基于核酸适配体化学发光检测新技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸适配体是近年来发展起来的一类经体外人工合成筛选出的单链寡核苷酸,能高效、特异性地结合各种生物目标分子,故它的出现为化学生物学界和生物医学界提供了一种新的高效快速识别的研究平台。目前生物分子检测通常采用抗原抗体特异相互作用识别模式,但由于受到抗体易失活、制备时间较长等因素的影响,在一定程度上限制了抗体检测技术的广泛应用。相比之下,核酸适配体自身稳定性好、制备合成相对简单、快速、易获得、易功能化修饰与标记,且在生物传感器设计中应用灵活等优点,近几年在生物分析检测方面备受关注。目前已经成为临床诊断、环境监测、药学研究等许多领域中的研究热点。
     化学发光(CL)分析法具有不需光源,避免了杂散光的干扰,仪器设备简单、操作简便,具有极高的灵敏度,较宽的检测范围,可实现全自动化等特点,正逐渐成为分析检测中极为有用的工具,随着与众多学科交叉研究和应用领域的扩展,目前已成功地应用在药学、生物学、分子生物学、临床医学和环境学等诸多领域。在本论文中,我们采用化学发光分析法,利用核酸适配体对目标分子的高分辨识别,发展了多种具有创新意义的化学发光适配体生物传感器,也实现了同一份样品中双组分的同时检测。整个论文由以下五部分构成:
     第一章:绪论
     本绪论由两节构成,第一节介绍了核酸适配体技术检测生物分子的研究进展,包括了三部分。第一部分中简单介绍了核酸适配体的制备、特点、优势以及在分析领域中的应用;第二部分中介绍了基于核酸适配体识别模式的单组分检测技术的研究进展及其意义,主要内容包括:光检测、电化学检测以及其他检测方法,并列举了近年来分析领域中的部分典型示例;第三部分中介绍了基于核酸适配体识别模式的多组分检测技术的研究进展及其意义,也列举了近年来它们在该分析领域中的部分典型示例。第二节阐述了化学发光多组分酶检测研究进展以及本课题研究的目的、意义、主要研究内容以及创新之处,即核酸适配体在化学发光领域中应用与展望。
     第二章:基于核酸适配体的化学发光无标记检测腺苷的新技术
     由于目标分子在适配体上精确的结合位点与构象变化通常并不十分清楚,直接导致合适标记核酸适配体存在一定的难度,因此,适配体的无标记型检测技术已成为近年来的研究热点,尤其在生物检测、环境监控等领域无标记简单快速检测具有非常重要的意义。本章以腺苷为研究对象,采用羧基修饰的磁性微球作为分离载体,基于3,4,5-三甲氧基苯甲酰甲醛(TMPG)与鸟嘌呤(G)碱基之间的瞬时化学发光衍生反应,实现了生物小分子腺苷的无标记检测。本章包括以下两种腺苷检测原理的设计,具体实验步骤如下:(1)活化磁性微球,固定捕获探针序列;(2)方法A:一定量的适配体先与不同量的腺苷特异性结合,随后剩余的自由腺苷适配体与捕获探针序列在磁性微球表面进行杂交反应,从而连接在磁性微球上;方法B:适配体先与捕获探针序列进行杂交反应,随后加入不同量的腺苷,导致部分适配体序列脱离磁性微球表面,与溶液中腺苷形成复合物;(3)磁性分离后,TMPG直接检测结合在磁性微球表面的适配体中G碱基产生的CL信号,进行腺苷间接定量。结果表明:该两种方法均具有准确可靠、重现性和选择性好的特点。第一种方法的最低腺苷检测限为8×10~(-8)M,腺苷浓度在4×10~(-7)-1×10_(-5)M范围内,CL信号呈线性增加(R~2=0.9852);第二种方法的腺苷浓度在4×10~(-2)5×10(_5)M范围内,CL信号呈线性增加(R~=0.9764)。综合而言:本章发展的无标记检测生物小分子腺苷的CL新技术,具有简单,快速,灵敏度高等特点,有望在临床诊断、药学研究以及环境监测等领域发挥作用。
     第三章:基于核酸适配体的无标记化学发光检测PDGF-BB的新技术
     血小板源细胞衍生化生长因子(PDGF)是血清中由多种细胞所产生的能刺激增生平滑肌细胞、胶质细胞等的一种多肽,具有广泛的生理活性。PDGF-BB作为PDGF的主要亚型之一,近年来研究发现其含量对细胞转化和肿瘤生长有直接的影响,对PDGF-BB的检测在生物学上具有重要的意义。本章构建了一种基于抗体-抗原-核酸适配体的夹心反应模式,检测PDGF-BB的化学发光新技术。检测步骤如下:通过羧基氨基反应将PDGF-BB抗体固定在羧基磁性微球上,加入PDGF-BB、核酸适配体,形成抗体-抗原-核酸适配体的夹心复合物。洗涤后,利用TMPG直接检测磁性微球表面结合的PDGF-BB适配体上G碱基,无标记直接检测生物大分子PDGF-BB。随后,在此基础上构建了G_(20)放大检测技术,即在生物素化的适配体序列一端连接富含G碱基的DNA片段,借助链霉亲合素作为放大载体,构建了一种高效的放大检测技术。不放大技术的最低可检测浓度为1×10~(-8)M,目标蛋白浓度在1×10~(-8)-2×10_(-7)M范围内,CL信号呈线性增加(R~2=0.9901);G_(20)放大技术最低可检测浓度为4×10~(-10)M,较不放大技术灵敏度提高25倍,目标蛋白浓度在4×10~(-10)-2×10~(-8)M范围内,CL信号呈线性增加(R~2=0.9954),重现性良好,操作简便,成本低,适合进一步拓展。综上所述,此种无标记PDGF-BB化学发光检测技术,有望为临床应用领域的定量分析提供有价值的手段。
     第四章:基于适配体特异性结合与磁性微球富集的化学发光检测ATP新技术
     免疫磁性微球富集法是一种高效、简单快速的筛选方法。在从复杂样品中富集和纯化低含量的样品方面,免疫磁性微球具有独特的优势:一,它的不规则形状使其拥有较大的比表面积,富集效率高,磁性微球表面结合探针数目多,能偶合大量的目标物;二,优质的磁性微球具有高度的均一性和良好的顺磁性,在与复杂的生物样品反应时受到颗粒性杂质等的影响较小;三,移液器吸去没有反应的生物分子时,由于表面吸附原因,看似吸干的磁性微球上存有少量的液体,这有利于在操作过程中暂时保护生物分子的活性。本章我们在免疫磁性微球载体表面化学偶联了三磷酸腺苷(ATP)核酸适配体,这种磁性微球能够在混合体系中特异性捕获ATP分子,用CL方法测定免疫磁性微球特异性捕获目标分子的富集效果。结果表明磁性微球均能特异性富集目标分子,纯化分离ATP分子,并实现对其的准确可靠分析,其最低检测限1×10~(-8)M,在1×10~(-8)-1×10~(-5)M范围内,CL信号和浓度有良好的线性关系(R~2=0.9918)。综合而言,免疫磁性微球高效的富集性和适配体高度的特异性,在生物分子的纯化分离和检测工作中,将会显示出良好的开发应用前景。
     第五章:基于核酸适配体的双组分化学发光生物传感器新技术
     鉴于第二章中腺苷检测技术取得的成果,本章尝试将这种新型的适配体分辨CL技术拓宽至两种小分子的同时检测。为此,本章以腺苷和可卡因作为分析物,采用碱性磷酸酯酶(ALP)和辣根过氧化物酶(HRP)作为双组分标记物,实现了两种小分子的同时检测。整个分析过程由以下三步构成:(1)以羧基修饰的磁性微球作为载体,活化后固定捕获探针序列,随后分别与两条核酸适配体序列杂交,再与生物素和地高辛修饰的两条报告序列反应,制备两种不同的核酸适配体生物传感器;(2)加入目标分子腺苷和可卡因混合物,由于适配体和目标分子的结合反应,导致部分报告序列脱离磁性微球表面;(3)依据两种标记物的性质差异加入相应的酶进行反应,结束后分离洗涤,将磁性微球载体均分两份,用相应的酶底物试剂盒进行检测。研究结果表明:该法腺苷和可卡因的最低检测浓度均达到10~(-8)M。综合而言,该实验利用核酸适配体差异分辨,进行单载体、双标记实现两种小分子腺苷和可卡因的同时检测;具有仪器设备简单、操作简便的特点,有望在多组分生物小分子的分析测定等方面发挥重要的作用。
DNA aptamers are synthetic single-strand nucleic acids discriminated by screening in vitro,which are of high affinity and specificity to many given targets ranging from small molecules to large proteins and even cells.Some new methods for efficient and fast detection in biochemical and biomedical fields are being developed based on the molecular recognition of aptamers.Aptamers have been demonstrated to have advantages over antibodies with regard to chemical stability,readily availability, simple modifiability,and high flexibility in biosensor design for analyte detection.As a novel functional molecular,aptamers have gained considerable interest in bio-analytical application in many fields such as clinical diagnosis,environmental supervision,pharmacal study,etc.
     Chemiluminescence(CL)has been exploited within a wide range of applications in various fields,due to their extremely high sensitivity along with their extra advantages such as needless special light,simple instrument,wide calibration ranges, and suitability for automatical operation in analytical chemistry.Nowadays,based on cross-research with other disciplines,CL has been successfully served for different applications.Our study developed a series of novel detection technologies on the strength of the high specifically binding between aptamers and its corresponding ligands in the thesis.And simultaneous detection of two molecules in one sample has been made grounded on aptamer switch.Description of research in the thesis is presented as follows:
     Chapter 1:Introduction
     This chapter is composed of two phases.The first phase addresses the source,traits, and advantages of aptamers and outlines aptamer-based detection techniques,then presents single analysis of current studies based on aptamer in detail,including optical aptasensors,electrochemical aptasensors,and other mass sensitive aptasensors. Following that,the multiplex analysis has been also stated in the development of aptamer-based biosensors and bioassay methods.The second phase of this chapter reviews current simultaneous multi-analytes detection by substrate-resolved CL technology exampled HRP and ALP in assay field.With that,objectives,significance, contents of this CL research based on aptamer are summarized.
     Chapter 2:Label-free aptamer-based chemiluminescence detection of adenosine
     Owing to no elucidation for the binding property of aptamer,it has difficult to label on aptamer and the label process would affect the binding affinity between the targets and their aptamers to a greater or lesser degree.Consequently,some label-free detection methods have been focused to develop,especially in some fileds like bioassay and environmental supervision.In this chapter,employing magnetic bead as a special biomolecule separating carrier,we demonstrate a sensitive CL aptasensor for label-free adenosine assay based on 3,4,5-trimethoxyl-phenylglyoxal(TMPG)as the signal molecule,which reacts specially and instantaneously with guanine nucleobases of adenosine-binding aptamer strands.We designed two different experimental routes for assay and the sketchy experiment steps were described as follows.(1)The magnetic beads were activated and the capture DNA immobilized on magnetic beads by the force of NH_2-COOH covalent bind.(2)Route A:The excess and quantitative adenosine aptamers reacted with different amounts of adenosine and formed an adenosine-aptamer complex.Then the rest free aptamer,along with the complex,were hybridized with capture DNA immobiled on magnetic beads.Route B:the aptamers first hybridized with capture DNA-magnetic bead conjugates and then reacted with adenosine.When adenosine as a specific competitor appeared,parts of aptamer were compelled to take apart from the magnetic beads and formed an adenosine-aptamer complex.(3)After speration by magnetic force,The CL signal was gotten from the raction between TMPG and guanine nucleobases of aptamer strands on magnetic beads.Using this system,adenosine could be specifically detected and a relatively low detection limit(8×10~(-8)M)as well as a wide linear dynamic range(4×10~(-7)-1×10~(-5) M)could be achieved with route A(R~2=0.9852).With route B,adenosine can be detected in a shorter range from 4×10~(-7)M to 5×10~(-5)M(R~2=0.9764).Overall,the label-free protocol described here may have value in a variety of clinical,pharmacal and environmental applications for which the simple,fast and accurate quantitative analysis of biomolecular adenosine is desired.
     Chapter 3:Label-free aptamer-based chemiluminescence detection of PDGF-BB
     Platelet-derived growth factor(PDGF)is a ubiquitous mitogen and chemotactic polypeptide present in serum for stimulating cells of mesenchymal origin and elicits multifunctional actions with a variety of cells.PDGF-BB,one of the important isoforms of PDGF,has been directly implicated in the cell transformation process and in tumor growth and progression.And the detection of PDGF-BB is of very valuable in biological fields.In this chapter,a“sandwich-type”detection strategy was employed in our design to make PDGF-BB detection.The procedure was as follows. Anti-PDGF-BB antibody immobilized on the surface of carboxyl terminated magnetic beads and DNA aptamers,both of which flanked PDGF-BB.After washing,the CL signal was obtained via the instantaneous derivatization reaction between TMPG and guanines nucleotides of aptamer to detect target protein without any label procedure. On this ground,an amplified CL approach was investigated employing G-rich sequence linked with aptamer as the amplification unit.The streptavidin was employed as an amplification platform to develop a high effective CL approach. Nonamplified approach achieved a good linear correlation from 1×10~(-8)to 2×10~(-7)M with the lowest detection concentration(1×10~(-8)M)and correlation coefficient (R~2=0.9901).In amplified approach,an excellent linearity was found within the range of 4×l0~(-10)-2×10~(-8)M(R~2=0.9954)with the lowest detection concentration of 4×10~(10), which was 25-fold improvement on nonamplified methods.The result demonstrated that this assay was reproducible,speedy,easy to use and suitable to make further development.In a word,this novel lable-free CL approach provided great promise for PDGF-BB assay in clinical field.
     Chapter 4:ATP CL determination coupled the enrichment of magnetic beads with the specific binding of aptamer
     The enrichment of immuno-magnetic beads is one of simple,speedy and high efficient screening methods.For one complicate sample with trace quantities of targets,it has unique merits following as:First,The irregular shape of the magnetic beads allows for much greater surface area.The large surface area results in high binding capacities,allowing much more targets captured with increasing capture probes on magnetic beads.Second,magnetic beads with high quality have great homogenicity and paramagnetism,which guarantee smoothly reaction with biomolecular without any intervention from any particle impurity.Third,Most of the rinsing solution was removed by pipet,but some buffer liquid(~3μL)remained around the magnetic beads because of the force of superficial adsorption.It was almost impossible to dry the sample completely and this benefited the prolonged active of biomolecular.Greater magnetic responsiveness results in faster magnetic separations especially on high throughput automated platforms.In this chapter,we employed adenosine triphosphate(ATP)aptamer as capture probe to covalently bind on magnetic beads.ATP present in trace quantities were enriched from the mixed sample on the magnetic beads and could be rapidly isolated from the sample by employing an external magnetic field in order to make CL detection.Experimental results confirm that it has good sensitivity with a detection limit of 1×10~(-8)M for ATP. ATP could be specifically isolated and detected and a wide linear dynamic range (1×10~(-8)-1×10~(-5)M)could be achieved(R~2=0.9918).On the whole,by using magnetic beads with great enrichment and aptamer with high discrimination,this method may show good perceptive on the purification and detection of biomolecular.
     Chapter 5:Simultaneous detection founded on sptasensors by CL technology
     A novel aptamer-based CL biosensing platform for the simultaneous detection of two small molecules as exemplified by adenosine and cocaine has been developed. Herein,we employed magnetic bead as the special biomolecule immobilizing carrier and made CL detection catalyzed by two labeled enzymes of alkaline phosphatase (ALP)and horseradish peroxidase(HRP).The principles of homogeneous substrate-resolved technology for CL detection have three steps:(1)preparation of adenosine and cocain aptamer-linked biosensors based on magnetic beads as carriers; (2)binding with a mixture of adenosine and cocaine to initiate target-aptamer reactions;(3)reacting with a mixed solution of Digoxin-ALP and Strepavidin-HRP followed by magnetic force separation of the magnetic beads conjugates and parallel detection of CL signals from HRP and ALP with their corresponding assay kits. Experimental results confirm that this CL immunosensing platform has good sensitivity with the lowest detection concentration of 1×10~(-8)M for adenosine and cocaine.On the whole,by using different aptamers,this method may offer a new direction in designing high-performance CL aptasensors for sensitive simultaneous determination of small molecules.And the technique would play an important role in multiplex analysis for biomoleculars with simple instrument and convenient procedure.
引文
[1] Patel, D. J. Structural analysis of nucleic acid aptamers [J]. Curr. Opin. Chem. Biol. 1997,1, 32-46.
    [2] Hermann, T.; Patel, D. J. Biochemistry-adaptive recognition by nucleic acid aptamers [J].Science, 2000, 287, 820-825.
    [3] Patel, D. J.; Suri, A. K. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics [J]. J. Biotechnol. 2000, 74, 39-60.
    [4] Famulok, M.; Jenne, A. Oligonucleotide libraries-variatio delectate [J].Curr. Opin. Chem. Biol. 1998, 2, 320-327.
    [5] Famulok, M.; Mayer, G. Aptamers as tools in molecular biology and immunology [J]. Curr. Top. Microbiol. Immunol. 1999, 243 ,123-136.
    [6] Hesselberth, J.; Robertson, M. P.; Jhaveri, S.; Ellington, A. D. In vitro selection of nucleic acids for diagnostic applications [J]. J.Biotechnol. 2000, 74, 15-25.
    [7] Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346, 818-822.
    [8] Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249, 505- 510.
    [9] Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX-A (r)evolutionary method to generate high affinity nucleic acid ligands [J]. Biomol. Eng. 2007, 24, 381-403.
    [10] Mukhopadhyay, R. Aptamers are ready for the spotlight [J]. Anal. Chem. 2005, 77, 114A-118A.
    [11] Jayasena, S.D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics [J].Clin. Chem. 1999, 45,1628-1650.
    [12] Willner, I.; Zayats, M. Electronic Aptamer-Based Sensors [J]. Angew. Chem. Int. Ed Engl. 2007, 46, 6408-6418.
    [13] Famulok, M.; Hartig, J.S.; Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy [J]. Chemical Reviews, 2007, 107(9): 3715-3738.
    [14] Shangguan, D.; Li,Y.; Tang, Z.; Cao,Z.C.; Chen,H.W.; Mallikaratchy,P.; Sefah,K.;Yang,C.J.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study[J]. Proc. Natl. Acad. Sci. U. S. A. 2006,103, 11838-11843.
    [15] Ramos,E.; Pineiro,D.; Soto,M.; Abanades,D.R.; Martin, M.E.; Salinas,M.; Gonzalez,V.M. A DNA aptamer population specifically detects leishmania infantum H_2A antigen [J]. Lab. Invest. 2007, 87,409-416.
    [16] Niu, W.; Jiang, N.; Hu, Y. Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides[J]. Anal. Biochem. 2007, 362,126-135.
    [17] Lee, S.; Kim,Y.S.; Jo,M.; Jin,M.; Lee,D.K.; Kim,S. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen[J]. Biochem. Biophys. Res. Commun. 2007,358,47-52.
    [18] Ikanovic, M.; Rudzinski,W.E.; Bruno,J.G.; Allman, A.; Carrillo,M.P.; Dwarakanath, S.; Bhahdigadi,S.; Rao, P.; Kiel, J.L.; Andrews, C.J. Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores[J]. J. Fluoresc. 2007,17,193-199.
    [19] De-los-Santos-Alvarez, N.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B[J]. J. Am. Chem. Soc. 2007,129, 3808-3821.
    [20] Senior, K. Aptamers as potential probes for canceT[J].Lancet Oncol. 2006, 7, 712-712.
    [21] Rupcich, N.; Nutiu,R.; Li,Y.; Brennan, J.D. Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer[J].Angew. Chem. Int. Ed. Engl. 2006,45, 3295-3299.
    [22] Rankin, C.J.; Fuller,E.N.; Hamor,K.H.; Gabarra, S.A.; Shields, T.P. A simple fluorescent biosensor for theophylline based on its RNA aptamer[J]. Nucleos. Nucleot. Nucl. 2006,25,1407-1426.
    [23] Guthrie, J.W.; Hamula,C.L.; Zhang,H.; Le,X.C. Assays for cytokines using aptamers [J]. Methods, 2006,38, 324-330.
    [24] Minunni,M.; Tombelli,S.; Gullotto,A.; Luzi,E.; Mascini,M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein [J]. Biosens. Bioelectron. 2004,20, 1149-1156.
    [25] Stojanovic, M.N.; Landry, D.W. Aptamer-based colorimetric probe for cocaine[J]. J. Am. Chem. Soc. 2002,124, 9678-9679.
    [26] Tombelli, S.; Mascini, R.; Braccini, L.; Anichini, M .; Turner, APF. Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms [J]. Biosens. Bioelectron. 2005,15(7-8): 363-370.
    [27] Cheng, A.K.;Ge,B.;Yu,H.Z. Aptamer-based biosensors for label-free voltammetric detection of lysozyme [J]. Anal. Chem.2001,79,5158-5164.
    [28] Li,B.; Du,Y.; Wei,H.; Dong,,S.J. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules [J]. Chem. Commun. 2007, 3780-3782.
    [29] Schlecht, U; Malave,A.; Gronewold, T; Tewes, M; Lohndorf,M. Comparison of antibody and aptamer receptors for the specific detection of thrombin with a nanometer gap-sized impedance biosensor [J]. Anal. Chim. Acta. 2006,573, 65-68.
    [30] Bang, G.S.; Cho, S.; Kim,BG. A novel electrochemical detection method for aptamer biosensors [J].Biosens.Bioelectron.2005, 21,863-870.
    [31] Rodriguez,M.C.;Kawde,A.N.;Wang,J.Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface chargeElectronic supplementary information (ESI) available: Related instrumentation, reagents, immobilization schemes and procedures [J]. Chem. Commun. 2005, 5(34):4267-4269.
    [32] Jiang,Y.X; Fang,X.H; Bai, C.L. Signaling aptamer/protein binding by a molecular light switch complex[J]. Anal. Chem. 2004, 76, 5230-5235.
    [33] Zayats, M; Huang, Y; Gill, R; Ma, C.W.; Willner, I. Label-free and reagentless aptamer-based sensors for small molecules [J]. J. Am. Chem. Soc. 2006, 128, 13666-13667.
    [34] Nutiu, R.; Li, Y.F. Structure-switching signaling aptamers[J]. J. Am. Chem. Soc. 2003,125,4771-4778.
    [35] Choi,J. H.; Chen,K. H.; Strano M. S. Aptamer-capped nanocrystal quantum dots:A new method for label-free protein detection [J].J. Am. Chem. Soc. 2006, 128(49):15584-15585.
    [36] Mucic, R.C.; Storhoff, J.; Mirkin, J. DNA-directed synthesis of binary nanoparticle network materials[J].J.Am. Chem. Soc.1998,120: 12674-12675.; [37] Mitchell, GR; Mirkin, C.A.; Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots[J]. J. Am. Chem. Soc. 1999, 121: 8122-8123.
    [38] Storhoff,J. J.; Elghanian, R.;Mucic, R. C.; et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J]. J. Am. Chem. Soc. 1998, 120: 1959-1964.
    [39] Elghanian, R. Storhoff, J. J.;Mucic, R.C.; et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997,277(22): 1078-1080.
    [40] Storhoff, J.J; Lazarides, A.A; Mucic, R.C.; et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? [J]. J. Am. Chem. Soc. 2000,122 (19): 4640-4650.
    [41] Pavlov, V. Xiao, Y. Shlyahovsky, B. Willner. I. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc, 2004,126 (38): 11768-11769.
    [42] Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J.J. Selection of single-stranded-DNA molecules that bind and inhibit human thrombin [J].Nature, 1992,355, 564-566.
    [43] Macaya, R. F.; Waldron, J. A.; Beutel,B. A.; Gao, H. T.; Joesten, M. E.; Yang, M. H.; Patel, R.; Bertelsen, A.H.; Cook, A. F. Structural and functional-characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs [J]. Biochemistry, 1995, 34,4478-4492.
    [44] Klussmann, S. The Aptamer Handbook: Functional oligonucleotides and their applications[M].WILEY-VCH Verlag GMBH & Co. KGAA: New York, 2006.
    [45] Zhang, J.;Wang, L.H.; Pan, D.; Song, S.P.; Boey, F.Y.C.; Zhang, H.; Fan, C.H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures[J]. Small, 2008,4(8): 1196-1200.
    [46] Deckert, F.; Legay, F. Development and validation of an immunoreceptor assay for simulect based on surface plasmon resonance[J].Anal. Biochem. 1999, 274, 81-89.
    [47] Balamurugan, S. ; Obubuafo, A.; Soper,S. A.; McCarley,R. L.; Spivak, D.A. Designing highly specific biosensing surfaces using aptamer monolayers on gold[J]. Langmuir, 2006,22 (14): 6446-6453.
    [48] Vutukuru, S. R.; Bethi, R. S.; Kane, R. S. Protein interactions with self-assembled monolayers presenting multimodal ligands: A surface plasmon resonance study [J].Langmuir, 2006, 22, 10152-10156.
    [49] Dong, Y.; Phillips, K. S.; Cheng, Q. Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs) [J].Lab Chip, 2006, 6, 675-681.
    [50] Georgiadis, R.; Peterling, K. P.; Peterson, A. W. Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy [J]. J. Am. Chem. Soc. 2000, 122(13):3166-3173.
    [51]Wang,J.;Zhou,H.S.Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules[J].Anal.Chem.2008,80(18):7174-7178.
    [52]Lee,S.J.;Youn,B.S.;Park,J.W.;Niazi,J.H.;Kim,Y.S.;Gu,M.B.ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes[J].Anal.Chem.2008,80(8):2867-2873.
    [53]Xu,D.K.;Xu,D.W.;Yu,X.B.;Liu,Z.H.;He,W.;Ma,Z.Q.Label-free electrochemical detection for aptamer-based array electrodes[J].Anal.Chem.2005,77,5107-5113.
    [54]Radi,A.E.;Sanchez,J.L.A.;Baldrich,E.;O'Sullivan,C.K.Reusable impedimetric aptasensor[J].Anal.Chem.2005,77,6320-6323.
    [55]Mir,M.;Katakis,I.Aptamers as elements of bioelectronic devices[J].Mol.Biosyst.2007,3,620-622.
    [56]Xiao,Y.;Lubin,A.A.;Heeger,A.J.;Plaxco,K.W.Label-free electronic detection of thrombin inblood serum by using an aptamer-based sensor[J].Angew.Chem.Int.Ed Engl.2005,44,5456-5459.
    [57]Ikebukuro,K.;Kiyohara,C.;Sode,K.Novel electrochemical sensor system for protein using the aptamers in sandwich manner[J].Biosens.Bioelectron.2005,20,2168-2172.
    [58]Li,W.;Nie,Z.;Xu,X.;Shen,Q.;Deng,C.;Chen,J.;Yao,S.A sensitive,label free electrochemical aptasensor for ATP detection[J].Talanta 2009,78,954-958.
    [59]郑静,林莉,程圭芳,王安宝,谭雪莲,何品刚,方禹之.基于核酸适配体和纳米材料的凝血酶蛋白特异性识别电化学生物传感器[J].中国科学B辑化学2006,36(6):485-492.
    [60]周龙,欧丽娟,陈珂.基于核酸识体的滚环DNA扩增反应用于PDGF-BB的检测[J].化学传感器 2006.26(4):12-17.
    [61]Rodriguez,M.C.;Rivas,G.A.Label-free electrochemical aptasensor for the detection of lysozyme[J].Talanta 2009,78,212-216.
    [62]Fojta,M.;Kostecka,P.;Trefulka,M.;Havran,L.;Palecek,E.“Multicolor”electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes[J].Anal Chem.2007,79,1022-1029.
    [63]Fojta,M.;Havran,L.;Kizek,R.;Billova,S.;Palecek,E.Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats[J]. Biosens. Bioelectron. 2004,20,985-994.
    [64] Fan, C.H.; Plaxco, K.W.; Heeger, A.J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J]. Proc. Natl. Acad. Sci. U.S.A. 2003,100(16): 9134-9137.
    [65] Radi, A. E.; Sanchez, J. L. A.; Baldrich, E.; O'Sullivan, C. K. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor[J]. J. Am. Chem. Soc. 2006,128, 117-124.
    [66] Hurley, D. J.; Tor, Y. Ru(Ⅱ) and Os(Ⅱ) nucleosides and oligonucleotides: synthesis and properties[J]. J. Am. Chem. Soc. 2002,124, 3749-3762.
    [67] Mukumoto, K.; Nojima, T.; Takenaka, S. Synthesis of ferrocenylcarbodiimide as a convenient electrochemically active labeling reagent for nucleic acids [J]. Tetrahedron. 2005, 61, 11705-11715.
    [68] Navarro, A. E.; Spinelli, N.; Moustrou, C.; Chaix, C.; Mandrand, B.; Brisset, H. Automated synthesis of new ferrocenyl-modified oligonucleotides: study of their properties in solution[J]. Nucleic Acids Res. 2004,32(17), 5310-5319.
    [69] Deng,C.; Chen,J.; Nie,Z.; Wang, M.; Chu,X.; Chen, X.; Xiao, X.; Lei,C.; Yao,S. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles [J]. Anal. Chem. 2009, 81, 739-745.
    [70] Lehmann,M.; Baumann,W.;Brischwein W,et al. Non-invasive measurement of cell memberane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical appications [J]. Biosens. Bioelectron. 2000,15(3):117-124.
    [71]Sant,W.; Pourciel,M.L.;Launay,J.Development of chemical field effect transistors for the detection of urea[J]. Sensors and Acuators B, 2003, 95(3):309-314.
    [72] khaled, A.; Guo, S.; Li, F.; Guo, P.X. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology [J]. Nano Lett. 2005, 5(9): 1797-1808.
    [73] Wang, X.; Zhou, J.; Yun,W; Xiao,S.; Chang,Z.; He,P.; Fang Y. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)_3~(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal. Chim. Acta. 2007, 598, 242-248.
    [74] Wang, J.; Nielsen P.E.; Jiang, M. Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance[J]. Anal. Chem. 1997, 69(24):5200-5202.
    [75] Hrapovic,S.; Luong, J. H. T. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization [J].Anal. Chem. 2003, 75 (14): 3308-3315.
    [76] Zhang,S.; Zhong, H.; Ding, C. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles [J]. Anal. Chem. 2008, 80 (19): 7206-7212.
    [77] Ferapontova, E.E.; Olsen, E.M.; Gothelf, K.V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum[J]. J. Am. Chem. Soc, 2008,130 (13):4256-4258.
    [78]Cheng,A.K.; Ge,H.B.; Yu, H. Aptamer-based biosensors for label-free voltammetric detection of lysozyme[J]. Anal. Chem. 2007, 79 (14): 5158-5164.
    [79] Mir, M.; Katakis, I. Aptamers as elements of bioelectronic devices [J]. Mol. BioSyst. 2007, 3, 620-622.
    [80] Michaud, M.; Jourdan, E.; Villet,A.; Ravel,A.; Grosset, C.; Peyrin, E. A DNA aptamer as a new target-specific chiral selector for HPLC[J]. J. Am. Chem. Soc. 2003,125 (28): 8672-8675.
    [81] Michaud, M.; Jourdan,E.; Ravelet,C.; Villet, A.; Ravel,A.; Grosset,C.; Peyrin, E. Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers[J]. Anal. Chem. 2004, 76 (4): 1015-1020.
    [82] Zhao, Q.; Li, X.; Shao,Y.; Le. X.C. Aptamer-based affinity chromatographic assays for thrombin[J]. Anal. Chem. 2008, 80 (19): 7586-7593.
    [83] Wang, H.; Lu, M.; Le, X. C. DNA-driven focusing for protein-DNA binding assays using capillary electrophoresis[J]. Anal Chem, 2005, 77 (15): 4985-4990.
    [84] German,I.; Buchanan,D. D.; Kennedy, R.T. Aptamers as ligands in affinity probe capillary electrophoresis[J]. Anal. Chem. 1998, 70 (21): 4540-4545.
    [85] Dick, L. W.; McGown, L. B. Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry [J]. Anal. Chem. 2004, 76, 3037-3041.
    [86] Yoshida, W.;Sode, K.; Ikebukuro, K. Aptameric enzyme subunit for biosensing based on enzymatic activity measurement [J]. Anal. Chem. 2006, 78 (10): 3296-3303.
    [87] Jiang,Y.; Zhu,C.; Ling,L.; Wan,L.; Fang,X.; Bai, C. Specific aptamer-protein interaction studied by atomic force microscopy [J]. Anal. Chem. 2003, 75 (9): 2112-2116.
    [88]Hayes,F.J.;Halsall,H.B.;Heineman,W.R.Simultaneous immunoassay using electrochemical detection of metal ion labels[J].Anal.Chem.1994,66,1860-1865.
    [89]Meyerhoff,M.E.;Duan,C.;Meusel,M.Novel nonseparation sandwich-type electrochemical enzyme-immunoassay system for detecting marker proteins in undiluted blood[J].Clin.Chem.1995,41:1378-1384.
    [90]Martins,T.B.Development of intemal controls for the luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile[J].Clin.Diagn.Lab.Immun.2002,9,41-45.
    [91]Gordon,R.E & McDade,R.L.Multiplexed quantification of human IgG,IgA,and IgM with the flowmetrix(TM)system[J].Clin.Chem.1997,43,1799-1801.
    [92]李泽松,张文,曹恒杰.蛋白微阵列研究进展[J].生物技术通讯,2003,14(3):333-335.
    [93]Swartzman,E.E.;Miraglia,S.J.;Mellentin-Michelotti,J.;Evangelista,L.;et al.A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology[J].Anal.Biochem.1999,271,143-151.
    [94]Graves,D.J.;Su,H.J.;Addya,S.;Surrey,S.;Fortina,P.Four-laser scanning confocal system for microarray analysis[J].Biotechniques,2002,32,346-354.
    [95]Goldman,E.R.;Balighian,E.D.;Mattoussi,H.;Kuno,M.K.Avidin:a natural bridge quantum dot-antibody conjugates[J].J.Am.Chem.Soc.2002,124,6378-6382.
    [96]Ellen,R.;Goldman,A.;Clapp,R.Multiplexed toxin analysis using four colors of quantum dot fluororeagents[J].Anal.Chem.2004,76,684-688.
    [97]Gerion,D.Parak,W.J.;Williams,S.C.;Zanchet,D.;Michee,C.M.;Alivisatos,A.P.Sorting fluorescent nanocrystals with DNA[J].J.Am.Chem.Soc.2002,124:7070-7074.
    [98]Cho,E.J.;Collett,J.R.;Szafranska,A.E.;Ellington,A.D.Optimization of aptamer microarray technology for multiple protein targets[J].Anal.Chim.Acta.2006,564,82-90.
    [99]Anderson,J.E.;Hansen,L.L.;Mooren,F.C.;Post,M.;Hug,H.;Zuse,A.;Los,M.Methods and biomarkers for the diagnosis and prognosis of cancer and other diseases:towards personalized medicine[J].Drug Resistance Updates,2006,9,198-210.
    [100] Nyholm, L. Electrochemical techniques for lab-on-a-chip applications[J]. Analyst 2005,130,599-605.
    [101] Du,Y; Li, B.; Wei, H.; Wang,Y.; Wang, E. Multifunctional label-free electrochemical biosensor based on an integrated aptamer[J]. Anal. Chem. 2008, 80,5110-5117.
    [102] Li, D.; Shlyahovsky, B.; Elbaz, J.; Willner, I. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates [J]. J. Am. Chem. Soc. 2007, 129 (18): 5804-5805.
    [103] Rosenthal, S.J. Bar-coding biomolecules with fluorescent nanocrystals[J]. Nat. Biotechnol. 2001, 19, 621-622.
    [104] Xu, C.;Bakker, E. Multicolor quantum dot encoding for polymeric particle-based optical ion sensors [J]. Anal. Chem. 2007, 79, 3716-3723.
    [105] Dwarakanatha, S.; Brunob,J.G; Shastrya,A.; Phillipsb,T.; Johnc,A.; Kumarc, A.; Stephensonc, L. D. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria[J]. Biochem. Biophy. Res. Commu. 2004,325, 739-743.
    [106] Chen, Z.; Li, G.; Zhang, L.; Jiang, J.; Li, Z.; Peng, Z.; Deng, L. A new method for the detection of ATP using a quantum-dot-tagged aptamer [J]. Anal. Bioanal. Chem. 2008,392, 1185-1188.
    [107] Liu, J.; Lee, J.H.; Lu, Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes[J]. Anal. Chem. 2007, 79 (11):4120-4125.
    [108] Hansen, J. A.; Wang, J.; Kawde, A.N.; Xiang,Y.; Gothelf, K.V.; Collins, G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J]. J. Am. Chem. Soc.2006, 128 (7):2228-2229.
    [109] McCauley, T.G.; Hamaguchi, N.; Stanton, M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules[J].Anal.Biochem. 2003,319,244-250.
    [110] Roda, A.; Pasini, P.; Guardigli,M.; Mirasoli, M, Fresenius, B. Bio- and chemiluminescence in bioanalysis [J ]. Anal. Chem. 2000, 366(6-7):752-759.
    [111] Soper, S.A;Warner,I.M;McGown,L.B.Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry [J]. Anal. Chem. 1998, 70(12): 477R- 494R.
    [112]Gerardi,R.D.;Barnett,N.W.;Lewis S.W.Analytical application of tri(2,2'2bipyridyl)ruthenium((E|¨))as a chemiluminescent reagent[J].Anal Chim.Acta.1999,378,1-3.
    [113]Dodeigne,C.;Thunus,L.;Lejeune,R.Chemiluminescence as a diagnostic[J].Areview.Talanta,2000,51(3):415-439.
    [114]林金明.化学发光基础理论与应用[M]北京:化学工业出版社,2004
    [115]林金明,赵利霞,王栩.化学发光免疫分析[M]北京:化学工业出版社,2008.
    [116]Bronstein,I.;Grath,P.M.Chemiluminescence lights up[J].Nature,1989,338,599-600.
    [117]李晓霞.化学发光免疫分析[J].延安大学学报(医学科学学版),2004,2,51-53.
    [118]Schaap,A.P.;Akhavan,H.;Romano,L.J.Chemi-luminescent substrates for alkaline-phosphatase-application to ultrasensitive enzyme-linked immunoassays and DNA probes[J].Clin.Chem.1989,35(9):1863-1864.
    [119]刘均生,屈长江,黄建平,韩建星,买制刚,李振勇.应用化学发光免疫分析法检测人血清催乳素[J].中国生物制品学杂志,2003,16,306-307
    [120]马世俊,应希堂,李振甲,胡国茂.血清中胰岛素化学发光免役分析方法学研究[J].标记免疫分析与临床,2005,12,164-167.
    [121]Wang,X.;Lin,J.M.;Y'mg,X.T.Evalution of carbohydrate antigen 50 in human serum using magnetic particle-based chemiluminescence enzyme immunoassay[J].Anal Chim.Acta.2007,598,261-267.
    [122]Wang,J.H.;Kawde,A.N.Dual enzyme electrochemical coding for detecting DNA hybridization[J].Analyst,2002,127,1279-1282.
    [123]Elenis,D.S.;Ioannou,P.C.;Christopoulos T.K.Quadruple-analyte chemiluminometric hybridization assay.application to double quantitative competitive polymerase chain reaction[J].Anal Chem.2007,79(24):9433-9440.
    [124]Fu,Z.;Liu,H.;Ju,H.Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers[J].Anal Chem.2006,78,6999-7005.
    [125]Fu,Z.;Yang,Z.;Tang,J.;Liu,H.;Yan,F.;Ju,H.Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay[J].Anal Chem.2007,79,7376-7382.
    [126]Zhou,Y.;Zhang,Y.Lau,C.Lu,J.Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay[J]. Anal. Chem. 2006, 78, 5920-5924.
    [127] Taton, T. A.; Lu, G.; Mirkin, C. A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes[J]. J. Am. Chem. Soc. 2001, 123,5164-5165.
    [128] Li, D.; Yan, Y.; Wieckowska, A.; Willner, I. Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure[J]. Chem. Commun. 2007, 34, 3544-3546.
    [129]Li, H.; Lau, C. Lu, J. Carrier-resolved technology for homogeneous and multiplexed DNA assays in a 'one-pot reaction'[J].Analyst,2008,133,1229-1236.
    [130]Miao,J.; Cao, Z.; Zhou,Y. Lau, C. Lu, J. Instantaneous derivatization technology for simultaneous and homogeneous determination of multiple DNA targets[J]. Anal. Chem. 2008, 80, 1606-1613.
    [1]Hermann,T.;Patel,D.J.Adaptive recognition by nucleic acid aptamers[J].Science,2000,287(5454):820-825.
    [2]He,F.;Tang,Y.;Wang,S.;Li,Y.;Zhu,D.J.Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer:a platform for homogeneous potassium detection[J].J.Am.Chem.Soc.2005,127,12343-12346.
    [3]Liu,J.;Lu,Y.Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles[J].Angew.Chem.Int.Ed.2006,45,90-94.
    [4]Ueyama,H.;Takagi,M.;Takenaka,S.A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation[J].J.Am.Chem.Soc.2002,124,14286-14287.
    [5]Fan,C.;Plaxco,K.W.;Heeger,A.J.Biosensors based on binding-modulated donor-acceptor distances[J].Trends Biotechnol.2005,23,186-192.
    [6]姚春艳.适配子技术在生物传感器中的应用[J].国际检验医学杂志,2006,27(8):707-709.
    [7]Jhaveri,S.D.;Kirby,R.;Conrad,R.;Maglott,E.J.;Bowser,M.;Kennedy,R.T.;Glick,G.;Ellington,A.D.Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity[J].J.Am.Chem.Soc.2000,122,2469-2473.
    [8]刘晓静,刘韧,顾长国,朱旭东.核酸适配体的研究进展[J].生理科学进展,2004,35(4):374-378.
    [9]Fang,X.H.;Cao,Z.H.;.Beck,T.;Tan,W.H.Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy[J].Anal.Chem.2001,73,5752-5757.
    [10]German,I.;Buchanan,D.D.;Kennedy,R.T.Aptamers as ligands in affinity probe capillary electrophoresis[J].Anal.Chem.1998,70,4540-4545.
    [11]Li,Y.;Qi,H.L.;Peng,Y.G.;Yang,J.;Zhang,C.X.Electrogenerated CL aptamer-based biosensor for the determination of cocaine[J].Electrochem.Commun.2007,9,2571-2575.
    [12]Wang,X.Y.;Zhou,J.M.;Yun,W.;Xiao,S.S.;Chang,Z.;He,P.G.;Fang,Y.Z.Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)_3~(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J].Anal. Chim. Acta. 2007,598 ,242-248.
    [13] Song, S.;Wang, L.; Li, J.; Zhao,J.; Fan, C. Aptamer-based biosensors[J]. Trends in Analytical Chemistry, 2008, 27, (2):108-117.
    [14] Strehlitz, B.; Nikolaus, N.; Stoltenburg, R. Protein detection with aptamer biosensors []].Sensors, 2008, 8,4296-4307.
    [15] Wu, H.; Curran, J. F. An allosteric synthetic DNA[J]. Nucleic Acids Res., 1999, 27,1512-1516.
    [16] Nutiu, R.; Li, Y.F. Structure-switching signaling aptamers[J]. J. Am. Chem. Soc. 2003,125,4771-4778.
    [17] Jhaveri, S.; Rajendran, M.; Ellington, A. D. In vitro selection of signaling apamers[J]. Nat. Biotechnol. 2000,18(12):1293-1297.
    [18] Ho, H. A.; Leclerc, M. Optical sensors based on hybrid aptamer/conjugated polymer complexes[J]. J. Am. Chem. Soc. 2004,126,1384-1387.
    [19] He, P.; Shen, L.;Cao,Y.;Li,D. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes[J]. Anal. Chem. 2007, 79 (21): 8024-8029.
    [20] Zhao, Q.; Li, X.; Shao, Y.; Le, X. C. Aptamer-based affinity chromatographic assays for thrombin[J]. Anal. Chem.2008, 80 (19), 7586-7593.
    [21] Xu, D.; Xu,D.; Yu,X.; Liu,Z.; He,W.; Ma, Z. Label-free electrochemical detection for aptamer-based array electrodes[J]. Anal. Chem. 2005, 77 (16), 5107-5113.
    [22] Cheng, A.K.H.; Ge, B.; Yu H. Aptamer-based biosensors for label-free voltammetric detection of lysozyme[J]. Anal. Chem. 2007,79 (14), 5158-5164.
    [23] Floch,F. L.; Ho,H. A.; Leclerc,M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer[J].Anal. Chem. 2006, 78 (13), 4727-4731.
    [24] Maehashi, K.; Katsura, T.; Kerman,K.; Takamura,Y.; Matsumoto,K.; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors [J].Anal. Chem.2007, 79 (2):782-787.
    [25] Choi, J. H.; Chen, K. H.; Strano, M. S. Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection[J]. J. Am. Chem. Soc. 2006, 128 (49): 15584-15585.
    [26] Rodriguez, M.C.; Rivas, G. A. Label-free electrochemical aptasensor for the detection of lysozyme[J].Talanta,2009,78(1):212-216.
    [27]Ji,Z.;Han,J.;Liu,G.;Liu,K.Effect of adenosine on ischemia-reperfusion injury during percutaneous coronary intervention[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2007,11(51):10399-10403.
    [28]于治国,姚稚明,郑建国,屈婉莹.三磷酸腺苷介入心肌灌注断层显像对老年人冠心病的诊断价值[J].中国医学影像技术,2007,23(7):1002-1004.
    [29]李琳,秦建伟,邵永丰,张憬,梁永年,陈宇,李芝.腺苷与双嘧达莫预适应在心肺转流中的心肌保护作用[J].江苏医药,2007,33(7):669-671.
    [30]刘化进,曾秋棠.腺苷对人脐静脉内皮细胞中肝细胞生长因子合成表达的影响[J].山东医药,2007,47(16):28-29.
    [31]Zayats,M;Huang,Y;Gill,R;Ma,C.W.;Willner,I.Label-free and reagentless aptamer-based sensors for small molecules[J].J.Am.Chem.Soc.2006,128,13666-13667.
    [32]Li,B.;Du,Y.;Wei,H.;Dong,,S.J.Reusable,label-free electrochemical aptasensor for sensitive detection of small molecules[J].Chem.Commun.2007,3780-3780.
    [33]Li,D.;Shlyahovsky,B.;Elbaz,J.;Willner,I.Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates[J].J.Am.Chem.Soc.2007,129(18):5804-5805.
    [34]Cheng,X.H.;Bing,T.;Liu,X.J.;Shangguan,D.H.A label-free fluorescence sensor for probing the interaction of oligonucleotides with target molecules[J].Anal.Chim.Acta.2009,633,97-102.
    [35]Feng,K.;Sun,C.;Kang,Y;Chen,J.;Jiang,J.;Shen,G.;Yu,R..Label-free ECL detection of nanomolar adenosine based on target-induced aptamer displacement[J].Electrochem.Commun.2008,10,531-535.
    [36]Urata,H.;Nomura,K.;Wada,S.I.;Akagi,M.Fluorescent-labeled single-strand ATP aptamer DNA:Chemo-and enantio-selectivity in sensing adenosine [J].Biochem.Bioph.Res.Co.2007,360,459-463.
    [37]Chen,J.W.;Liu,X.P.;Feng,K.J.;Liang,Y.;Jiang,J.H.;Shen,G.L.;Yu,R.Q.Detection of adenosine using surface-enhanced raman scattering based on structure-switching signaling aptamer[J].Biosens.Bioelectron.2008,24,66-71.
    [38]Zhao,W.;Chiuman,W.;Lam,J.C.F.;McManus,S.A.;Chen,W.;Cui,Y.;Pelton,R.;Brook,M.A.;Li,Y.DNA aptamer folding on gold nanoparticles:from colloid chemistry to biosensors[J].J.Am.Chem.Soc.2008,130(11):3610-3618.
    [39]Huang,Y.F.;Chang,H.T.Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry [J]Anal. Chem. 2007, 79,4852-4859.
    [40] Wang,J.L.; Zhou, H. S. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules[J]. Anal. Chem. 2008, 80,7174-7178.
    [41] Chen, Z.; Li,G.; Zhang,L.; Jiang,J.F.; Li,Z.; Peng, Z.H.; Deng,L. A new method for the detection of ATP using a quantum-dot-tagged aptamer [J]. Anal. Bioanal. Chem. 2008,392,1185-1188.
    [42] J. Z.Lu, C.Y.Lau, M.Kai, Magnetic bead-based label-free chemiluminescence detection of telomeres[J]. Chem. Commun. 2003,2888-2889.
    [43] Miao,J.R.; Cao, Z.J.; Zhou, Y.; Lau,C.Y.; Lu, J. Z. Instantaneous derivatization technology for simultaneous and homogeneous determination of multiple DNA targets[J].Anal. Chem. 2008, 80,1606-1613.
    [44] Hafeli, U.; Schutt, W.; Teller, J.; Zborowski, M. Scientific and Clinical Applications of Magnetic Carriers[M]. New York: Plenum, 1997.
    [45] Kojima, E.; Ohba, Y; Kai, M.; Ohkura, Y. Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides[J]. Anal. Chim. Acta 1993, 280(1): 157-162.
    [46] Miduturu, C. V.; Silverman, S. K. Modulation of DNA constraints that control macromolecular folding[J]. Angew. Chem. Int. Ed. 2006,45, 1918-1921.
    [47] Sazani, P.L.; Larralde, R.; Szostak, J.W. A small aptamer with strong and specific recognition of the triphosphate of ATP[J].J. Am. Chem. Soc. 2004, 126, 8370-8371.
    [48] Deng,Q.; German, I.; Buchanan, D.; Kennedy, R.T. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase[J].Anal. Chem. 2001, 73, 5415-5421.
    [49] Liu, J. W.; Lu,Y. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors[J]. J. Am. Chem. Soc.2007,129, 8634-8643.
    [1]厉朝龙,陈枢青,刘子贻,生物化学与分子生物学实验技术[M],浙江大学出版社,1999.
    [2]Stoscheck,C.M.Protein assay sensitive at nanogram levels[J].Anal Biochem.1987,160,301-305.
    [3]Soedjak,H.S.Colorimetric Micromethod for protein determination with erythrosin B[J].Anal Biochem.1994,220,142-148.
    [4]Li,N.;Li,K.A.;Tong,S.Y.Fluorometric determination for micro amounts of albumin and globulin fractions without separation by using α,β,γ,δ-tetra(4'-carboxyphenyl)porphin[J].Anal Biochem.1996,233,151-155.
    [5]Huang,C;Li,Y.;Feng,P.;Li,M.Determination of proteins by their enhancement of resonance light scattering by fuchsine acid[J].Fresenius J Anal.Chem.2001,371,1034-1036.
    [6]Zhao,Y.K.;Chang,W.B.;Ci,Y.X.Rapid and sensitive determination of protein by light-scattering technique with Eriochrome Blue Black R[J].Talanta,2003,59,477-484.
    [7]周雅琳,阚健全,陈宗道,高效液相色谱法在蛋白质分析中应用[J].粮食与油脂.2001,11,37-38.
    [8]杨运云,牟德海,童朝阳等,双抗体夹心酶联免疫检测法测定蓖麻毒素[J].分析化学,2007,35,439-442.
    [9]颜光涛,郝秀华,王录焕,高灵敏白介素6放射免疫分析的建立及初步应用[J].生物化学与生物物理进展,2000.27,541-544.
    [10]朱海霖,陈恒武,顺序注射可更新表面固相荧光免疫法测定人血清中免疫球蛋白G[J].分析化学,2004,32,841-846.
    [11]Abbott A.A post-genomic challenge:learning to read patterns of protein synthesis[J].Nature,1999,402(6763):715-720.
    [12]Blobel G,Wozniak R W,Structural biology:proteomics for the pore[J].Nature,2000,403(6772):835-836.
    [13]Ramos,E.;Pineiro,D.;Soto,M.;Abanades,D.R.;Martin,M.E.;Salinas,M.;Gonzalez,V.M.A DNA aptamer population specifically detects leishmania infantum H_2A antigen[J].Lab.Invest.2007,87(5):409-416.
    [14]Niu,W.;Jiang,N.;Hu,Y.Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides[J].Anal.Biochem.2007,362(1):126-135.
    [15] Lee, S.; Kim,Y.S.; Jo,M.; Jin,M.; Lee,D.K.; Kim,S. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen[J]. Biochem.Biophys. Res. Commun. 2007, 358,47-52.
    [16] Ikanovic, M.; Rudzinski,W.E.; Bruno,J.G.; Allman, A.; Carrillo,M.R; Dwarakanath, S.; Bhahdigadi,S.; Rao, P.; Kiel, J.L.; Andrews, C.J. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores [J]. J. Fluoresc. 2007,17,193-199.
    [17] De-los-Santos-Alvarez, N.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco,P. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B[J]. J. Am.Chem. Soc.2007,129,3808-3821.
    [18] K.Senior, Aptamers as potential probes for cancer[J]. Lancet Oncol. 2006, 7, 712-712.
    [19] N. Rupcich, R. Nutiu, Y. Li, J.D. Brennan, Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer[J].Angew. Chem. Int. Ed. Engl. 2006,45, 3295-3299.
    [20] Rankin, C.J.; Fuller, E.N.; Hamor,K.H.; Gabarra, S.A.; Shields, T.P. A Simple Fluorescent Biosensor for Theophylline Based on its RNA Aptamer.[J]. Nucleos. Nucleot. Nucl. 2006, 25,1407-1426.
    [21] J.W. Guthrie, C.L. Hamula, H. Zhang, X.C. Le, Assays for cytokines using aptamers [J] Methods, 2006, 38, 324-330.
    [22] M. Minunni, S. Tombelli, A. Gullotto, E. Luzi, M. Mascini, Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein [J]. Biosens. Bioelectron. 2004,20, 1149-1156.
    [23] Ellington A D, Szostak J W. In vitro selection of RNA molecular that bind specific ligands[J]. Nature, 1990, 346(467): 818-822.
    [24] Bullock T L, Sherlin L D, Perona J J. Tertiary core rearrangements in a tight binding transfer RNA aptamer[J]. Nat. Struct. Biol 2000,7(6): 497-504.
    [25] Brody, E. N., and Gold, L. Aptamers as therapeutic and diagnostic agents[J]. J. Biotechnol. 2000,74, 5-13.
    [26] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers[J]. Biosens Bioelectron, 2005, 20(12): 2424-2434.
    [27] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine [J]. .J. Am. Chem. Soc. 2002,124(3): 9678-9679.
    [28] Merino E J, Weeks K M. Fluorogenic resolution of ligand binding by a nucleic acid aptamer[J].J.Am.Chem.Soc.2003,125(41):12370-12371.
    [29]Liss M,Petersen B,Wolf H,Prohaska E.An aptamer-based quartz crystal protein biosensor[J].Anal Chem,2002,74(17):4488-4495.
    [30]Xu D,Xu D,Yu X,Liu Z,He W,Ma Z.Label-free electrochemical detection for aptamer-based array electrodes[J].Anal Chem,2005,77(16):5107-5113.
    [31]Kazunori I,Chiharu K,Koji S.Novel electrochemical sensor system for protein using the aptamers in sandwich manner[J].Biosens Bioelectron,2005,20(10):2168-2172.
    [32]Radi A-E,Acero Sanchez J L,Baldrich E,O'Sullivan C K.Reusable impedimetric aptasensor[J].Anal Chem,2005,77(19):6320-6323.
    [33]Kawde A N,Rodriguez M C,Lee T M H,Wang J.Label-free bioelectronic detection of aptamer-protein interactions[J].Electrochem Commun,2005,7(5):537-540.
    [34]Deuel,T.F.;Huang,J.S.;Proffitt,R.T.;Baenziger,J.U.;Chang,D.;Kennedy,B.B.Human platelet-derived growth factor.Purification and resolution into two active protein fractions[J].J.Biol.Chem.,1981,256(17):8896-8899.
    [35]Raines,E.W.;Ross,R.Platelet-derived growth factor.I.High yield purification and evidence for multiple forms[J].J.Biol.Chem.,1982,257,(9):5154-5160.
    [36]柴华旗 血小板源性生长因子与各种肾脏疾病研究进展[J].国外医学泌尿系统分册,1999,19(2):72-75.
    [37]戚基萍,汤颖,王德生 血小板衍化生长因子与缺血性脑血管病[J].黑龙江医学,2002,26,(3):163-164.
    [38]张远起 血小板源性生长因子2B与血管平滑肌细胞增殖[J].广东医学院学报,2008,126(11):62-64.
    [39]Huang,C.C.;Chiang,C.K.;Lin,Z.H.;Lee,K.H.;Chang,H.T.Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching[J].Anal.Chem.2008,80,1497-1504.
    [40]Lai,R.Y.;Plaxco,K.W.;Heeger,A.J.Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum[J].Anal.Chem.2007,79,229-233.
    [41]周龙,欧丽娟,陈珂.基于核酸识体的滚环DNA扩增反应用于PDGF-BB的检测[J].化学传感器,2006,26(4):12-17.
    [42]Fang,X.;Cao,Z.;Beck,T.;Tan,W.Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy[J].Anal. Chem. 2001, 73, 5752-5757.
    [43] Huang, C.C.; Huang, Y.F.; Cao,Z.; Tan,W.; Chang, H.T. Aptamer-modifiedgold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors[J].Anal. Chem. 2005,77, 5735-5741.
    [44] Zhang,Y.L.; Huang,Y.; Jiang,J.H.;Shen,G.L.;Yu, R.Q. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection [J]J. Am. Chem. Soc. 2007, 129, (50) 15448-15449.
    [45] Jhaveri, S.; Rajendran, M.; Ellington,A. D. In vitro selection of signaling apamers[J]. Nat. Biotechnol. 2000,18,1293-1297.
    [46] Ho, H. A.; Leclerc, M. Optical sensors based on hybrid aptamer/conjugated polymer complexes[J]. J. Am. Chem. Soc. 2004,126,1384-1387.
    [47] Kojima, E.; Ohba, Y.; Kai, M.; Ohkura,Y. Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides [J]. Anal. Chim.Acta. 1993, 280(1):157-162.
    [1]Yang,M.;Li,H.L.Determination of trace hydrazine by differential pulse voltammetry using magnetic microspheres[J].Talanta,2001,55(3):479-484.
    [2]朱开梅,顾生玖,黄耀峰.壳聚糖磁性微球的制备及在处理造纸工业废水的应用[J].华夏医学,2006,19(1):3-5.
    [3]洪爱真,魏燕芳,陈盛.磁性壳聚糖微球对酸性偶氮染料废水的脱色研究[J].福建轻纺,2003,2:1-5.
    [4]马秀玲.磁性固定化酶处理含酚废水的研究[J].广州化学,2003,28(1):17-20.
    [5]Skjerve,E.;Olsvik,O.Immunomagnetic separation of salmonella from foods[J].Int.J.Food.Microbiol,1991,14(1):11-17.
    [6]Mansfield,L.P.;Forsythe,S.J.Immunomagnetic separation as an alternative to enrichment broths for salmonella detection[J].Letters in Applied Microbiology,1993,16,122-125.
    [7]Chapman,P.A.;Wright,D.J.;Siddans,C.A.Untreated milk as a source of verotoxigenic E.coli O157[J].Veterinary Record,1993,133(7):171-172.
    [8]Skjerve,E.;Rorvik,L.M.;Olsvik,O.Detection of listeria monocytogenes in food by immunomagnetic separation[J].Appl.Environ.Microbiol.1990,56(11):3478-3481.
    [9]Tomoyasu,T.Development of the immunomagnetic enrichment method selective for Vibrio parahaemolyticus serotype K and its application to food poisoning study[J].Appl.Environ.Microbiol.1992,58(8):2679-2682.
    [10]Kapperud,G.;Vardunt,T.;Skjerve,E.;et al.Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation,nested polymerase chain reactions,and colorimetric detection of amplified DNA[J].Appl.Environ.Microbiol.1993,59(9):2938-2944.
    [11]Chen,W.Y.;Chen,Y.C.Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins[J].Anal.Bioanal.Chem.2006,386:699-704.
    [12]Ghebremeskel,A.N.;Bose,A.A continuous,hybrid field-gradient device for magnetic colloid-based separations[J].J.Magn.Magn.Mater.2003,261,66-72.
    [13]Teng,C.H.;Ho,K.C.;Lin,Y.S.;Chen,Y.C.Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis[J].Anal.Chem.2004,76(15):4337-4342.
    [14]Chen,W.Y.;Chen,Y.C.Fe_3O_4/TiO_2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry[J].Anal.Chem.2005,77(18):5912-5919.
    [15]Ho,K.C.;Tsai,P.J.;Lin,Y.S.;Chen,Y.C.Using biofunctionalized nanoparticles to probe pathogenic bacteria[J].Anal.Chem.2004,76(24):7162-7168.
    [16]Lin,Y.S.;Tsai,P.J.;Weng,M.F.;Chen,Y.C.Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria[J].Anal.Chem.2005,77(6):1753-1760.
    [17]Gu,H.Ho,P.L.;Tsang,K.W.T.;Wang,L.;Xu,B.Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other grampositive bacteria at ultralow concentration[J].J.Am.Chem.Soc.2003,125(51):15702-15703.
    [18]Karen,S.K.Detection of breast cancer cells in blood using immunomagneticbead selection and reverse transcription-polymerase chain reaction[J].Mol.Diagn.1998,3(3):149-155.
    [19]Suh,C.I.;Shanafelt,T.;May,D.J.;Shroyer,K.R.;et al.Comparison of telomerase activity and GSTP1 promoter methylation in ejaculate as potential screening tests for prostate cancer[J].Mol.Cell.Probes.2001,14(4):211-217.
    [20]Morin,O.M.;Hazama,S.;et al.Detection of telomerase activity in peritoneal lavage fluid from patients with gastric cancer using immunomagnetiebeads[J].Br.J.Cancer.2000,83(8):1026-1032.
    [21]Sakaguchi,M.;Virmani,A.K.;Ashfaq,R.;et al.Development of a sensitive,specific reverse transcriptase polymerasechain reaction-based assay for epithelial tumor cells in effusions[J].Br.J.Cancer.1999,79(3-4):416-422.
    [22]阮小凤,GabiKrczal,杨勇.磁珠富集法分离柿微卫星标记[J].西北农林科技大学学报.2008.36(5):97-102.
    [23]姬长虹,孙效文.用磁珠富集法快速制备银鲫微卫星标记[J].大连水产学院学报,2007,22(6):460-464.
    [24]薛华柏,乔玉山,许宽勇,章镇.磁珠富集法分离小黄李基因组微卫星DNA片段[J].西北植物学报,2006,26(7):1320-1325.
    [25]何静云,刘星,张丽芳,李红.免疫磁珠分离技术纯化和检测泰泽氏病原体的研究[J].中国实验动物学报,2006,14(2):126-131.
    [26]李树清,吴红结,胡永强,朱向玲,陈志飞,严亚贤.免疫磁珠分离胸膜肺炎放线杆菌的研究[J].上海交通大学学报,2007,25(2):87-91.
    [27]李炟,季孔庶,龚佳.磁珠富集法筛选马尾松微卫星标记[J].分子植物种,2007,5(1):141-144.
    [28]Gao,G.Q.;He,G.H.;Li,Y.R.Microsatellite enrichment from AFLP fragments by magnetic beads[J].Acta Botanica Sinica,2003,45(11):1266-1269.
    [29]Heddini,A.;Treutiger,C.J.;Wahlgren,M.Enrichment of immunoglobulin binding Plasmodium falciparum-infected erythrocytes using anti-immunoglobulin-coated magnetic beads[J].American Journal of Tropical Medicine and Hygiene,1998,59(5):663-666.
    [30]Estes,M.D.;Do,J.;Ahn,C.H.On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers[J].Biomedical Microdevices,2009,11(2):509-515.
    [31]Christelle,F.;Delphine,A.G.;Veronique,T.;Guy,J-M.L.;Gerard,B.Fluorometric detection of ADP/ATP carrier deficiency in human muscle[J].Clin.Chim.Acta.2001,311(2):125-135.
    [32]Miao,Y.H.;Liua,J.;;Houa,F.;;Jianga,C.Determination of adenosine disodium triphosphate(ATP)using norfloxacin-Tb~(3+)as a fluorescence probe by spectrofluorimetry[J].J.Lumin.2006,116(1-2):67-72.
    [33]Wielders,J.P.M.;Muller,J.L.M.The determination of ADP and ATP in picomole amounts by steady-state mixed zones in isotachophoresis[J].Anal.Biochem.1980,103(2):386-393.
    [34]Danielle P.;Denis,A.A.;Paul,N.Determination of ATP in soils by high performance liquid chromatography[J].Soil.Bio.Biochem.1991,23(12):1143-1146.
    [35]Kawamotoa,Y.;Shinozukaa,K.;Kunitomoa,M.;Haginakab,J.Determination of ATP and its metabolites released from rat caudal artery by iSocratic ion-pair reversed-phase high-performance liquid chromatography[J].Anal.Biochem.1998,262(1):33-38.
    [36]Karatzaferi,C.;De-Haan,S.;Offringa,C.;Sargeant,A.J.Improved high-performance liquid chromatographic assay for the determination of “high-energy”phosphates in mammalian skeletal muscle:Application to a single-fibre study in man[J].J.Chromatogr.B,1999,730(2):183-191.
    [37]Wiegers,U.;Klapproth,K.;Hilz,H.Rapid determination of the specific radioactivities of RNA precursor pools(UTP and ATP)by an enzymic method [J].FEBS Lett.1974,47(2):307-313.
    [1] Brecht, A.; Abuknesha, R. Multi-analyte immunoassays application to environmental analysis[J]. Trends. Anal. Chem. 1995,14, 361-371.
    [2] Taton, T. A.; Lu, G.; Mirkin, C. A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes[J].J. Am. Chem. Soc. 2001, 123, 5164-5165.
    [3] Cao, Y. W. C.; Jin, R.; Mirkin, C. A. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002,297,1536-1540.
    [4] Li, Y.G.; Cu, V.T.H.; Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes [J]. Nat. Biotechnol. 2005,23, 885-889.
    [5] Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes[J].Science, 2001,294,137-141.
    [6] Steemers, F.J.; Ferguson, J.A.; Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays[J]. Nat. Biotechnol. 2000, 18, 91-94.
    [7] Ferguson, J. A.; Steemers, F. J.; Walt, D. R. High-density fiber-optic DNA random microsphere array[J].Anal. Chem. 2000, 72(22):5618-5624.
    [8] Wang, J.; Liu, G.; Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets[J]. J. Am. Chem. Soc. 2003,125, 3214-3215.
    [9] Liu, Y.; Gong, Z.; Morin, N.; Pui, O.; Cheung, M.; Zhang, H.; Li, X. F. Electronic deoxyribonucleic acid (DNA) microarray detection of viable pathogenic escherichia coli, vibrio cholerae, and salmonella typhi[J].Anal. Chim. Acta. 2006,578,75-81.
    [10] E. R. Goldman, A. R. Clapp, G. P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, H. Mattoussi Multiplexed toxin analysis using four colors of quantum dot fluororeagents [J]. Anal. Chem. 2004, 76 (3): 684-688.
    [11] Matsubara, Y.; Kerman, K.; Kobayashi, M.; Yamamura, S.; Morita, Y; Takamura, Y.; Tamiya, E. On-chip nanoliter-volume multiplex taqMan polymerase chain reaction from a single copy based on counting fluorescence released microchambers[J]. Anal. Chem. 2004, 76 (21): 6434-6439.
    [12]Huang,Y.F.;Chang,H.T.Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry[J].Anal.Chem.2007,79,4852-4859.
    [13]Du,Y.;Li,B.;Wei,H.;Wang,Y.;Wang,E.Multifunctional label-free electrochemical biosensor based on an integrated aptamer[J].Anal.Chem.2008,80,5110-5117.
    [14]Hansen,J.A.;Wang,J.;Kawde,A.N.;Xiang,Y.;Gothelf,K.V.;Collins,G.Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor[J].J.Am.Chem.Soc.2006,128(7):2228-2229.
    [15]Liu,J.;Lee,J.H.;Lu,Y.Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes[J].Anal.Chem.2007,79(11):4120-4125.
    [16]Li,D.;Shlyahovsky,B.;Elbaz,J.;Willner,I.Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates[J].J.Am.Chem.Soc.2007,129(18):5804-5805.
    [17]李金.可卡因类物质及其检测[J].中国药物依赖性杂志,2002,11(2):90-92.
    [18]He,F.;Tang,Y.;Wang,S.;Li,Y.;Zhu,D.J.Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer:a platform for homogeneous potassium detection[J].J.Am.Chem.Soc.2005,127,12343-12346.
    [19]Stojanovic,M.N.;Landry,D.W.Aptamer-based colorimetric probe for cocaine [J].J.Am.Chem.Soc.2002,124(33):9678-9679.
    [20]White,R.J.;Phares,N.;Lubin,A.A.;Xiao,Y.;Plaxco,K.W.Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry[J].Langmuir,2008,24(18):10513-10518.
    [21]Baker,B.R.;Lai,R.Y.;Wood,M.S.;Doctor,E.H.;Heeger,A.J.;Plaxco,K.W.An electronic,aptamer-based small-molecule sensor for the rapid,label-Free detection of cocaine in adulterated samples and biological fluids[J].J.Am.Chem.Soc.2006,128(10):3138-3139.
    [22]Stojanovic,M.N.;Prada,P.;Landry,D.W.Aptamer-based folding fluorescent sensor for cocaine[J].J.Am.Chem.Soc.2001,123(21),4928-4931.
    [23]Shlyahovsky,B.;Li,D.;Weizmann,Y.;Nowarski,R.;Kotler,M.;Willner,I.Spotlighting of cocaine by an autonomous aptamer-based machine[J].J.Am. Chem. Soc. 2007,129 (13): 3814-3815.
    [24] Zhang,J.; Wang, L.;Pan, D. ;Song, S.; Boey, F.Y. C.; Zhang, H.; Fan, C. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures[J]..Small, 2008,4(8): 1196-1200.
    [25] Li, Y; Qi, H.; Peng, Y; Yang, J.; Zhang, C. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J].Electrochem. Commu. 2007,9,2571-2575.
    [26] Liu, J.; Lu, Y Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles[J]. Angew. Chem. Int. Ed. 2006,45,90-94.
    [27] Elbaz, J.; Shlyahovsky, B.; Li, D.; Willner, I. Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations[J]. ChemBiochem, 2008,9,232-239.
    [28] Fu, Z. F.; Liu, H.; Ju, H.X. Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers [J].Anal. Chem. 2006,78,6999-7005.
    [29] Fu,Z.F.; Yang, Z.J.; Tang, J.H.; Liu, H.; Yan, F.; Ju, H.X. Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay [J]. Anal.Chem.2007, 79, 7376-7382.
    [30] Elenis, D. S.; Ioannou, P. C.; Christopoulos, T.K. Quadruple-analyte chemi- luminometric hybridization assay. Application to double quantitative competitive polymerase chain reaction[J].Anal. Chem. 2007, 79(24):9433- 9440.
    [31] Nutiu, R.; Li, Y.F. Structure-switching signaling aptamers [J]. J. Am. Chem. Soc. 2003,125,4771-4778.
    [32] Wang, J. and Zhou, H. S. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules [J]. Anal. Chem. 2008, 80 (18):7174-7178.
    [33] Zayats, M. Huang, Y. Gill, R. Ma,C. and Willner, I. Label-free and reagentless aptamer-based sensors for small molecules [J]. J. Am. Chem. Soc. 2006, 128 (42): 13666-13667.
    [34] Wang, X. Zhou,J. Yun,W. Xiao,S. Chang,Z. He,P. Fang Y. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3~(2+)- doped silica nanoparticle aptasensor via target protein-induced strand displacement [J]. Anal. Chim. Acta. 2007,598, 242-248.
    [35] Li,B.; Du,Y.; Wei, H.; Dong,S.J. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules [J]. Chem. Commun. 2007, 3780- 3782.
    [36] Cheng, X.H.; Bing, T.; Liu, X.J.; Shangguan, D.H. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch [J]. Anal. Chim. Acta.2009, 633, 97-102.
    [37] Feng, K.; Sun, C.; Kang, Y; Chen, J.; Jiang, J.; Shen, G.; Yu, R.Q. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement [J]. Electrochem.Commun.200S, 10, 531-535.
    [38] Wang, J.L.; Wang, F.A.; Dong, S.J. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch [J].J. Electroanal. Chem. 2009, 626, 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700