved in the cardiac protection induced by intermitten thypoxia against ischemia/reperfusion injury[J]. Life Sci.2003;73(10): 1275-1282
    11. Jorden JE, Zhao ZQ, Vinten J, et al. The role of neutrophils in myocardial ischemia-reperfusion injury[J]. Cardiovase Res. 1999; 43(4):866-871
    12. Paradies G, Petrosillo G, Pistolese M, et al. Lipid peroxidation and alteration to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion[J]. Free Radic Bio Med. 1999;27(1-2):42-47
    13. Juan A. Crestanello, David M, et al. Ischemic Preconditioning Decreases Oxidative Stress during Reperfusion: A Chemiluminescence Study[J]. Journal of Surgical Research. 1996; 65(1):53-58.
    14. Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man[J]. J Mol Med. 1996; 74: 297-312.
    15. Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence[J]. Mol Cell Biochem. 2004; 266:37-56.
    16. Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem Biol Interact. 2006; 160: 1-40.
    17.刘丽萍,李雷,王光平等.游泳训练后大鼠肝细胞SOD、MDA、线粒体膜电位变化与细胞凋亡的关系[J].中国运动医学杂志.2002(21):161-165
    18.张钧,张勇力,黄叔怀.运动训练对大鼠大脑、心肌脂褐素含量及自由基代谢的影响[J].山东体育学院学报.1998;40(4):49-52
    19. Kanter MM, Nolte LA, Hollos ZY. Effect of an antioxidantant vitamin mixture on lipid proxidation at rest and post exercise[J]. J Appl Physiol, 1993,74:965~969
    20. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases[J]. J Hypertens. 2000;18:655-673
    21. Tang XL, Takano H, Riavi A, et al. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits[J]. Am J Physiol Heart Circ Physiol. 2002;282 :H281-291
    22. Dempsey EC, Newton AC, Mochly-Rosen D et al. Protein kinase C isozymes and the regulation of diverse cell responses[J]. Am J Physiol-Lung Cell Mol Physiol. 2000;279: L429-L438.
    23. Takano H, Bolli R, Black RG Jr, et al. A(1) or A(2) adenosine receptors induce late preconditioning against infarction in conscious rabbit by different mechanisms[J]. Cric Res. 2001; 88:520-528
    1. Bolli R. The late phase of preconditioning [J]. Cirs Res. 2000; 87:872-983
    2. Lochner A, MaraisE, Geneade S, et al. Nitric oxide: a trigger for classic preconditioning [J]. Am J Physiol Heart Circ Physiol,2000,279(6):H2752-H2765
    3. Imagawa J, Yellon DM, Baxter GF. Pharmacological evidence that inducible nitric oxide synthase is a medicator of delayed preconditioning[J]. Br J Pharmacol. 1999;126(3):701-708)
    4. Di Napoli P, Antonio TA, Girilli A, et al. Simvastatin reduces reperfusion injury by modulating nitric oxide synthase: an ex vivo study in isolated working rat hearts [J]. Cardiovase Res. 2001 ;51(2):283-293.
    5. Warren JB, Pons F, Brady AJ. Nitric oxide biology: implications for cardiovascular the rapeutics [J]. Cardiovas Res. 1994;28(1):25-30.
    6. Bengocchea-Alonso MT, Pelacho B, Oses-Prieto JA, et al. Regulation of Nf-rappa B activation by protein phosphatase ZB and NO, via protein kinase A activity, in human monovytes [J]. Nitric Oxide. 2003;8(1):65-747
    7. Riiter O, Schuh K, Brede M. AT2 receptor activation regulates myocardial eNOS expression via the calcineurin NF-AT pathway [J]. FASEB. 2003;17(2):283-285
    8. Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial function[J]. Pharmacol Then 2000;86(1):49-86
    9. Harrison DJ, Howie SCM, Wyllie AH. Lymphocyte death, P53 and the problem of the undead cell. In: Kroemer G, Martinez AC. Apoptosis in immunology [J]. Berlin: Spring-Verlag. 1995; 123-135
    10. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation [J]. Archives of Biochemistry and Biophysics. 2004 ;423(1): 12-22
    11. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrone oxidase [J]. FEBS Lett. 1995;369: 136-139
    12. Cross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms [J]. Anuu Rev Physiol. 1995;57:737-769
    13. Berges A, Nassauw LV, Timmermans J-P, et al. Time-dependent expression pattern of nitric oxide and superoxide after myocardial infarction in rats [J]. Harmacological Research. 2007; 55(1): 72-79
    14. Bolli R, Bhatti ZA, Tang XL, et al. Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide [J]. Circ Res, 1997;81:4181-4252
    15. Wang Y, Guo Y, Zhang SX, et al. Ischemic Preconditioning UpregulatesInducible Nitric Oxide Synthase in Cardiac Myocytes [J]. J Mol Cell Cardiol. 2002; 34: 5-15
    16.崔世涛,朱洪生.心肌再灌注损伤中一氧化氮合酶及其基因异常表达的研究[J].中华医学杂志.1998,78:327-330
    17. Kingwell BA. Nitric oxide as a metabolic regulator during exercise: effect of training in health and disease [J]. Clinical and Experimental Pharmacology and Physiology. 2000;27, 239-250.
    18. Sessa WC, Pritchard K, Seyedi N, et al. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression [J]. Circulation Research. 1994;74, 349-353
    19. Zweier Jay L, M.A. Hassan Talukder. The role of oxidants and free radicals in reperfusion injury [J]. Cardiovascular Research. 2006;70(2): 181-190
    20. Marian Valko, Dieter Leibfritz, Jan Moncol,et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry & Cell Biology. 2007; 39(1): 44-84
    21. Zhao X, Bai Xj, Cai YP, et al. The influence of nitric oxide on intracellar free calcium concentration during hypoxia in guinea-pigs [J]. Chinese Circulation Journal.2000;15:370-372
    22. Brunner F, Maier R, Audrew P, et al. Attenuation of myocardial ischemial reperfusion in mice with myocyte-specific overexpression of endothelial nitric oxide synthase [J]. Cardiovase Res,2003;57:55-62
    23. Maulik N, Sato M, Price BD, Das DK. An essential role of NF- B in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia [J]. FEBS Lett.1998;429(3)365-369
    24. Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxygenase (COX)-2:COX-2 is a ardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning [J]. Cardiovasc Res. 2002; 55(3):506-519
    25. Sule Gok, Seda Vatansever, Kamil Vural, et al. The role of ATP sensitive K+ channels and of nitric oxide synthase on myocardial ischemia/reperfusion-induced apoptosis [J]. Acta histochemica. 2006;108: 95—104
    26. Dianyuan Li, Yan Qu, Ling Tao, et al. Inhibition of iNOS protects the aging heart against β-adrenergic receptor stimulation-induced cardiac dysfunction and myocardial ischemic injury [J]. Journal of Surgical Research. 2006; 131 (1): 64-72
    27. Jones S P, Bolli R. The ubiquitous role of nitric oxide in cardioprotection [J]. Journal of Molecular and Cellular Cardiology. 2006; 40(1): 16-23)
    28. Snoeckx Luc HEH,Comelussen RN, Nieuwenhoven FAV, et al. Heat shock proteins and cardiovascular pathophysiology [J]. Physiol Rev, 2001;81(5):1461-1497
    29.李萍,富青,熊儿.热休克蛋白70及其在心肌保护中的作用[J].医学综述.2004;10(2):94-96
    30. Lindquist S, Craig EA. The heat-shock proteins [J]. Ann Rev Genet. 1988; 22: 631-677
    31. Fink AL. Chaperone-mediated protein folding [J]. Physiol Rev 1999; 79(2):425-449
    32. Kamme F, Campbell K, Wieloch T. Biphasic expression of the Fos and Jun families of transcription forebrain ischemia in the rat [J]. Eur J Neurosci. 1995; 7(9): 2007-2016
    33. Xu Q, Schett G, Li C, et al. Mechanical stress-induced heat shock protein 70 expression in vascular smooth muscle cell is regulated by Rac and small G proteins but nct rnhogen activated protein kinsses [J]. Circ Res. 2000; 86(11): 1122-1128
    34. Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease [J]. Circ Res. 1998; 83: 117-132
    35. Powers S K, Locke M, Demirel HA. Exercise, heat shock proteins, and myocardial protection from I/R injury [J]. Med Sci Sports Exerc. 2001;33:386-392
    36. Gray CC, Amrani M, Yacoub T, et al. Heat stress proteins and myocardial protection: experimental motel or potential clinical tool[J]. Int J Eiochen Cell Biol. 1999;31(5):559-573
    37. Agewall S. Insulin sensitivity and hae mostation factor in men at high and low cardiovascular risk. The Risk Factor Intervention Study Group[J]. J Intern Med. 1999;246(3):489-495
    38. Hutter MM, Sievers RE, Barbosa V,et al. Heat shock protein induction in rats: a direct correlation between the amount of heat shock protein induced and the degree of myocardial protection[J]. Circulation. 1994;89(1):355-360
    39. Amrani M, Corbett J, Boateng SY, et al. Kinetics of induction and protective effect of heat-shock proteins after cardioplegic arrest [J]. Ann Thorac Surg. 1996;61(5):1407-1412
    40. Trost SU, Omens JH, Karlon WJ, et al. Protection against nyocardial dysfunction after a brief ischemic period in transgenic mice expression inducible heat shock protein 70 [J]. J Clin Invest. 1998;104(4): 855-862
    41. Yellon DM, Baxter GF. A " second window of protection " or delayed preconditioning phenomenon : future horizons for myocardial protection?[J]. J Mol Cell Cardiol.1995;27(4):1023-1034
    42. Fberhardt F, Mehlborn K, Larose K, et al. Structural myocardial changes after coronary artery surgery[J]. Eur J Cli Invest. 2000;30(11):938-946
    43. Mestril R, Dillmann WH. Heat shock protein and protection against myocardial ischemia [J]. J Mol cell Cardiol. 1995;27(1):45-52
    44. Locke M. The cellular stress response to exercise: role of stress proteins [J]. Exerc Sport Sci. Rev. 1997;25:105-136
    45. Radford N B, Fina M, Benjamin I J, et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice [J]. Proc Natl Acad Sci USA. 1996; 93:2339-2342
    46. Harris M B, Starnes JW. Effects of body temperature during exercise training on myocardial daptations [J]. Am J Physiol. Heart Circ Physiol. 2001;280:H2271-H2280
    47. C.W. James Melling, David B. Thorp, Earl G. Noble. Regulation of myocardial heat shock protein 70 gene expression following exercise [J]. Journal of Molecular and Cellular Cardiology. 2004;37:847-855
    48. Mohan RM, Golding S, Paterson DJ. Intermittent hypoxia improves atrial tolerance to subsequent anoxia and reduces stress protein expression [J]. Acta Physiol Scand. 2001; 172(2):89-95
    49. Zhong N, Zhang Y, Fang QZ, et al. Intermittent hypoxia expo sure-induced hear-shock protein 70 expression increases resistance of rat heart to ischemic injury [J].Acta Pharmacol Sin. 2000; 21(5):467-472.)
    50. Nishizawa J, Nakai A Matsuda K, et al. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart [J]. Circulation. 1999;99:934-941
    51. Sugden PH, Bogoyevitch MA. Intracellular signalling through protein kinases in the heart [J]. Cardiovasc Res. 1995;30(4):478-92
    52. Francis GS, Goldsmith SR, Ziesche SM, et al. Response of plasma norepinephrine and epinephrine to dynamic exercise in patients with congestive heart failure [J]. Am JCardiol. 1982;49(5): 1152-1156
    53. Ohnishi K, Wang X, Takahashi A, et al. Effects of protein kinase inhibitors on heat-induced hsp72 gene expression in a human glioblastoma cell line [J]. Cell Signal. 1998; 10(4): 259-264.
    54. Taylor RP, Harris MB, Starnes JW. Acute exercise can improve cardioprotection without increasing heat shock protein content [J]. Am J Physiol. 1999;276:H1098-H1102
    55. Morino M, Tsuzuki T, Ishikawa Y, et al. Specific regulation of HSPs in human tumor cell lines by flavonoids [J]. In Vivo. 1997;11:265-270
    1 Ma XL, Gao F, Liu GL, et al. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury[J]. Proc Natl Acad Sci USA. 1999; 96:14617-14622
    2 Aimee L Edinger, Craig B Thompson. Death by design: apoptosis, necrosis and autophagy. Current Opinion in Cell Biology. 2004; 16(6):663-669
    3 Marie Wahren-Herlenius, Sven-Erik Sonesson. Specificity and effector mechanisms of autoantibodies in congenital heart block. Current Opinion in Immunology. 2006;18(6): 690-696
    4 Cummings MC, Winterford CM, Walker NI. Apoptosis. Am J Surg Pathol. 1997; 21:88-101
    5 Williams GT, Smith CA. Molecular regulation of apoptosis: genetic controls on cell death. Cell. 1993; 74:777-779
    6 Walker PR, Sikorska M. Endonuclease activities, chromatin structure, and DNA degradation in apoptosis. Biochem Cell Biol.1994; 72: 615-623
    7 Podhorska-Okolov M, Sandri M, Zampieri S, et al. Apoptosis of myofibers and satellite cells: exercise - induced damage in skeletal muscle of the mouse[J]. Neuropathol Appl Neurobiol. 1998;24 (6) :518 - 531
    8 Nepomniashchikh LM. Ultrastructural mechanisms of myocardial atrophy in white rats during starvation. Biull Eksp Biol Med. 1989; 107:477-481
    9 Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes [J]. J Clin Invest. 1994;94(4): 1621 -1628
    10 Tanaka M, Ito H, Adachi S, et al. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res. 1994; 75: 426- 33
    11 ElsasserA, Vogt AM, Nef H, et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic celldeath[J]. J Am Coll Cardiol. 2004;43(12):2191-2199
    12 Sandra Levrand, Christine Vannay-Bouchiche, Benoit Pesse, et al. Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo . Free Radical Biology and Medicine. 2006; 41(6):886-895
    13 Jianhua Cui, Richard M Engelman, Nilanjana Maulik, et al. Role of ceramide in ischemic preconditioning. Journal of the American College of Surgeons. 2004;198(5):770-777
    14 Frank Eefting, Benno Rensing, Jochem Wigman, et al. Role of apoptosis in reperfusion injury. Cardiovascular Research. 2004; 61(3): 414-426
    15 Reimer KA, Lowe JE, Rasmussen MM, et al. The waverront phenomenon of ischemic cell death. 1. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation. 1977;56:786-794
    16 Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes [J]. J Clin Invest. 1994;94(4): 1621 -1628
    17 Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79:949-956
    18 Piot CA. Ischemic preconditioning decrease apoptosis in rat heart in vivo[J]. Circulation. 1997;96:1598-1604
    19 Zhao Z-Q, Nakamura M, Wang N-P et al. Reperfiision induces myocardial apoptotic cell death. Cardiovasc Res. 2000;45:651-660
    20 Umansky SR, Pisarenko OI, Serebryakova LI, et al. Dog cardiomyoctye death induced in vivo by ischemia and reperfiision. BAM. 1996;6:227-235
    21 Nakamura M, Wang NP, Zhao ZQ, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart[J]. Cardiovasc Res. 2000;45(3):661-670
    22 Maulik N, Engelman RM, Rousou JA, et al. Ischemic preconditioning reduces apoptosis by upregulating anti-deathgene Bcl-2[J]. Circulation. 1999;100(19Suppl):369-375
    23 Vladimir Gogvadze, Sten Orrenius. Mitochondrial regulation of apoptotic cell death .Chemico-Biological Interactions. 2006; 163(1-2): 4-14
    24 Mattson MP, Kroemer G Mitochondria in cell death:novel targets for neuroprotection and cardioprotection[J]. Trends Mol Med. 2003 ;9(5):196 205
    25 Misao J, Hayakawa Y, Ohno M, et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and bax,an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction[J]. Circulation. 1996;94:1506-1512.
    26 Maulik N, Sasaki H, Addya S, et al. Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS Lett. 2000;485:7-12
    27 Maulik N, Engelman RM, Rousou JA et al. Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation. 1999; 100:11369-375
    28 Baghelai K, Graham LJ, Wechsler AS, et al. Cardiopulmonary support and physiology. Delayed myocardial preconditioning by al-adrenoceptors involves inhibition ofapoptosis. J Thorac Car diovasc Surg. 1999;117:980-986
    29 Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275:1129-1132
    30 Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome c from mitochondria: a primary site for BcI-2 regulation of apoptosis. Science. 1997;275:1132-1136
    31 Isabelle Metrailler-Ruchonnet, Alessandra Pagano, Stephanie Carnesecchi, et al. Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. Free Radical Biology and Medicine. 2007; 42(7): 1062-1074
    32 Jianhua Huang, Yoshinori Ito, Masayuki Morikawa, et al. Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochemical and Biophysical Research Communications. 2003; 311 (1): 64-70
    33 John Quindry, Joel French, Karyn Hamilton, et al. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Experimental Gerontology. 2005;40(5): 416-425
    34 Habib M Razavi, Joel A Hamilton, Qingping Feng. Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure. Pharmacology & Therapeutics. 2005;106(2):147-162
    35 丁延峰,张蔓蔓,何瑞荣.缺血预处理减轻在体家兔心肌细胞凋亡.生理学报.2000;52:220
    1 Atsushi Nakano, Michael V Cohen, James M Downey. Ischemic preconditioning: From basic mechanisms to clinical applications [J]. Pharmacology & Therapeutics. 2000; 86(3): 263-275
    2 Li YW, Guyenet PG. Neuronal inhibition by a GABAB receptor agonist in the rostral ventrolateral medulla of the rat [J]. Am J Physiol. 1995;268(2 Pt 2):R428-437
    3 Mitchell MB, Meng XZ, AO LH, et al. Peconditioning of isolated rat heart is mediated by protein kinase C [J]. Circ Res. 1995;76:73
    4 Rita Carini, Maria Grazia De Cesaris, Roberta Splendore. Signal pathway involved in the development of hypoxic preconditioning in rat hepatocytes [J]. Hepatology. 2001; 33(1):131-139
    5 Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C [J]. Science.1992;258: 607-613
    6 Rybin VO, Steinberg SF. Protein kinase C isoform expression and regulation in the developing rat heart [J]. Circ Res. 1994;74: 299-309
    7 鲁巍峰,夏强.蛋白激酶C与缺血预处理心肌保护作用[J].生理科学进展.1999;30(1):74-77
    8 Eskildsen Helmond YE, Van Heugten HA, Lamers JM. Regulation and functional significance of phospholipase D in myocardium [J]. Mol Cell Biochem. 1996;157: 39-48
    9 Liu Y, Ytrehus K, Downey JM. Evidence that trsnslocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium [J]. J Mcl Cell Cardiol. 1994; 26:661-668.
    10 Speechly-Dick M E, Mocanu M M, Yellon D M. Protein kinase C. Its role in ischaemic preconditioning in the rat [J]. Circ Res. 1994;75:586-590
    11 Node K, Kitakaze M, Minamino T, et al. Activation of ecto-5-nucleotidase by protein kinase C and its role in ischaemic tolerance in the canine heart [J]. Br J Pharmacol. 1997; 120(2):273-281
    12 Ikonomidis JS, Shirai T, Weisel RD, et al. Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C [J]. Am J Physiol. 1997;272(3 Pt 2):H1220-1230
    13 Lawson CS, Downey JM. Preconditioning: state of theart myocardial protection [J]. Cardiovasc Res. 1993;27 : 542-550
    14 Cleveland JC, MeldiumDR, RowlandRT, et al. The obligat role of protein kinase C in mediating clinically accessible cardiac preconditioning [J]. Surgery. 1996;120(2):345-353
    15 Light PE, Sabir AA, Alien BG, et al. Protein kinase C induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. Apossible mechanistic link to ischemic preconditioning [J]. Circ Res. 1996;79(3):399-406
    16 Maike Krenz, Michael V Cohen, James M Downey. Protective and anti-protective effects of acute ethanol exposure in myocardial ischemia/reperfusion [J]. Pathophysiology. 2004;10:113-119
    17 Meldrum DR, Cleveland JC Jr, Mitchell MB, et al. Protein kinase C mediates Ca2+-induced cardioadaptation to ischemia-reperfusion injury [J]. Am J Physiol. Regul Integr Comp Physiol. 1996;271: R718-R726
    18 Wang Y, Hirar K, Ashraf M, et al. Activation of mitochondrial ATP sensitive K channel for cardiac protection against injury is dependant on protein kinase C activity [J]. Circ Res. 1999;85(8):731-741
    19 Yamamura K, Steenbergen C, Murphy E. Protein kinase C and preconditioning: role of the sarcoplasmic reticulum [J]. Am J Physiol Heart Circ Physiol. 2005;289(6):H2484-2490
    20 Locke M, Tanguay RM, Klabundei RE, et al. Enhanced postischemic myocardial recovery following exercise induction of HSP 72 [J]. Am J Physiol. 1995;269:H320-H325
    21 Yamashita N, Hoshida S, Otsu K, et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation [J]. J Exp Med 1999; 189:1699-1706
    22 Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium [J]. Br J Pharmacol. 1995;115:222-224
    23 Qiu Y, Ping P, Tang X-L, et al. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that ε is the isoform involved [J]. J Clin Invest. 1998;101:2182-2198
    24 Joyeux M, Baxter GF, Thomas DL, et al. Protein kinase C is involved in resistance to myocardial infarction induced by heat stress [J]. J Mol Cell Cardiol. 1997;29:3311-3319
    25 Yamashita N, Hoshida S, Taniguchi N, et al. Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat [J]. Circulation. 1998;98:1414-1421
    26 Ping P, Zhang J, Qui Y, et al. Ischemic preconditioning induces selective translocation of protein kinase C isoforms ε and η in the hearts of conscious rabbits without subcellular redistribution of total protein kinase C activity [J]. Circ Res. 1997;81:404-414
    27 Stuart D Critz, Michael V Cohen, James M Downey. Mechanisms of acetylcholine- and bradykinin-induced preconditioning [J]. Vascular Pharmacology. 2005;42:201-209
    28 Jo El J. Schultz, Garrett J. Gross Opioids and cardioprotection [J]. Pharmacology & Therapeutics. 2001; 89(2): 123-137
    29 Baxter GF, Ferdinandy P. Delayed preconditioning of myocardium :current perspectives[J].Basic Res Cardiol. 2001;96(4):329-344
    30 Yamashita N, Baxter GF, Yellon DM, et al. Exercise directly enhances myocardial tolerance to ischaemia-reperflision injury in the rat through a protein kinase C mediated mechanism [J]. Heart. 2001 ;85:331-336
    31 Fryer RM, Hsu AK, Eells JT, et al. Opioid-induced second window of cardioprotection: potential role of mitochondrial KATP channels[J]. Circ Res 1999;84:846-851
    1.朱妙章,袁文俊,吴博威等.心血管生理学与临床[M].高等教育出版社.2004:293-297
    2. Mallat Z, Tedgui A. Current perspective on the role of apoptosis in atherothrombotic disease[J]. Circ Res. 2001,88:998-1003
    3. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes [J]. J Clin Invest, 1994,94(4): 1621-1628
    4. Murry CE, Jennings RB, Reimer KA, et al. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J]. Circulation.1986, 74(5):1124
    5. Yellou DM, Baxter GF, A "second window of protection" or delayed preconditioning phenomenon: future horizons for myocardial proection[J]? J Mol Cell Cardiol. 1995, 27(4): 1023-1034
    6. Yellon DM, Baxter GF, Garcia-Doido D, et al. Ischemic preconditioning: present and future directions. Cardiovasc Res. 1998, 37:21-33
    7. Baxter GF, Role of adenosine in delayed preconditioning of myocardium[J]. Cardiovasc Res.2002,55(3):483-494
    8. McCully JD, Toyoda Y, Uematsu M, et al. Adenosine-enhanced ischemic preconditioning adenosine receptor involvement during ischemia and reperfusion[J]. Am J Physiol Heart Circ Physiol. 2001,280(2): H591-602
    9. Kuo L, Chancellor JD. Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium[J]. Am J Physiol.1995, 269:541-549
    10. Maggirwar SB, Dhanray DN, Somani, et al. Adenosine acts as an endogenous activator of the cellular antioxidant defense system[J]. Biochem Biophys Res Commun. 1994, 201: 508-515
    11. Keiichi Akaiwa, Hidetoshi Akashi, Hideki Harada, et al. Moderate cerebral venous congestion induces rapid cerebral protection via adenosine A1 receptor activation[J]. Brain Research. 2006, 1122(1): 47-55
    12. Standen NB. Cardioprotection by preconditioning K(ATP) channels, metabolism, or both[J]? J Physiol. 2002, 542(Pt3):666
    13.丁家望,扬俊,张朝晖等.内源性腺苷在心脏缺血/再灌注损伤中的作用[J].中华心血管病杂志.2005,3(5):378-380
    14.裴建明,毕辉,朱妙章.阿片样物质与心脏缺血预处理[J].生理科学进展.2003,34(1):63-66
    15.欧阳学,钱学贤,付向阳等.降钙素基因相关肽预适应对在体大鼠心肌缺血再灌注损伤的保护作用[J].中国动脉硬化杂志.1998,6(3):228-232
    16. Lu R, Hu CP, Deng HW, et al. Calcitonin gene-related peptide-mediated ischemic preconditioning in the rat heart: influence of age[J]. Regul Pept. 2001,99(2-3):183-189
    17. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function[J]. Annu Rev Immunol. 1997, 15:323-350
    18. Lochner A, Marais E, Du Toit E, et al. Nitric oxide triggers classic ischemic preconditioning[J]. Ann N Y Acad Sci. 2002, 962:402-414
    19. Guo Y, Jones WK, Xuan YT, et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene[J]. Proc Natl Acad Sci USA.1999, 96(20):11507-11512
    20. Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxy genase (COX-2): COX-2 is a cardioprotective protein that alleriates ischemia/reperfusion injury and mediates the late phase of preconditioning[J]. Cardiovasc Res. 2002; 55(3):506-519
    21. Loke KE, McConnell PI, Tuzman JM, et al. Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption[J]. Circ Res. 1999; 84(7):840-845
    22. Sasaki N, Sato T, Ohler A, et al. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide[J]. Circulation. 2000, 101(4):439-445
    23. Dimmeler S, Hacndeler J, Nehls M, et al. Suppression ofapoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (cpp)-32-like proteases[J]. J Exp Med. 1997;185(4):601-607
    24. Nishizuka Y. In tracellular signaling by hydrolysis of phospholipids and activation of protein kinase C[J]. Science. 1992;258(5082):607-614
    25. Speechly-Dick ME, Mocanu MM, Yellon DM. Protein kinase C. Its role in ischemic preconditioning in the rat[J]. Circ Res. 1994; 75(3):586-590
    26. Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischemia in rabbit myocardium[J]. Br J Pharmacol. 1995;115(2):222-224
    27. Qin Y, Ping P, Tang XL, et al. Direct evidence that protein kinase C play an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved[J]. J Clin Invest. 1998;101(10):2182-2198
    28. Imagawa J, Baxter GF, Yellon DM. Genistein, a tyrosine kinase inhibitor, blocks the "second window of protection" 48h after ischemic preconditioning in the rabbit. J Mol Cell Cardiol[J]. 1997;29(7): 1885-1893
    29. Naruse K, King GL. Protein Kinase C and myocardial biology and function[J]. Circ Res. 2000;86(11):1104-1106
    30. Mochly-Rosen D, Wu G, Hahn H, et al. Cardiotraphic effects of protein kinase Cε: analysis by in vivo modulation of PKCe translocation[J]. Circ Res. 2000:86(11 ):1173-1179
    31. Inagaki K, Hahn, Dorn GW, et al. Additive protection of the ischemic heat in vivo by combined treatment with 8-protein kinase C inhibitor and e-protein kinase C activator[J]. Circulation. 2003: 108(7):869-875
    32. Hu K, Duan D, Li GR, et al. Protein kinase C activates ATP-sensitive K+ current in human and rabbit ventricular myocytes[J]. Circ Res, 1996;78(3):49-498
    33. Nakano A, Baines CP, Kim SO, et al. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK[J]. Circ Res.2000;86(2): 144-151
    34. Mocanu MM, Baxter GF, Yue Y, et al. The p38 MAPK inhibitor, SB203580, abrogates ischemic preconditioning in rat heart but timing of administration is critircal[J]. Basic Res Cardiol. 2000;95(6):472-478
    35. Fryer RM, Patel HH, Hsu AK, et al. Stress-activated protein kinase phosphory lation during cardioprotection in the ischemic myocardium[J]. Am J Physiol Hear Circ Physiol. 2001. 281(3):H1184-1192
    36.吴卫春,王胜利.心肌缺血预适应的基本机制[J].医学综述.2005.11(2):170-173
    37. Nishizawa J, Nakai A, Higashi T, et al. Reperfusion cause significant activation of heat shock transcription factorl in ischemic rat heart[J]. Circulation. 1996;94:2185-2192
    38.杨晋明,马捷.热休克蛋白在心肺保护方面的研究进展.山西医科大学学报.2004.35(2):200—202
    39. Jennings RB, Murry CE, Steenbergen CJ r, et al. Development of cell injury in sustained acute ischemia [J]. Circulation, 1990,82 (Suppl 1) :212.
    40. Gething MJ, Sambrook J. Protein folding in the cell[J], nature. 1992; 355:33-45
    41. Polla BS, Jacquier-Sarlin MR, Kantengwa S, et al. TNF alphaalters mitochondrial membrane potential in L929 but not in TNF alpha-resistantL929. 12 cells: relationship with the expression of stress proteins, annexin 1 and superoxide dismutase activity [J]. Free Radic Res, 1996,25:125-131
    42. Asea A, Kraeft SK, Kurt2Jones EA, et al. HSP 70 stimulates cytokine production through a CD142dependent pathway, demonstrating its dual role as a chaperone and cytokine [J]. Nat Med, 2000,6:435~442.
    43. Mocanu MM, Steare SE, Evans MC, et al. Heat stress attenuatesfree radical release in the isolated perfused rat heart [J].Free Rad BiolMed, 1993,15:459~463.
    44. McMillan DR, Xiao X, Shao L, et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection againstheat2induced apoptosis [J]. Biol Chem, 1998,273:7523~7528.
    45. Jacquier-Sarlin MR, Fuller K, Dinh2Xuan AT, et al. Protective effects of Hsp70 in inflammation [J]. Experientia, 1994,50 : 1031~1038.
    46. Sun JZ, Tang XL, Knowlton AA, et al. Late preconditioning against myocardial stuning an endogenos protective mechanism that confers resistance to postischemic dysfunction 24h after brief ischemia in conscious pigs[J]. J Clin Invest. 1995;95388-403
    47. Pagliaro P, Gattullo D, Rastaldo R, et al. Ischemic preconditioning: from the first to the second window of production[J]. Life Sci, 2001,69(1): 1-15.
    48. Yamashita N, Nishida M, Hosida S, et al. Induction of manganese supperoxide dismutase in rat cardiac myocyte increases tolerance to hypoxia 24 hours after preconditioning[J]. J Clin Invest. 1994.94:2193-2201
    
    49. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K.+ channels and myocardial preconditioning[J]. Circ Res. 1999,84(9):973-979
    
    50. Schultz JEJ, Qian Y-Z, Gross Gj, et al. The ischemia-selective KATP channel antagonist, 5-hydroxyde conoate, blocks ischemic preconditioning in the heart[J]. J Mol Cardio. 1997,29(3): 1055-1060
    1. Locke M, Tanguay RM, Klabunde RE, et al. Enhanced postischemic myocardial recovery following exercise induction of HSP 72. Am. J. Physiol. 269:H320-H325; 1995.
    2. Turner N, Mehta JL, Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am. J. Physiol. Heart Circ. Physiol. 281:H1346-H1352;2001.
    3. Harris MB, Starnes JW. Effects of body temperature during exercise training on myocardial adaptations. Am. J. Physiol. Heart Circ. Physiol. 280:H2271-H2280; 2001.
    4. Taylor RP, Harris MB, Starnes JW. Acute exercise can improve cardioprotection without increasing heat shock protein content. Am. J. Physiol. 276:H1098-H1102; 1999.
    5. Hamilton KL, Staib JL, Phillips T, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radical Biology & Medicine, Vol. 34, No. 7, pp. 800-809, 2003
    6. McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation 57: 958-962, 1978.
    7. Laughlin MH, Oltman CL, Bowles DK. Exercise training-induced adaptations in the coronary circulation.Med Sci Sports Exerc. 1998;30(3):352-60.
    8. Ding YH, Luan XD, Li J, et al. Exercise-induced overexpression angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res. 2004; 1(5):411:420
    9. Brown DA, Jew KJ, Sparagna GC, et al. Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. J Appl Physiol 95: 2510-2518, 2003.
    10. Yamashita N, Baxter GF, and Yellon DM. Exercise directly enhances myocardial tolerance to ischaemia-reperfusion injury in the rat through a protein kinase C-mediated mechanism. Heart 85: 331-336, 2001
    11. Jew KN and Moore RL. Glibenclamide improves postischemic recovery of myocardial contractile function in trained and sedentary rats. J Appl Physiol 91: 1545-1554,2001.
    12. Nonomura M, Nozawa T, Matsuki A,et al. Ischemia-induced norepinephrine release, but not norepinephrine-derived free radicals, contributes to myocardial ischemia-reperfusion injury. Circ J. 2005 May;69(5):590-5.
    13. Szocs K. Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance.Gen Physiol Biophys. 2004 Sep;23(3):265-95. Review.
    14. Asano G, Takashi E, Ishiwata T, et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch. 2003 Oct;70(5):384-92.
    15. Karyn H, Jessica LS, Tracey P, et al. Exercise, antioxidants, and hsp72:protection against myocardial ischemia/reperfusion. Free Radical Biology & Medicine, 2003; 34(7):800-809
    16. Ji L, Fu R, Mitchell E, M. et al. Waldrop, and H. Swartz. Cardiac hypertrophy alters myocardial response to I/R in vivo. Acta Physiol. Scand. 151: 270-290, 1994
    17. Powers SD, Criswell J, Lawler D, et al. Rigorous exercise training increases superoxide dismutase activity in the ventricular myocardium. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H2094-H2098, 1993
    18. Kihlstrom M. Protection effect of endurance training against reoxygenation-induced injuries in rat heart. J. Appl. Physiol. 68: 1672-1678,1990
    19. Laughlin, H., T. Simpson, W. Sexton, O. Brown, J. Smith, and R. Korthius. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J. Appl. Physiol. 68: 2337-2343, 1990
    20. Powers SK, Demirel HD, Vincent HK,et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Physiol Regul Integr Comp Physiol 275: R1468-R1477, 1998
    21. Ji L. Exercise and oxidative stress: role of the cellular antioxidant systems. Exerc. Sport Sci. Rev. 23: 135-166, 1995
    22. 朱妙章,袁文俊,吴博威等.心血管生理学与临床[M].高等教育出版社.2004:334
    23. Zhou JJ, Pei JM, Wang GY, et al. Inducible HSP70 mediates delayed cardioprotection via U-50488 pretreatment in rat ventricular myocytes[J]. Am J Physiol. 2001;281:H40-47
    24. Pagliaro P, Gattullo D, Rastaldo R, et al. Ischemic preconditioning: from the first to second window of protection[J]. Life Sci. 2001;69(1):1-15
    25. Hutter, M., R. Sievers, V. Barbosa, and C. Wolfe. Heat-shock protein induction in rat hearts: a direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89: 355-360,1994
    26. Locke, M., R. Tanguay, R. Klabunde, and D. Ianuzzo. Enhanced post-ischemic myocardial recovery following induction of HSP72. Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H320-H325, 1995
    27. Knowlton A. Heat Shock Proteins, and the Cardiovascular System. Boston, MA: Kluwer, 1997
    28. Jennings RB , Murry CE , Steenbergen CJ r, et al. Development of cell injury in sustained acute ischemia [J ] . Circulation , 1990 , 82 (Suppl 1) :2~12.
    29. Gething MJ , Sambrook J. Protein folding in the cell [J ]. Nature, 1992 , 355 :33~45
    30. Mocanu MM , Steare SE , Evans MC , et al. Heat stress attenuatesfree radical release in the isolated perfused rat heart [J] .Free Rad BiolMed, 1993,15:459-463.
    31. McMillan DR, Xiao X, Shao L , et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection againstheat-induced apoptosis [J ]. Biol Chem, 1998 ,273 :7523~7528.
    32. Taylor, R. P.; Harris, M. B.; Starnes, J. W. Acute exercise can improve cardioprotection without increasing heat shock protein content. Am. J. Physiol. 276:H1098-H1102; 1999.
    33. Sessa WC, Barber CM, Lynch KR. Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res. 1993 ;72(4):921-924
    34. Woolfson RG, Patel VC, Neild GH, et al. Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism.Circulation, 1995;91:1545-1551
    35. Maulik N, Engelman DT, Watanabe M, et al. Nitric oxide signaling in ischemic heart. Cardiovasc Res, 1995,30:593-601
    36. Zdrenghea D, Bo' dizs, Gy, Ober, MC, et al. Plasma nitric oxide metabolite levels increase during successive exercise stress testing—A link to delayed ischemic preconditioning? Journal of Experimental and Clinical Cardiology .2003.8,26-29.
    37. Babai L, Szigeti Z, Parratt JR, et al. Delayed cardioprotective effects of exercise in dogs are aminoguanidine sensitive: possible involvement of nitric oxide. Clinical Science 2002.102, 435-445.
    38. Maulik N, Sato M, Price BD, et al. An essential role of NF- B in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett. 1998; 429(3):365-369.
    39. Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res. 2002; 55(3):506-519.
    40. Lizasoain I, Moro MA, Knowles RG, et al. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem J. 1996; 314(Pt 3):877-880.
    41. Sasaki N, Sato T, Ohler A, et al. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 2000; 101(4):439-445.
    42. Dimmeler S, Haendeler J, Nehls M,et al. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med. 1997; 185(4):601-607.
    43. Fiss H, Gattinger D. Apoptosis in ischemic and reperfusion myocardinm. Cric Res. 1996. 79(5):949-954
    44. Zhao ZQ, Nakarnura M, Wang NP, et al. Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res. 2000. 45:651-660
    45. Misao J, Hayakawa Y, Ohuo M, et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and bax, an accelerator of apoptosis, inventricular myocytes of human hearts with myocardial infraction. Circulation. 1996.94(7): 1506-1512
    46. Selvakumaran M, lin HK, Sjin RT, et al. The novel primary response gene MyD118 and the protooncogenes myh, myc, and bcl-2 modulate transforming growth factor betal-induced apoptosis of myeloid leukemia cells. Mol Cell Biol.1994;14(4):2352-2360
    47. Gottlieb RA, Gruol DL, Zhu JY, et al. Preconditioning in rabbit cardiomyocytes. J Clin Invest 1996;97:2391-2398.
    48. Piot CA, Padmanaban D, Ursell PC, et al. Ischemic preconditioning decreases apoptosis in rat hearts in vivo.Circulation 1997;96:1598—1604.
    49. Nakamura M, Ning-Ping W, Zhi-Qing Z, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res. 2000. 45:661-670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700