红法夫酵母发酵生产虾青素及其代谢调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虾青素(3,3’-二羟基-β,β’-胡萝卜素-4,4’-二酮)是一种重要的类胡萝卜素,具有优良的色素沉积作用并能促进动物发育,更具有超强的抗氧化活性及较强抗肿瘤活性。由于化学合成的虾青素在应用和安全性上的局限,人们对天然来源虾青素需求量越来越大,而利用微生物(如红法夫酵母)发酵生产虾青素是当前研究的热点。红法夫酵母是唯一能利用多种碳氮源并积累虾青素为主要类胡萝卜素的酵母,本文首先采用各种物化因子对红法夫酵母原始菌株进行诱变,获得了虾青素高产突变株,研究了该突变株生产虾青素的发酵条件,建立了虾青素检测的快速方法和类胡萝卜素大规模提取方法,并进行了不同发酵规模培养条件的研究,进行了基于红法夫酵母虾青素生物合成途径的代谢调控研究。
     本文采用各种物化因子如紫外线(UV)、甲基磺酸乙酯(EMS)和60Coγ射线多次诱变红法夫酵母原始菌株,获得了一株稳定高产虾青素的突变株,随后在摇瓶条件下对此菌株的发酵条件进行了研究。种子、通气量、温度和pH值影响红法夫酵母生长、类胡萝卜素和虾青素的合成,种龄为48 h的种子在接种量为9%、摇床转速为250 r min–1、250 ml三角瓶装液量为30 ml、培养温度为16~18℃、培养基初始pH值为5.0时有利于发酵。研究了培养基成分如碳源、氮源和无机盐对生长、类胡萝卜素和虾青素合成的影响,并对培养基成分进行了优化,最佳培养基为(g l-1):葡萄糖30、蔗糖30、酵母浸粉6、(NH_4)_2SO_4 3、KH_2PO_42、Na_2HPO_4 1、MgSO_4 5。研究了虾青素快速和大规模提取条件,采用二甲基亚砜对湿菌体直接提取类胡萝卜素后492nm处比色测定是一种快速的虾青素近似定量方法。在优化破壁条件即50℃用4M的盐酸和6 ml的溶菌酶处理8 h,然后中和到pH值为3.0,再经喷雾干燥,用丙酮提取类胡萝卜素,提取率最高达到99. 23%。
     随后对红法夫酵母生物反应器间歇发酵培养工艺进行了研究,进行了5 L、100 L、2000 L、15000 L等不同规模发酵放大实验,发酵工艺研究主要在5 L全自动罐中进行。结果表明搅拌转速、通气量对溶氧、生长和产物合成有着显著影响,当搅拌速度为300 r min-1、通气量为1.5vvm时发酵结果最佳。研究了补水工艺和氧载体对发酵和溶解氧水平的影响,结果表明在大量少次补水、二甲基硅油为氧载体添加量为2%时最佳。进行的红法夫酵母15000 L规模发酵生产尚未见报道。结果表明发酵罐规模越大,发酵周期越短,推断氧的供给是红法夫酵母发酵产虾青素的一个重要影响因子。
     基于红法夫酵母虾青素生物合成途径下,研究了不同代谢中间产物如番茄红素、胡萝卜素、柠檬酸钠、谷氨酸钠、乙醇等物质对于红法夫酵母生长、类胡萝卜素和虾青素合成的影响,它们在一定浓度下对红法夫酵母的生长、类胡萝卜素和虾青素合成都有促进作用。研究了真菌、化学诱导子对红法夫酵母生长、类胡萝卜素和虾青素合成的影响,将由Rhodotorula rubra、Rhodotorula glutinis、Panus conchatus、Coriolus versicolor、Mucor mucedo和Mortieralla alpina制备的真菌诱导子和用氯化镉、二氧化钛制备的化学诱导子以不同的浓度添加到发酵培养基中,结果表明一定浓度下真菌诱导子对红法夫酵母的生长、类胡萝卜素和虾青素合成有促进作用,在较高添加浓度下生物量、类胡萝卜素产量和虾青素产量比对照高,而在较低浓度下类胡萝卜素和虾青素含量比对照高。化学诱导子对生长有一定的抑制作用,而类胡萝卜素和虾青素产量相对对照有较大提高。在添加P. conchatus、C. Versicolor、氯化镉和二氧化钛诱导子后,诱导产生的红法夫酵母胞内活性氧含量随时间而升高,在诱导后24~40 h时胞内活性氧含量最高,如二氧化钛和氯化镉在诱导后第40 h胞内活性氧均达到最高值,分别为299和286 nmol g-1 FCW(fresh cell weight,湿菌体重量),证明胞内活性氧对于虾青素合成的确有促进作用,推断活性氧激活了虾青素生物合成途径中相关酶或基因表达。
Astaxanthin(3,3’-dihydroxy-β,β’-carotene-4,4’-dione) is an interesting carotenoid which is the main carotenoid pigment found in aquatic animals such as lobsters, crab, shrimp, trout and salmon and plays a role in delaying or preventing degenerative diseases. Moreover, due to its special structure, astaxanthin is a more powerful scavenger of singlet oxygen (1O2) and peroxyl radicals (H2O2) thanβ-carotene, cantaxanthin, and zeaxanthin (3,3’-dihydroxyl-β-carotene). Its antioxidant activity is much stronger than all other carotenoids. Furthermore, astaxanthin may exert antitumor activities through the enhancement of immune responses. However, consumer and governmental concerns regarding chemical additives in foods have stimulated research in biological systems to produce astaxanthin by biotechnology. These systems are mainly focused on algae, bacteria or yeast such as Xanthophyllomyces dendrorhous. Using different physical and chemical methods, a mutant was isolated and its biological characteristics and production processes of carotenoids were studied. Fast method to determine the astaxanthin and scale-up extract of carotenoids were established, then the parameters of different scale-up fermentation were studied. Based on the astaxanthin biosynthesis pathway by X. dendrorhous, effects of different chemicals and fungal elicitors added into the broth on the growth, total carotenoids and astaxanthin were investigated.
     To isolate the astaxanthin-hyperproducing yeast, the methods such as different low-dosages of 60Co gamma irradiation, UV and Ethyl Methanesulfonate(EMS) were used to treat X. dendrorhous during exponential phase. Effects of inoculum age, inoculum size, agitation speeds, temperature and initial pH value on the growth, total carotenoids and astaxanthin by X. dendrorhous with optimal conditions of 48 h, 9%, 250 r min–1, 16~18℃and pH 5.0, respectively. After main nutrition compositions including carbon source, nitrogen source and minerals on carotenoids by X. dendrorhous were determined and optimized, the optimal concentrations of media ingredients such as gluose, sucrose, yeast extract, (NH_4)_2SO_4、KH_2PO_4, Na_2HPO_4 and MgSO_4 were 30,30,6,3,2,1 and 5 g l-1, respectively. Using DMSO as direct extract agent of carotenoids and determination on a spectrophotometer at 492 nm resulted in a fast and approximate method to measure astaxanthin yields by X. dendrorhous. Under the optimal conditions of cell wall disruption which the yeast was treated with 50℃,2M,9ml, 4h and neutralized to pH 3.0, the maximal carotenoid extractability (99. 23%) was obtained.
     The parameters of different scale-up fermentations were studied in 5, 100, 2000 and 5000 L fermentors, respectively. Influences of operation parameters including agitation speed and aeration were mainly studied in a 5 L fermentor. The results showed that the agitation speed and aeration could significantly affect the growth, total carotenoids, astaxanthin formation and dissolved oxygen by X. dendrorhous. The optimal results were obtained when agitation speed and aeration were 300 r min-1 and 1.5 vvm, respectively. When adding mass water by less times and using dimethyl silicone oil as oxygen vector at concentration of 2% (v/v), the optimal results were obtained by enhancing growth, total carotenoids, astaxanthin formation and dissolved oxygen by X. dendrorhous. 15000 L scale-up experiments which hadn’t been reported by any other researcher in this filed was performed in a pharmacy plant. The results of scale-up experiments showed the bigger the fermentor was the shorter the culvitation time was and the dissolved oxygen was a key factor to astaxanthin biosynthesis by X. dendrorhous.
     Based on astaxanthin biosynthesis by X. dendrorhous, some intermediates such as tomato juice, carrot juice, tri-sodium citrate, ethanol and glutamine added into the culture media could enhance the growth, total carotenoids and astaxanthin formation at different concentrations. Six fungal elicitors prepared from Rhodotorula rubra, Rhodotorula glutinis, Panus conchatus, Coriolus versicolor, Mucor mucedo, Mortieralla alpina stimulate the growth, total carotenoids and astaxanthin formation by X. dendrorhous. Chemical elicitors prepared from TiO_2 and CdCl2 were advantage for total carotenoids and astaxanthin formation but slightly restrained the growth by X. dendrorhous. After being treated with P. conchatus, C. versicolor, TiO_2 and CdCl_2, each elicitor showed a clear positive influence on the reactive oxygen species (ROSs) in the yeast, and there was a steady increase of H2O2 accumulation along with the concentrations, reaching the maximum at certain time at 24 to 40 h with highest H_2O_2 concentration of 299 and 286 nmol g-1 FCW (fresh cell weight) concerning TiO_2 and CdCl_2 elicitor, respectively. The maximal astaxanthin yield was obtained at 96 h after treated by elicitors, which indicated ROSs were due to the sitimulating effects on astaxanthin formation by activating some enzymes and genes involved in astaxanthin biosynthesis pathway by X. dendrorhous.
引文
[1] Hendry, G. A. F., Houghton, J. D. Natural Food Colorants, second edition.Edited by GAF Hendry and JDH Houghton.Blanckie A & P, 1996, 206.
    [2] Johnson, E. A., Villa, T. G., Lewis, M. J. Phaffia rhodozyma as an astaxanthin sources in salmonids diets. Aquaculture,1980,20:123–134.
    [3] Johnson, E. A., An,G. H. Astaxanthin from microbial sources. Crit. Rev. Biotechnol., 1991, 11: 297–326.
    [4] 姜文候,单志萍,孟好.微生物产生的类胡萝卜素及其工业化.食品与发酵工业, 1999, 25(3): 46-51.
    [5] Foppen, F. H., Gribanovski-Sassu, O. Carotenogenesis in diphenylamine treated Epicoccum nigrum. Biochimca Biophysica Acta-Lipids and lipid metabolism, 1969, 176: 357-366.
    [6] Andrewes, A. G., Phaff, H. J., Starr, M. P. Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry, 1976, 15: 1003-1007.
    [7] 刘子贻,沈奇桂.虾青素的生物活性及开发应用前景.中国海洋药物, 1997(3): 46-49.
    [8] Renstrom, B., Borch, G., Skuiberg, O. M., et al. Phytochemistry, 1981, 20: 2561-2567.
    [9] Andrewes, A. G., Starr,M .P. (3R,3’R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry, 1976, 15: 1009-1011.
    [10] Bon, J. A., Leathers, T. D., Jayaswal, R. K. Isolation of astaxanthin overproducing mutants of Phaffia rhodozyma. Biotechnology letters, 1997,19(2):109-112.
    [11] Bowen, J., Lagocki, S. Comparison of astaxanthin accumulation in rainbow trout (Oncorhvnchus mvkiss)fed algal and synthetic astaxanthin.Abstracts of the 12th. Intemational Carotenoid Symposium.Cairus, Australia, 1999, 201.
    [12] 薛长湖,李钐,徐天梅等.从虾头中提取虾青素的工艺探讨.中国海洋药物, 1993, 12(4): 39-42,25.
    [13] 施安辉,萧海杰.目前国内外虾青素研究的进展.生物工程进展, 1999, 19(1): 29-31.
    [14] Boussiba, S. Carotenogenesis in the green alga Haemarococcus pluvialis: cellular physiology and stress response.Physiology Plant, 2000, 108: 111-117.
    [15] Grung, M., Liaaen-Jensen, S. Algal carotenoids. 52; secondary carotenoids of algae 3; carotenoids in a natural bloom of Euglena sanguinea. Biochemical Systematics and Ecology, 1993, 21(8): 757-763.
    [16] Fjerdingstad, E., Fjerdingstad, K. K. E. Chemical analyses of red “snow” from East-Greenland with remarks on Chlamydomonas nivalis (Bau) Wille. Arch. Hydrobiol., 1974, 73: 70-83.
    [17] Liu, B. H., Lee, Y. K. Composition and biosynthetic pathways of carotenoids in the astaxanthin-producting green alga Chlorococcum sp. Biotechnology Letters, 1999, 21: 1007-1010.
    [18] Zhang, D. H., Lee, Y. K., Ng, M. L., et al. Composition and accumulation of secondary carotenoids in Chlorococcum sp. Journal of Applied Phycology, 1997, 9: 147-155.
    [19] Caeczuga, B. Characteristic carotenoids in some phytobenthos species in the coastal area of the Adriatic Sea.Acta Soc. Bot. Pol., 1986, 55: 601-609.
    [20] Hanagata, N., Dubinsky, Z. Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). Journal of Phycology, 1999, 35(5): 960-966.
    [21] Caeczuga, B. Carotenoids in Euglena rubida Mainx. Comparative Biochemistry and Physiology B, 974, 48B: 349-354.
    [22] Orosa, M., Torres, E., Fidalgo, P., et al. Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology, 2000, 12(3-5): 553-556.
    [23] Muller, T., Bleiβ, W., Martin, C. D., et al. Snow algae from northwest Svalbard:Their identification, distribution, pigment and nutrient content. Polar Biology, 1998, 20: 14-32.
    [24] Yokoyama, A., Miki, W. Composition and presumed biosynthetic pathway of carotenoids in the astxanthin-producing bacterium Agrobacterium aurandacum.FEMS Letters, 1995, 128: 139-144.
    [25] Ysubokura, A., Yoneda, H., Mizuta, H. Parococcus carotinifaciens sp. Nov, a new aerobic gram-negative astaxanthin-producing bacterium. International Journal of System Bacteriology, 1999, 49: 277-282.
    [26] Johnson, E. A., Schroeder, W. A. Astaxanthin from the yeast Phaffia rhodozyma. Stud. Mycol., 1996, 38: 119-128.
    [27] Savoure, N., Briand, G. Vitamin A status and metabolism of cutancous polyamines in the hairless mouse after UV irradiation: action of beta-carotene and astaxanthin. International Journal of Vitamin Nutrition Research, 1995, 65(2): 79-86.
    [28] Polozza, P., Krinsky, N. L. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys, 1992, 297: 291-295.
    [29] Woodall, A. A., Briton, G., Jackson, M. J. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals. Biochemica et Biophysica Acta, 1997, 1336(3): 578-586.
    [30] Nakagawa, Kang, S. D., et al. Inhibition of β-carotene and astaxanthin of NADPH-dependent microsomal phospholipid peroxidation. J. Nutr. Sci. Vitaminol., 1997, 43(3): 345-355.
    [31] Terao, J. Antioxidant activity of β-carotene-related carotenoids.in solution. Lipids, 1989, 24: 659-661.
    [32] Miki, W. Biological functions and activities of animal carotenoids. Pure Applied Chemistry, 1991, 63: 141-146.
    [33] Lee, S. H., Min, D. B. Effects, quenching mechanisms and kinetics of carotenoids in chlorophyll-sensitised photo-oxidation of soybean oil. Journal of Agricuture andFood Chemistry, 1990, 38(8): 1630-1634.
    [34] Fukuzawa, K., Inokami, Y., Tokumura, A., et al. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and a-tocopherol in liposomes. Lipids, 1998, 33(8): 751-756.
    [35] Di, M. P. Devasagayam, T. P., Kaiser, S., et al. Biochem. Soc. Trans. 1990, 18(6): 1054-1056.
    [36] Oshima, S., Ojima, F., Sakamoto, H., et al. Inhibitory efect of beta-carotene and astaxanthin on photosensitized oxidation of phospholipid bilayers. Journal of nutritional science and vitaminology, 1993, 39(6): 607-615
    [37] Connor, I. Brieo, N. Effects of α-tocopherol and astaxanthin on LDL oxidation and atherosclerosis in WHHL rabbits. Journal of Dermatological Science, 1998, 16(3): 226-230.
    [38] Lawlor, S. M., O’Brien, N. M. Astaxanthin: antioxidant effects in chicken embryo fibroblasts. Nutrition Research, 1995, 15(11): 1695-1704.
    [39] Jyonouchi, H., Zhang, L., Gross, M., et al. Immunomodulating actions of carotenoids: enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutritoin Cancer, 1994, 21(1): 47-56.
    [40] Jyonouchi, H., Sun, S., Cross, M. Astaxanthin, a carotenoid without vitamin A activity, augments antibody response in cultures including T-helper cell clones and suboptimal doses of antigen. Journal of Nutrition, 1995, 125(10): 2483-2492.
    [41] Jyonouchi, H., Sun, S., Mizokami, M., et al. Effects of various carotenoids on cloned, effector- stage T-helper cell activity. Nutrition and Cancer, 1996, 26(3): 313-324.
    [42] Jyonouchi, H., Sun, S., Cross, M. Effects of carotenoids on in vitro immunoglobulin production by human mononuclear cells: Astaxanthin, a carotenoid without vitamin A activity, enchances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutritoin Cancer, 1995, 23: 171-183.
    [43] Amar, E. C., Kirona, V., Satoha, S., et al. Enhancement of innate immunity inrainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish & Shellfish Immunology, 2004, 16: 527-537.
    [44] Tanaka, T., Morishita, Y., Suzui, M., et al., Chemoprevention of mouse urinary bladder by the naturally occurring carotenoid astaxanthin. Carcinogenesis, 1994, 15(1): 15-19. .
    [45] Tanaka, T., Makita, H., Onishi, M., et al., Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Research, 1995, 55(18): 4059-4064.
    [46] Gradelet, S., Astorg, P., Le Bon, A. M., et al. Modulation of aflatoxin Bl carcinogenicity, genotoxicity and metabolism in rat liver dietary carotenoids: evidence for a protective effect of CYPIA inducers. Cancer Letters, 1997, 114(1-2): 221-223.
    [47] Gradelet, S., Bon, A. M. L., et al. Dietary carotenoids inhibit aflatoxin BI-induced liver preneoplastic foci and DNA damage in the rat: role of the modulation of aflatoxin B1 metabolism. Carcinogenesis, 1998, 19(3): 403-408.
    [48] Chew, B. P., Park, J. S., Wong, M. W., et al. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Research, 1999, 19, 1849-1853.
    [49] Lee, S. H., Cherl, W. P., Lee, Y. C., et al. Inhibition of benzo (a) pyren-induced mouse forestomach neoplasia by astaxanthin containing egg yolk. Agric Chemistry and Biotechnology, 1997, 40(6): 490-495.
    [50] Nishino, K. Cancer Research, 1993, 402:159-166.
    [51] Bjorndahl, T. The economics of salmon aquaclture. Blackwell Scientific. Oxford, 1990,1.
    [52] Toshiki, H. J. Journal of Agricultural and Food Chemistry, 1995, 43(6):1570-1573.
    [53] Johnson, E. A., Lewis, M. J., Grau, C. R. Pigmentation of egg yolk with astaxanthin from the yeast Phaffia rhodozyma. Poultry Science, 1980, 59: 1777-1782.
    [54] Vernon, C., Ponce, P., Pedroza, I., et al. Arch Latinoam Nutrition, 1996, 46(3): 243-246.
    [55] Torrissen, O. J., Christiansen, R. Requirements for carotenoids in fish diets. Journal of Applied Ichthyology, 1995, 11: 225-230.
    [56] Torrissen, O. J., Hardy, R. W., Shearer, K. D. Pigmentation of salmonids carotenoid deposition and metabolism. Aquatic Science, 1989, 1: 209-225.
    [57] Bendich, A. Carotenoids and the immune system. In: Carotenoids Chemistry and Biology, Krinsky NI, et al., New York, Plenum Press, 1990, 323-350.
    [58] Torrissen, J. C., Pigmenation of salmonids - effect of carotenoids in eggs and start-feeding diets on survival and growth rate. Acquaculture, 1984, 43: 185-193.
    [59] Torrissen, O. J., Christiansen, R.Carotenoids and their functions in fish, the 1st Roche aquaculture center conference on nutritional prophylaxis in Bangkok, Thailand, March 23,1994.
    [60] Christiansen, P., Glette, J., Lie, O., et al. Antioxidant status and immuntity in Atlantic salmon, salmo solar L., fed semi-purified diets with and without astaxanthin supplementation. Journal of Fish Diseases, 1995, 18:317-323.
    [61] Thompson,I., Choubert, G., Houlihan, D. F., et al. The effect of dietary vitamin A and astaxanthin on the immunocompetence of rainbow trout. Aquaculture, 1995, 133: 91-102.
    [62] Bernhard, K., Synthetic astaxanthin: The route of a carotenoid from research to commercialization. In Krinsky NL, Mathews-Roth MM, et al., Carotenoids: Chemistry and Biology. New York, Plenum Press, 1990, 337-363.
    [63] Nakai, K., Kooryama, T. Jpn. Kokai Kokkyo Koho (JP 07 99, 928).
    [64] Nakai, K., Kooryama, T. Jpn. Kokai Kokkyo Koho (JP 07 99, 926).
    [65] Nakai, K., Kooryama, T. Jpn. Kokai Kokkyo Koho (JP 07 99, 925).
    [66] Bjerkeng, B., Johnson, G. Frozen storage quality of rainbow trout (Oncorkynchus mykiss) as affected by oxygen, illumination and fillet pigment. Journal of FoodScience, 1995, 60(2): 284-288.
    [67] Nakai, K., Kooryama, T. Concentrated Phaffia pigments for pickling. Jpn. Kokai Kokkyo Koho (JP 07 99, 883). CA 123: 54604.
    [68] Nakai, K., Kooryama, T. Cosmetics containing astaxanthin pigments extracted for skin-lighting cosmetics. lpn. Kokai Kokkyo Koho (JP 07 99, 883). CA 123: 40726.
    [69] Nakano,T., Tosa, M., et al. Improvement of biochemical feature in fish health by red yeast and synthetic astaxanthin. Journal of Agriculture and Food Chemistry, 1995, 43(6): 1570-1578.
    [70] Nakai, K., Kooryama, T. Health food containing Phaffia rhodozyma oil with astaxanthin. Jpn Kokai Kokkyo Kohn (JP 07 99, 883). CA 123: 54651.
    [71] Tso, M. O., Lam, T. T. Method of retarding and ameliorating central nervous system and eye damage. U.S. Patent #5527533, Board of trustees of the University of Illinois, United States of America, 1996.
    [72] Bennedsen, M., Wang, X., Willen, R., et al. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunology Letters, 1999, 70(3): 185-189.
    [73] Phaff, H. J., Miller, M. W.,Yoneyma, M., et al. A comparative study of the yeast florae associated with trees on the Janpanese Islands and on the west coast of North America, In: Proc 4th IFS: Ferment Techn. Today (Terui, G., Ed.): 759-774, Kyoto Society of Fermentation Technology, Osaka, 1972.
    [74] Miller, M. W., Yoneyama, M., Soneda, M. Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). International Journal of Systematic and evolutionary microbiology, 1976, 26: 286-291.
    [75] Phaff, H. Annual Review of Microbiology, 1986, 40: 1-3.
    [76] Weijman, A. C. M., de Miranda, L. R., van der Walt, J. P. Antionie van Leeuwenhoek Journal of Microbiology and Serology, 1988, 54: 545-549.
    [77] Yamada, Y., Kawasake, H. Agriculture Biochemistry, 1989, 53: 2845-2847.
    [78] Gueho, R., Kurtzman, C. P., Peterson, S. W. Systemic and Applied Microbiology, 1989, 12: 230-235.
    [79] The yeasts. 2nd edition. Volume 5. Edited by A. H. Rose and J. S. Harrison. Academic Press, 1993: 296.
    [80] Hermosilla, G., Martínez, C., Retamales, P., et al. Genetic determination of ploidy level in Xanthophyllomyces dendrorhous. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 2003, 84: 279-287.
    [81] Retamales, P., Hermosilla, G., Leo′n, R., et al. Development of the sexual reproductive cycle of Xanthophyllomyces dendrorhous. Journal of Microbiological Methods, 2002, 48: 87-93.
    [82] Omata, T., Murata, N. Arch Microbiology, 1984, 139: 113-115.
    [83] Keyhani, J., Keyhani, E., Goodgal, S. H. European Journal of Biochemistry, 1972, 19: 523-525.
    [84] Mitzka-Schnabel, U., Rau, W. Phytochemistry, 1980,19: 1409-1412.
    [85] Mitzka-Schnabel, U., Rau, W. Phytochemistry, 1981,20: 63-66.
    [86] Lang, N. J. J. Phycology, 1968,4:12-17.
    [87] Santos, M. F., Mesquita, J. F. Cytologia, 1984, 49: 215-218.
    [88] An, G. H. Bielich, J., Auerbach, R. et al. Bio/Technology, 1991, 9: 70.
    [89] An, G. H., Suh, O. S., Kwon, H. C., et al. Quantification of carotenoids in cells of Phaffia rhodozyma by autofluorescence. Biotechnology Letters 2000, 22: 1031–1034.
    [90] An, G. H., Choi, E. S. Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnology Letters, 2003, 25: 767-771.
    [91] Lai, J. P., Jiang, Y., He, X. W., et al. Separation and determination of astaxanthin from microalgal and yeast samples by molecularly imprinted microspheres. Journalof Chromatography B, 2004, 804: 25-30.
    [92] Lim, G. B., Lee, S. Y., Lee, E. K., et al. Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochemical Engineering Journal, 2002, 11 :181-187.
    [93] Bloch, K. Science, 1965, 150: 19-23.
    [94] Brown, M. S., Goldstein K. L. J. Lipid Research, 1980, 21: 505-510.
    [95] Goldstein, K. L. Brown, M. S. Nature, 1990, 343: 425-428.
    [96] Tada, M. Plant Cell Physiology, 1989, 30: 1193-1197.
    [97] Gray, J. C. Adv. Biological Research, 1987, 14: 25-30
    [98] Boll, M., Lowel, M., Still, J., et al. European Journal of Biochemistry, 1975, 54: 435-440.
    [99] Thorsness, M., Schafer, W., d’ Ari, L., et al. Molecular and Cellular Biology, 1989, 9: 5702-5706.
    [100] Wright, R., Basson, M., d’ Ari, L., et al. Journal of Cell Biology, 1988, 107: 101-108.
    [101] Quain, D. E., Haslam, J. M. Journal of Genenral and Applied Microbiology, 1979, 111: 343-347.
    [102] Bach, T. J., Lichentaler, H. K. Physiology Plant, 1983, 59: 50-56.
    [103] Tada, M., Tsubouchei, M., Matsuo, K. et al. Plant and Cell Physiology, 1990, 31: 319-323.
    [104] Goodwin, T. W. Adv. Enzymol., 1959, 21: 295-298.
    [105] Cannizzaro, C., Christensen, B., Nielsen, J., et al. Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metabolic Engineering, 2004,6: 340-351.
    [106] Visser H., van Ooyen, A. J. J, Verdoes J. C. Metablic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Research, 2003, 4: 221-231.
    [107] An, G. H., Cho, M. H., Johnson, E. A. Monocyclic carotenoids biosynthetic pathwayin the yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Journal of Bioscience and Bioengineering, 1999, 88, 189-193.
    [108] Domki, P. Phytochemistry, 1976, 15: 711-713.
    [109] Brinkhous, F. L., Rilling, H. C. Archives of Biochemistry Biophysics, 1988, 266: 607-611.
    [110] Cox, B., Hutson, J. L., Keeling, S. E., et al. Bioorganic & Medicinal Chemistry Letters, 1994, 4: 1931-1936.
    [111] Verdoes, J. C., Krubasik, P., Sandmann, G., et al. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Molecular & General Genetics, 1999, 262: 453-461.
    [112] Bey, P., Mayer, M., Kleinig, H. European Journal of Biochemistry, 1989, 184: 141.
    [113] Schnurr, G., Misawa, N., Sandmann, G. Biochemical Journal, 1996, 315: 869-874.
    [114] Cunningham, F. X., Pogson, B., Sun, Z. R., et al. Plant Cell, 1996, 8: 1613-1615.
    [115] Kajiwara, S., Fraser, P. D., Kondo, K., et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochemical Journal, 1997, 324: 421-426.
    [116] Verdoes, J. C., Wery, J., van Ooyen, A. J. J. Improved methods for transforming Phaffia strains, transformed Phaffia strains so obtained and recombinant DNA in said method. International Patent Application PCT/EP96/05887, 1996.
    [117] Verdoes, J. C., Misawa, N., van Ooyen, A. J. J. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnology and Bioengineering, 1999,63: 750-755.
    [118] Hoshino, T., Ojima, K., Setoguchi, Y. Astaxanthin synthetase. European Patent Application EP 1035206A1, 2000.
    [119] Cifuentes, V., Hermosilla, G., Martínez, C., et al. Genetics and electrophoretic karyotyping of wild-type and astaxanthin mutant strains of Phaffia rhodozyma.Antonie van Leeuwenhoek, 1997, 72: 111-117.
    [120] Wery, J., Gutker, D., Renniers, A. C. H. M., et al. High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene, 1997, 184: 89-97.
    [121] Verdoes, J. C., Wery, J., Boekhout, T., et al. Molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Phaffia rhodozyma. Yeast, 1997, 13, 1231-1242.
    [122] Visser, H., De Bont, J. A. M., Verdoes, J. C. Isolation and Characterization of the Epoxide Hydrolase-Encoding Gene from Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology, 1999, 65(12): 5459-5463.
    [123] Verdoes, J. C., Wery, J., van Ooyen, A. J. J. Codon usage in Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma). Biotechnology Letters, 2000, 22: 9–13.
    [124] Visser, H., Vreugdenhil, S., De Bont, J. A. M., et al. Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis. Applied Microbiology Biotechnology, 2000, 53: 415-419.
    [125] Visser, H., Weijers, C. A. G. M.,van Ooyen, A. J. J., et al. Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the genera Rhodotorula and Rhodosporidium. Biotechnology Letters, 2002, 24: 1687–1694.
    [126] Calo, P., Velázquez, J. B., Sieiro, C. et al. Analysis of astaxanthin and other carotenoids from several Phaffia rhodozyma mutants. Journal of Agricultural Food Chemistry, 1995, 43: 1396-1399.
    [127] Fang, T. J, Chiou, T. Y. Batch cultivation and astaxanthin production by a mutant of the red yeast, Phaffia rhodozyma NCHU-FS501. Journal of Industrial Microbiology, 1996, 16: 175-181.
    [128] 吕玉华,金征宇,徐学明.虾青素高产菌株的选育.生物技术, 1999, 9(5): 22-26.
    [129] Namthip, C. Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. Journal of Fermentation and Bioengineering, 1997,83(5): 429-434.
    [130] Chun, S. B., Chin, J. E., Bai, S. et al. Strain improvement of Phaffia rhodozyma by protoplast fusion. FEMS Microbiology Letters, 1992, 93: 221–226.
    [131] Santopietro, L. M. D, Spencer, J. F.T., Spencer, D. M., et al. Characterization of intergeneric hybrids obtained by protoplast fusion between Phaffia rhodozyma, Cryptoococcus laurentii and Saccharomyces cerevisiae. Biotechnology Techniques, 1997, 11(10): 769-771.
    [132] Namphip, C., Kakizono, T., Handa, T., et al. Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis. Biotechnology Letters, 1997, 19(3): 299-302.
    [133] Lewis, M. J., Ragot, N., Berlant, M. C., et al. Selection of astaxanthin overproducing mutants of Phaffia rhodozyma with β -ionona. Applied and Environmental Microbiology, 1990, 56: 2944-2945.
    [134] Sun, N., Lee, S., Song, K. B. Characterization of a carotenoid-hyperproducing yeast mutant isolated by low-dose gamma irradiation. International Journal of Food Microbiology, 2004, 94: 263-267.
    [135] An, G. H., Bielich, J., Auerbach, R. et al. Isolation and characerization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Bio/technology, 1991, 9: 70-73.
    [136] Wery, J., Verdoes, J. C., van Ooyen, A. J. J. Efficient transformation of the astaxanthin-producing yeast Phaffia rhodozyma. Biotechnology and Techniques, 1998, 12: 399-405.
    [137] Sandmann, G. Carotenoid biosynthesis in microorganisms and plants. European Journal of Biochemistry, 1994, 223: 7-24.
    [138] Misawa, N., Nakagawa, M., Kobayashi, K., et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. Journal of Bacteriology, 1990, 172: 6704-6712.
    [139] Misawa, N., Shimada, H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. Journal of Biotechnology, 1998, 59: 169-181.
    [140] Verdoes, J. C., van Ooyen, A. J. J. Isolation of the isopentenyl diphosphate isomerase encoding gene of Phaffia rhodozyma; improved carotenoid production in Escherichia coli. Acta Botanica Gallica, 1999, 146: 43-53.
    [141] Mayer, M.P., Hahn, F.M., Stillman, D.J., et al. Disruption and mapping of IDI1, the gene for isopentenyl diphosphate isomerase in Saccharomyces cerevisiae. Yeast, 1992, 8: 743-748.
    [142] Hahn, F.M., Hurlburt, A.P., Poulter, D. Escherichia coli open reading frame 696 is idi, a non-essential gene encoding isopentenyl diphosphate isomerase. Journal of Bacteriology, 1999, 181: 4499-4504.
    [143] Rohmer, M., Seemann, M., Horbach, S., et al. Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. Journal of the American Chemical Society, 1997, 118: 2564-2566.
    [144] Johnson, E. A., Lewis, M. J. Astaxanthin formation by the yeast Phaffia rhodozyma. Journal of General and Applied Microbiology, 1979, 115: 173-183.
    [145] Fang, T. J., Cheng, Y. Improvement of astaxanthin production by Phaffia rhodozyma through mutantion and optimization of culture conditions. Journal of Fermental Bioengineering, 1993, 75: 466-469.
    [146] Fontana, J. D., Czeczuga, B., Bonfim, T. M. B., et al. Bioproduction of carotenoids: the comparative use of raw sugarcane juice and depolymerized bagasse by Phaffia rhodozyma. Bioresource Technology, 1996, 58: 121-125.
    [147] Parajó, J. C., Santos, V., Vázquez, M. Optimization of carotenoids production by Phaffia rhodozyma cells growth on xylose. Process Biochemistry, 1998, 33(2): 181-187.
    [148] Vázquez, M., Martin, A. M. Optimization of Phaffia rhodozyma continuous culturethrough response surface methodology. Biotechnology and Bioengineering, 1998, 57: 314-320.
    [149] Martin, A. M., Acheampong, E., Patel. T. R., et al. Study of growth parameters for Phaffia rhodozyma cultivated in peat hydrolysates. Applied Biochemistry and Biotechnology, 1992, 37: 235-241.
    [150] Parajó, J. C., Santos, V., Vázquez, M., et al. Production of carotenoids by Xanthophyllomyces dendrorhous growing on enzymatic hydrolysates of prehydrolysed wood. Food Chemistry, 1997, 60: 347-355.
    [151] Fontana, J. D., Chocial, M. B., Baron, M., et al. Astaxanthinogenesis in the yeast Phaffia rhodozyma - Optimization of low-cost culture media and yeast cell wall lysis. Applied Biochemistry and Biotechnology, 1997, 63: 305-314.
    [152] Meyer, P. S., du Preez, J. C. Astaxanthin production by a Phaffia rhodozyma mutant on grape juice. World Journal of Microbiology & Biotechnology, 1994, 10: 178-183.
    [153] Calo, P., de Miguel, T., V á zquez, J. B., et al. Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma. Biotechnology Letters, 1995, 17: 575-578.
    [154] Meyer, P. S., du Preez, J. C. Effect of acetic acid on astaxanthin production. Biotechnology Letters, 1993, 15: 919-924.
    [155] Meyer, P. S., du Preez, J. C., van Dyk, M. S. The effect of monoterpenes on astaxanthin production by a mutant of Phaffia rhodozyma. Biotechnology Letters, 1994, 16: 125–128.
    [156] 朱明军.红法夫酵母培养生产虾青素的研究:[华南理工大学博士学位论文].华南理工大学, 2001.
    [157] 王怡平,肖亚中,丁毅.稀土元素对红酵母的生长及类胡萝卜素合成的影响.微生物学通报, 1999, 26(2):117-119.
    [158] 岁楼,刘凤珠,高建奇.红酵母类胡萝卜素发酵助剂的筛选及应用.食品与生物技术, 2002, 21(1): 1-4.
    [159] Flores-Cotera, L. B., Sánchez, S. Copper but not iron limitation increases astaxanthin production by Phaffia rhodozyma in a chemically defined medium. Biotechnology Letters, 2001, 23: 793-797.
    [160] Goldstein, J. L., Brown, M. S. Regulation of the mevalonate pathway. Nature, 1990, 343: 425-430.
    [161] Ruiz-Albert, J., Cerda.-Olmedo, E., Corrochano, L. M. Genes for mevalonate biosynthesis in Phycomyces. Molecular Genetics and Genomics, 2002, 266: 768-777.
    [162] Wang, G. Y., Keasling, J. D. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metabolic Engineering, 2002, 4: 193-201.
    [163] Schroeder, W. A., Johnson, E. A. Carotenoids protect Phaffia rhodozyma against singlet oxygen damage. Journal of Industrial Microbiology and Biotechnology, 1995, 14: 502-507.
    [164] Adrio, J. L., Veiga, M. Transformation of the astaxanthin-producing yeast Phaffia rhodozyma. Biotechnology Technique, 1995, 9(7): 509~512.
    [165] Schroeder, W. A., Johnson, E. A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. Journal Biological Chemistry, 1995, 270: 18374-18379.
    [166] Schroeder, W. A., Calo, P., Declercq, M. L., et al. Selection for carotenogenesis in the yeast Phaffia rhodozyma by dark - generated singlet oxygen. Microbiology, 1996, 142 :2923~2929.
    [167] Talora, C., Franchi, L., Linden, H., et al. Role of a white collar-1-white collar-2complex in blue-lightsignal transduction. EMBO Journal, 1999, 18: 4961-4968.
    [168] Cerda-Olmedo, E. Phycomyces and the biology of light and color. FEMS Microbiology Reviews, 2001, 25: 503-512.
    [169] Meyer, P. S., du Preez, J. C. Photo-regulated astaxanthin production by Phaffiarhodozyma mutants. Systemic and Applied Microbiology, 1994, 17: 24-31.
    [170] An, G. H., Johnson, E. A. Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie van Leeuwenhoek, 1990, 57: 191–203.
    [171] An, G. H. Improved growth of the red yeast, Phaffia rhodozyma (Xanthophyllomyces dendrorhous), in the presence of tricarboxylic acid cycle intermediates. Biotechnology Letters, 2001, 23: 1005–1009.
    [172] Diaz, A., Sieiro, C., Blanco, P., et al. Effect of squalene on astaxanthin production by a mutant of Phaffia rhodozyma.World Journal of Microbiology & Biotechnology, 2002, 18: 811–812.
    [173] Echavarri-Erasun, C., Johnson, E. A. Stimulation of astaxanthin formation in the yeast Xanthophyllomyces dendrorhous by the fungus Epicoccum nigrum. FEMS Yeast Research, 2004, 4: 511-519.
    [174] Wang, W. J., Zhou, P. P., Yu, L. J. Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. Bioresource Technology, 2006, 97(1): 26-31.
    [175] Bouvier, F., Backhaus, R. A., Camara, B., et al. Induction and control of chromoplast-specific carotenoids genes by oxidative stress. Journal of Biological Chemistry, 1998, 46: 30651-30658.
    [176] Kusdiyantini, E., Gaudin, P., Goma, G., et al. Growth kinetics and astaxanthin production of Phaffia rhodozyma on glycerol as a carbon source during batch fermentation. Biotechnology Letters, 1998, 20(10): 929–934.
    [177] Yamane, Y., Higashida, K., Nakashimada, Y. Astaxanthin production by Phaffia rhodozyma enhanced in fed-batch culture with glucose and ethanol feeding. Biotechnology Letters, 1997, 19(11): 1109–1111.
    [178] Meyer, P. S., du Preez, J. C. Effect of culture conditions on astaxanthin produciotn by a mutant of Phaffia rhodozyma in batch and chemostat culture. Applied Microbiology and Biotechnology, 1994, 40: 780-785.
    [179] Reyders, M. B., Rawlings, D. E., Harison, S. T. L. Studies on the growth, modeling and pigment production by the yeast Phaffia rhodozyma during fed-batch cultivation. Biotechnology Letters, 1996, 6: 649-654.
    [180] Johnson, E. A., Schroeder, W. A. Microbial carotenoids. In Advences in Biochemical Engineering/Biotechnology, ed. Fiechter, A. Heidelberg: Springer-Verlag. ISBN 3-540-59308-X, 1995, (53): 119-178.
    [181] An, G. H., Schuman, D. B., Johnson, E. A. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Applied and Environmental Microbiology, 1989, 55: 116-124.
    [182] 正交设计法编写组.正交实验设计法.上海:上海科技出版社,1979,211.
    [183] Sedmark, J. J., Weerasinghe, D. K., Jolly, S. O. Extraction and quantitation of astaxanthin from Phaffia rhodozyma. Biotechnology Technique, 1990, 4: 107-112.
    [184] Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Annals Chemistry, 1959, 31: 426-428.
    [185] Schuessler, H., Schilling, K. Oxygen effect in the radiolysis of proteins. International Journal of Radiation Biology, 1984, 5: 267-281.
    [186] Cho, Y., Yang, J., Song, K. B. Effect of ascorbic acid and protein concentration on the molecular weight profile of BSA and β-lactog lobulin by γ-irradiation. Food Research International, 1999, 32: 515–519.
    [187] Moon, S., Song, K.B. Effect of g-irradiation on the molecular properties of ovalbumin and ovomucoid and protection by ascorbic acid. Food Chemistry, 2001, 74: 85– 89.
    [188] Schroeder, W.A., Johnson, E.A. Antioxidant role of carotenoids in Phaffia rhodozyma. Journal of General and Applied Microbiology , 1993, 139: 907– 912.
    [189] Yamane. Y. I., Higashida, K., Nakashimada, Y. Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Applied and EnvironmentalMicrobiologyntal and Microbiology, 1997, 63: 4471-4478.
    [190] Nells, L. P., Wegner, E. H. Treatment of Phaffia rhodozyma. European Patent 0553814A1, 1993.
    [191] Davies, B. H. Carotenoids. In: Goodwin TW, ed. Chemistry and Biochemistry of Plant Pigments. London, Academic Press, 1976:38-165.
    [192] 贾士儒.生物反应工程原理.天津,南开大学出版社,1990:193-195.
    [193] Rols, J. L., Fonade, J. S. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnology Bioengineering, 1990, 35: 427-435.
    [194] Junker, B. H., Hatton,T. A.,Wang, D. I. C. Oxygen transfer enhancement in aqueous/perfluroocarbon fermentation systems. Biotechnology and Bioengineering, 1990, 35: 578-585.
    [195] Van Sonsbeek, H. M., Beeftink, H. H., Tramper, J. Two-liquid-phase bioreactors. Enzyme and Microbial Technology, 1993,15(9): 722-729.
    [196] Cehn, Z., Silra, H., Klessing, D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science,1993, 262(5):1883-1886.
    [197] Gu, W. L., An, G. H., Johnson, E. A. Ethanol increases carotenoid production in Phaffia rhodozyma. Journal of Industrial Microbiology and Biotechnology, 1997, 19: 114-117.
    [198] 梁新乐.法夫酵母生物合成虾青素的研究:[浙江大学博士学位论文].浙江大学,2001.
    [199] Flores-Cotera, L. B., Martin, R., Sanchez, S. Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Applied Microbiology and Biotechnology, 2001, 55: 341-347.
    [200] Vázquez, M., Santos, V., Parajó, J. C. Effect of the carbon source on the carotenoid profiles of Phaffia rhodozyma strains. Journal of Industrial Microbiology and Biotechnology, 1997, 19(4): 263-268.
    [201] 周蓬蓬,秦文敏,余龙江,朱敏.调节己糖磷酸途径提高被孢霉花生四烯酸产量.华中科技大学学报,2002,30(9):108-110.
    [202] Ebel, J., Scheel, D. Genes involved in plant defense, In: Boller T, Meins(ed.). Plant gene research.Vienna, Austria: Springer-Verlag Wien, 1992: 183-205.
    [203] Ekah, O. U. A note on properties of pigments produced by Epicoccum nigrum. Experientia, 1970, 25: 924.
    [204] Foppen, F. H., Grivanovski-Sassu, O. Carotengenesis in diphenylamine treated Epicoccum nigrum. Biochimca Biophysica Acta, 1969, 176: 357-366.
    [205] 韩建荣,黄登宇,刘改花.微生物诱导子对青霉 PT95 菌株菌核生物量和类胡萝卜素产率的影响.生物工程学报, 2002, 18(3): 369-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700