湿式氧化处理吡虫啉农药生产废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吡虫啉以其高效、低毒、低残留的特点,成为新一代农药的代表,其生产废水中含有大量丙烯腈、甲苯、DMF及少量的2-氯-5-氯甲基吡啶等,属于典型的高浓度难降解毒性有机废水,直接排放会严重污染环境。采用传统的生物或物化工艺处理该废水效率低、效果差,因而,成为困扰农药企业的一项环保难题。本文以吡虫啉农药生产废水为研究对象,采用湿式氧化技术进行污染物降解反应的基础及应用研究,为该工业废水处理提供理论和工艺依据。
     在2L高温高压间歇式反应釜中考察了湿式空气氧化工艺(WAO)处理吡虫啉废水中主要操作条件对处理效果的影响,发现在所考察的反应温度、供氧量、进水浓度、搅拌强度和进水pH等诸多因素中,温度是影响WAO效率的关键因素。供氧不足时氧化反应受到明显限制,而氧分压高于理论需氧量时,氧对处理效果影响不显著。进水pH对WAO处理吡虫啉农药废水影响较小。供氧量充足条件下,WAO在较宽污染物浓度范围内具有良好的处理效果,最大COD去除率达62%。
     以H_2O_2为氧化剂替代气态氧开发了湿式过氧化氢氧化工艺(WPO),研究表明,WPO处理效果受温度、pH和H_2O_2用量影响,在130℃、总压0.6 MPa、反应55min条件下,能取得相当WAO 210℃、总压8 MPa、反应120min下的60%的COD去除率。
     催化湿式空气氧化工艺(CWAO)能在较温和条件下提高处理效果。实验显示,使用均相催化剂可大大改善COD去除率,铜盐的催化性能优于铁盐和铈盐,而铜盐中硝酸铜则优于硫酸铜。使用硝酸铜作催化剂时,反应30 min COD去除率可达97.5%。
     固体催化剂较之均相催化剂能避免重金属二次污染产生。本文采用共沉淀法制备了Cu/Mn、Cu/Ni、Mn/Ce复合氧化物固体催化剂,以CWAO处理吡虫啉农药废水检测催化剂活性,研究并优选了催化剂制备工艺条件,如沉淀剂种类、沉淀物沉淀温度、干燥和焙烧温度及时间、活性组分配比等。焙烧温度及活性组分配比是影响催化剂活性的主要因素;催化剂最优制备条件为:沉淀剂NaOH,沉淀温度80℃,干燥条件110℃12h;焙烧时间8h,对Cu/Mn催化剂,焙烧温度800℃,Cu-Mn比1:2:对Cu/Ni催化剂焙烧温度700℃,Cu-Ni比2:1;对Mn/Ce催化剂焙烧温度300℃,Mn-Ce比为7:3。
     XRD分析表明,三系列催化剂中都有固溶体的形成,这提高了催化剂的活性和稳定性。重点研究了Mn/Ce催化剂活性组分配比与活性的关系,在催化剂表面Ce以Ce~(4+)存在,而Mn有多种价态,Mn的氧化价态随组成的变化而变化,催化剂的活性位点归于呈高氧化态的Mn氧化物;分析催化机理证实Mn/Ce复合氧化物催化剂具有较高的催化活性。以Mn/Ce为催化剂研究了CWAO处理吡虫啉农药废水的操作参数,如反应温度、氧分压、进水pH对催化剂活性及稳定性的影响,确定了最优工艺条件,即温度190℃、总压4.8MPa、氧分压为1.6 MPa、pH 6.21,反应时间120min;COD去除率达93.1%,废水BOD_5/COD由0.19提高到0.65以上,Mn、Ce的溶出量最小,分别为0.0299 mg/L、0.0316 mg/L。
     采用浸渍法制备了Cu-Ni-Ce/SiO_2催化活性良好的负载型催化剂,通过CWPO评价并优化了制备工艺。综合考虑活性和稳定性,优化的制备条件为:总负载量4%,Ce添加量0.16%,焙烧温度700℃。以10g/LCu-Ni-Ce/SiO_2催化剂加入量,进行CWPO处理吡虫啉农药废水,在温度110℃、pH 7.0、总压0.6 Mpa、反应时间60 min下,COD去除率达89.1%,与CWAO相比反应条件大为缓和。
     以多种表征方法对不同焙烧温度和不同Ce添加量的Cu-Ni-Ce/SiO_2催化剂结构进行了分析表征,探讨了适量添加Ce提高催化剂活性机理。SEM分析证明,Ce的添加促进了催化剂表面Cu-Ni的分散性;BET测定证明,Ce添加量为0.16%时,Cu-Ni-Ce/SiO_2比表面积最大;XRD测定了催化剂的晶相结构,Cu以CuO物种存在,同时监测到铜镍复合氧化物的衍射峰;XPS分析了催化剂表面元素Cu、Ni、Ce、O的化学态,证明催化剂表面存在三种状态的氧,即晶格氧、羟基氧和吸附氧,测定了不同化学态氧的含量。降低焙烧温度并适量添加Ce都能增加吸附氧占总氧的比例,促进氧在催化剂表面的吸附,从而形成强氧化物种O_2~-,这有利于催化剂活性的提高。
     论文对湿式氧化处理吡虫啉农药废水的动力学进行了探讨,建立了一级两阶段动力学模型,较好地解释、关联了WAO、WPO、CWAO、CWPO四种工艺的实验数据。得出了四种工艺每个反应阶段的反应速率常数k及表观活化能E_a,为湿式氧化处理吡虫啉农药废水工艺放大设计提供了理论依据。
Imidacloprid becomes a typical representative of the new generation pesticide with higher efficiency, lower toxicity and residue. Liquid effluents from imidacloprid production containing high acrylonitrile, toluene and DMF concentrations are difficult of degradation organic wastewater. It will pollute the environment seriously if discharged directly. However, the conventional processes, such as biological systems are inefficient. By taking the actual-producing wastewater of imidacloprid pesticide as the subject, study on base and application of organic contamination degradation were carried out by wet oxidation technology roundly in this paper in order to solve the problem for enterprise and to provide a effective way for the treatment of high concentrated wastewater.
     Oxidation experiments were conducted in a 2L autoclave which can withstand high temperature and high pressure. The various factors, such as reaction temperature, oxygen partial pressure, concentration and pH influent, intensity of stir on the wastewater treatment efficiency were investigated. The reaction temperature was a key factor of influence on the efficiency of the WAO. Oxidation reaction was limited notably when oxygen was insufficient, but as oxygen partial pressure exceeded to a certain value, treatment efficiencies were less significant. The influence of the pH in influent on the WAO was relatively small. As long as the amount of oxygen is enough, WAO still had a good processing effect within the range of wider concentration in influent.
     Wet peroxide oxidation (WPO) which totally used hydrogen peroxide as oxidant was developed. The results showed that the efficiency of WPO was influenced by temperature, pH and dosage of hydrogen peroxide. WPO was found to attain the same COD removal efficiency 60% as compared to WAO but with the reaction temperature lowered from 210℃to 130℃, and the total pressure from 8MPa to 0.6MPa.
     The homogeneous catalyst can improve the COD removal efficiency greatly. Among all the homogeneous catalysts tested, copper salt was found to be more effective in treatment of imidacloprid production wastewater. Cupric nitrates were more active than the copper sulfates. While using cupric nitrate as the catalyst, the COD removal efficiency was reached to 97.5% after reacting 30 min.
     The complex oxide catalysts of Cu/Mn, Cu/Ni, Mn/Ce were prepared by the co-precipitation method and applied to the treatment of pesticide wastewater of imidacloprid production by catalytic wet air oxidation. The preparation processes including the types of precipitator, aging temperature of precipitator, the drying temperature, the calcination temperature and time, active component proportion conditions which might effect on the activity of the bi-metal catalysts, were optimized. Among all preparation conditions, calcination temperature and active component composition were more important influences on catalytic activity than others, and results were as follows. NaOH was the precipitator, aging temperature was 80℃, drying temperature was 110℃for 12h, calcination time was 8h. For Cu/Mn catalyst, calcination temperature was 800℃and the Cu/Mn molar ratio was 1:2; For Cu/Ni catalyst, calcination temperature was 700℃and Cu/Ni was 2:1; For Mn/Ce catalyst, calcination temperature was 300℃and Mn/Ce was 7:3.
     XRD data revealed that the 'solid solutions' were formed in all the three series catalysts that improved greatly activity and stability of the catalysts. Mn/Ce composition-activity relationship was investigated mainly. XPS analysis indicated that Ce existed of Ce~(4+) on the surface of catalyst, and Mn had several oxide phases, which varies with the composition of Mn/Ce. Catalytic active sites have been ascribed to manganese oxide species exhibiting higher oxidation state. The analysis of catalytic mechanism showed that Mn/Ce complex oxide catalyst had higher catalytic activity. The effect of operation parameters of CWAO including reaction temperatures, oxygen partial pressure and pH value of wastewater on the activity and stability of Cu/Mn catalyst were studied, and the optimum condition of CWAO was confirmed, which was temperature of 190℃, oxygen partial pressure of 1.6MPa, total pressure 4.8MPa, pH of 6.21. Using Mn/Ce catalyst, 93.1% COD removal was obtained in CWAO of wastewater from imidacloprid production after 120min under the optimized reaction conditions. BOD_5/COD of the wastewater increased from 0.19 to more man 0.65, the concentration of leached Mn and Ce were 0.0299mg/L and 0.0316mg/L, respectively.
     A type of CWPO catalysts, Cu-Ni-Ce/SiO_2 prepared by the impregnation method was found to have high catalytic activity. The preparation process were optimized by CWPO, considering the activity and stability synthetically, the optimum conditions were total loading amount of 4%, 0.16% of Ce content and calcination temperature of 700℃. CWPO process was carried out with 5g Cu-Ni-Ce/SiO_2 catalyst to deal with the imidacloprid wastewater under 110℃, pH =7.0, total pressure of 0.6Mpa which were gentler greatly than that of CWAO process, 89.1 %COD removal was obtained after 60min.
     All catalysts of Cu-Ni-Ce/SiO_2 prepared under different calcination temperature and Ce content were characterized by XPS, XRD, SEM and nitrogen adsorption techniques. It was discussed that the mechanism of that adding certain amount of Ce improved the catalyst activity. SEM image revealed that addition of Ce promoted the dispersion of Ni and Ce particles on the surface of catalyst It was proved by BET that the surface area of Cu-Ni-Ce/SiO_2 was the largest when the Ce content was 0.16%. The catalyst structure was analyzed by XRD. CuO and complex oxide were observed on the catalyst surface. XPS was used to analyze the composition and the chemical state of the catalyst surface elements of Cu, Ni, Ce and O. Moreover the percentage of the three kinds oxygen, the lattice oxygen, hydroxy oxygen and chemisorbed oxygen, to total oxygen was obtained. The amounts of chemisorbed oxygen were increased on the surface of Cu-Ni-Ce/SiO_2 catalysts with decreasing calcination temperature and adding feasible Ce content, and the oxygen absorbing on the catalyst surface was promoted. Therefore, the oxygen reactive specie O_2~- was produced. This was favorable to improve the catalyst activity.
     The reaction dynamics for wet oxidation of imidacloprid wastewater in four react systems which were WAO, CWAO (added with Mn/Ce catalyst), WPO, CWPO (added with Cu-Ni-Ce/SiO_2 catalyst) were studied in the batch slurry reactor. The rate of chemical oxygen demand (COD) reduction was described by two steps first-order kinetics. The specific react rate coefficient and activation energies were determined for WAO, WPO, CWAO and CWPO, respectively. The kinetic model was found to agree well with experimental results. It is useful for the application of wet oxidation in industrial wastewater treatment
引文
[1] 中华人民共和国水利部编.2005-中国水资源公报,北京:中国水利水电出版社,2006.
    [2] 《中国环境年鉴》编辑委员会编.2001年中国环境年鉴,北京:中国环境年鉴社,2001.
    [3] 北京佐思信息咨询有限责任公司.2004年中国农药市场研究报告[EB/OL].http://www.okokok.com.cn/pdayres/agency_show.Asp?ArticlelD=2710.
    [4] 陈东海,操庆国.中国农药废水处理现状.北方环境,2004,29(6):43~46.
    [5] 邱宇平,陈金龙,张全兴等.农药废水处理方法与资源化技术.环境污染治理技术与设备,2003,4(9):63~67.
    [6] 张雨风,许淑娟.唑蚜威生产废水治理研究.农药.1997,36(1):19~21.
    [7] 程沽红,李慧蓉.高效降解菌处理多菌灵农药生产废水的研究.上海环境科学,2003,22(10):690~694,727.
    [8] 周湘梅,高明华.两段生物接触氧化法处理甲胺磷生产废水.化工环保,1994,14(4):225~229.
    [9] 谢冰,徐亚同.农药废水处理工艺研究[J].环境工程,1998,6:23~26.
    [10] 迟春娟,施跃锦,张嗣炯.液-液萃取处理高氯难降解有机废水.浙江工业大学学报,2001,29(2):204~212.
    [11] 李林新,曾新昌,陈淑怡等.高浓度二氯酚钠废水治理.工业水处理,1992,12(2):24~27.
    [12] 李永才,张杰.用N-235萃取工业废水中的二氯酚.化学工程师,1998,65(2):18~20.
    [13] 程迪.化学农药工业废水处理技术.环境保护,1993,(1):14~17.
    [14] 姜军清,黄卫红,陆晓华.活性炭纤维处理含酚废水的研究.工业水处理,2001,21(3):20~22.
    [15] 赵光,肖月竹.用活性炭纤维吸附处理十三吗啉农药废水的研究.化工环保,1995,15(3):131~135.
    [16] 张全兴等.一种废水处理并回收邻苯二胺的方法和装置.国家发明专利,1989,专利号:ZL89104014.5.
    [17] 张全兴,徐伟,荆和祥等.树脂吸附—生物接触氧化法处理多菌灵及其中间体工业废水的研究.污染防治技术,1992,5(3):17~19.
    [18] 张全兴,潘丙才,陈金龙.国内农药 医药及其中间体生产废水的树脂吸附法处理与资源化研究.江苏化工,2000,28(1):21~23.
    [19] 郑祖英,朱俭,许志东等.树脂吸附法处理甲基—1605农药生产过程中产生的对硝基酚钠废水.离子交换与吸附,1992,8(4):3 18~324.
    [20] 王槐三,寇晓康,刘玉鑫等.树脂吸附法处理2,4-D丁酯氯化含酚废水.石油化工,2002,31(6):468~471.
    [21] Zhu Shiyun, Chen Jinlong. Study on the treatment of 3-phe-noxybenzadehyde industrial waste water with polymeric adsorbent. Chinese Journal of Reactive Polymer,1998,5(2):22~31.
    [22] 车荣睿,宋宽秀.吸附树脂在治理有机农药废水中的应用.工业水处理,1993,13(5):3~7.
    [23] Xu, Z. Y., Zhang, Q. X., Chen, J. L., et al. Adsorption of naphthalene derivatives on hypercross linked polymeric adsorbents. Chemosphere, 1999, 38 (9): 2003~2011.
    [24] Aimin Li, Quanxing Zhang, Gengcheng Zhang, et al. Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercross linked polymeric adsorbent. Chemospbere, 2002, 47(9): 981~989.
    [25] B. C. Pan, Y. Xiong, A.M.Li, et al. Adsorption of aromaticacids on an aminated hyporcrosslinked macroporous polymer. Reactive & Functional Polymers, 2002, 53: 63~72.
    [26] 邱宇平,陈金龙,陈一良等.超高交联树脂吸附处理2,4-D含酚废水的研究.工业水处理,2003,23(4):50~52.
    [27] 刘福强,陈金龙,李爱民等.超高交联吸附树脂对苯甲酸的吸附研究.离子交换与吸附,2002,18(6):522~528.
    [28] 范建伟,王占宁,包肖文等.二氧化氯处理含氰废水的工程实践[J].中国给水排水,2005,21(6):59~63.
    [29] 宋怀俊,韩绿霞,李玉等.二氧化氯处理农药厂含硫化物废水的研究[J].浙江化工,2005,36(2):38~40.
    [30] 金小元,陈金龙,李爱民等.二氧化氯催化氧化处理含酚废水的研究[J].离子交换与吸附,2003,19(1):61~66.
    [31] 周作明,杨仁斌,龚道新等.含三唑磷农药废水的光降解研究[J].湖南农业大学学报(自然科学版),2005,31(2):210~212.
    [32] Zimmermann F J. New waste disposal process. Chem. Eng. 1958, 6:117~120.
    [33] Hurwitz, E., Teletzke, G. H. et al. Wet Air oxidation of sewage sludge. Water & Sewage Works, 1965, 112(8): 298~305.
    [34] Teletzke, G. H., Hoffman, C. A., et al. Components of sludge and its wet air oxidation products. Journal WPCF, 1967, 39(6): 994~1005.
    [35] Fisher, W. J. Oxidation of sewage with air at elevated temperatures. Water Research, 1971. 5:187~201.
    [36] Fisher, W. J., et al. High temperature treatment of sewage sludges. Wat. Pollut. Control, 1971, 70(5):355~370.
    [37] Hoffman, C. A. Paper mill waste sludge oxidation and product recovery. 1975, U. S. P3876496. Apr.
    [38] Charest, F., Chornet, E. Wet oxidation of active carbon. The Canadian Journal of Chemical Engineering. 1976, 54:190~196.
    [39] Ito, M. M., Akita, K., and Inoue, H. Wet oxidation of oxygen-and nitrogen-containing organic compounds catalyzed by cobalt(Ⅲ) oxide, Ind. Eng. Chem. Res., 1989, 28(7). 894~899
    [40] Copa, W. H. Bench-scale shaking autoclave results for wet air oxidation system treatment of a TNT process waste (Red Water) from the US army. Presented at TNT Red Water Treatment Workshop, Champaign, IL, 1992.
    [41] 张秋波,李忠,王菊思.煤加压气化废水的催化湿式氧化处理.环境科学学报,1988,8(1):98~105.
    [42] 高峰,鲁波.用湿式氧化处理工业污水.化学反应工程与工艺,1987,3(1):94~98.
    [43] 胡克源.湿式氧化生化氧化两步法处理有机磷农药废水.环境化学,1990,9(3):13~19.
    [44] 王怡中.有机磷农药废水湿式氧化生化氧化预处理研究.环境化学,1993,12(5):408~414.
    [45] 高峰,鲁波,慎大刚.湿式氧化法治理棉浆黑液中试及反应器工艺设计原理.化学反应工程与工艺,1988,41(3):81~88.
    [46] 杨琦,赵建夫.催化湿式氧化处理香料废水.中国环境科学,1998,1(3):35~37.
    [47] 杨民,杜书,王贤亮等.催化湿式氧化处理碱渣废水的研究.环境工程,2001,19(1):13~15.
    [48] 杨民,孙承林,陈拥军等.催化湿式氧化处理高含硫废水的研究.环境污染治理技术与设备,2003,4(5):74~76.
    [49] 杨民,孙颖,王全义等.催化湿式氧化处理机械加工工业废水的研究,环境污染与防治,2003,25(5):274~276.
    [50] 陈孟林,夏慧丽,何星存等.催化湿式氧化法处理糖蜜酒精废液的研究.环境污染治理技术与设备,2005,6(12):82~85.
    [51] 曾新平,唐文伟,赵建夫等.湿式氧化处理高浓度难降解有机废水研究.环境科学学报,24(6):945~949.
    [52] V. S. Mishra, V. V. Mahajani, J. B.Joshi. Wet air oxidation: Ind. Eng. Chem. Res., 1995, (34): 2~48.
    [53] F. Luck. Wet air oxidation: past, present and future. Catal. Today, 1999, 53: 81~91.
    [54] Shibaeva, L. V., et al. Oxidation of phenol with molecular oxygen in aqueous solutions, Kinetics and Catalysis, 1969, 10(5):832~839.
    [55] H. Debellefontaine, J. N. Foussard. Wet air oxidation for industrial waste: chemical aspects, ractor design and industrial application in Europe. Waste Management, 2000, 20: 15~23.
    [56] L. Li, P. Chen, E. F. Gloyna. Generalized kinetic model for wet oxidation of organic compounds. J. AICHE.1991,37(11): 1678~1697.
    [57] D. Mantzavinos, R. Hellenbrand, A. G. Livingston, I. S. Metcalfe. Catalytic wet oxidation of peoumafic acid: partial oxidation intermediates, reaction pathways and catalyst leaching. Appl. Catal. B: Environmental, 1996, 7: 79~96.
    [58] 马承恕.湿式氧化处理工业废水的进展.化工环保,1982,2(2):1~8.
    [59] T. L. Randall, W. M. Cope, M. J. Dietrich. Wet air oxidation of hazardous organics in waste water. Environ. Prog., 1985, 4: 171~188.
    [60] 孙德智.环境工程中的高级氧化技术.化学工业出版社,2002.pp95.
    [61] A. B. Thomsen. Degradation of quinoline by wet air oxidation-kinetic aspects and reaction mechanisms. Wat. Res, 1997, 32(1): 136~146.
    [62] A. Sandana, J. R. Katzeret. Catalytic oxidation of phenol in aqueous solution. Ind. Eng. Chem. Fu dam. 1974, 13(2): 127~134.
    [63] Imamura, D. Aklra. Wet oxidation of ammonia catalyzed by cerium-based composite oxides. Ind. Eng. Chem. Prod. Res. Dev., 1985, 1: 75~80.
    [64] D. M antzavinos, R. H ellenbrand, A. G. Livingston, I. S. Metcalfe. Atalytie wet oxidation of pcoumafie acid: partial oxidation intermediates, reaction pathways and ctalyst leaching. Appl. Catal. B: Environmental, 1996, 7: 79~96.
    [65] H. Debellefontaine, J. N. Foussard. Wet air oxidation for the treatment of industrial wastes, chemical aspects, reactor design and industrial application in Europe. Waste Management, 2000, 20: 15~25.
    [66] 顾军,赵建夫.湿式氧化处理城市污水厂活性污泥的研究.同济大学学报,1998,26(3):345~348.
    [67] 雷乐成,汪大辉.湿式氧化处理高浓度活性染料废水.中国环境科学,1999,19(1):42~46.
    [68] 刘刚,雷乐成,岑沛霖.纺织印染废水的湿式空气氧化处理.浙江大学学报,2001,35(1):37~40.
    [69] 王永仪.催化湿式湿氧化法处理蔡系磺酸染料中间体废水的研究.清华大学博士论文,1996:38~49.
    [70] 宾月景,祝万鹏,蒋展鹏等.H-酸的催化湿式氧化反应过程研究.环境污染与防治,2000,22(3):4~7.
    [71] 侯纪蓉.湿式氧化法处理果乐废水.化工环保,1999,19:6~11,
    [72] 易辰俞,戴友芝,唐受印等.湿式氧化预处理甲基氯化物废水.化工环保,2002,22(5):271~274.
    [73] 唐受印,王大晕,谭天恩.催化湿式氧化法处理三环唑生产废水.化工环保,1997,16(2):70~74.
    [74] 胡充良,王庆芳,王慧芳.氯氰菊酯废水物化和生化处理的研究.化工环保.1999,19:323~326.
    [75] 阴和平,查力.湿式空气氧化法处理有害工业废水.化工环保,1987,7(2):78~84.
    [76] 村上幸夫.合成有机化合物废水湿式酸化处理研究.水处理技术,1978,19(10):901~909.
    [77] 荻原一芳.湿式含有机物废水处理.PPM(日),1980,11(7):20~32.
    [78] 秋常研二.湿式触媒酸化法排水处理.日化协会月报,1976,29(9):9~17.
    [79] Y. Kacar, E. Alpay, V. K. Ceylan. Pretreatment of Afyon alcaloide factory's wastewater by wet air oxidation(WAO). Water Research, 2003, 37:1170~1176.
    [80] S. H. Lin. Catalytic Wet air oxidation of high strength industrial waste water. Appl. Catal. B: Environmental, 1996, 9: 133~147.
    [81] Prakash D. Vaidya, Vijaykumar V. Mahajani. Insight into heterogeneous catalytic wet oxidation of phenol over a Ru/TiO2 catalyst. Chemical Engineering Journal, 2002, 87: 403~416.
    [82] Pierre Gallezot, Stephane Chaumet alaln Perrard. Catalytic wet air oxidation of acetic acid on carbon-supported ruthenium catalysts. JOURNAL OF CATALYSIS, 1997, 168: 104~109.
    [83] Jiangyan Qin, Qinglin Zhang, Karl. T. Chuang catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts. Applied Catalysis B: Environmental, 2001, 29:115~123.
    [84] T. A. Patrick, M. A. Abraham. Evaluation of a monolith-supported Pt/A1_2O_3 catalyst for wet oxidation carbohydrate-containing waste streams. Envim. Sci.Tech. 1999, 33: 3480~3490.
    [85] H. T. Gomes, J. L. Figueiredo, J. L. Faria, Serp, Ph. Carbon-supported iridium catalysts in the catalytic wet air oxidation of carboxylic acid: kinetics and mechanistic interpretation. J. Mole. Catal.A: Chemical, 2002, 182-183: 47~60.
    [86] F. Luck. A review of industrial catalytic wet air oxidation process. Catal. Today, 1996, 27: 195~202.
    [87] A. D. Dhale, V. V. Mahajani. Study in treatment of disperse dye waste: membrane-wet air oxidation process. Waste Management, 2000, 20: 85~92.
    [88] 杨少霞,冯玉杰,万家峰等.湿式氧化催化剂Ru/γ-Al_2O_3降解高浓度含酚废水的研究.分子催化,2003,17(5):357~361.
    [89] J. Levee. Catalytic oxidation of toxic organic in aqueous solution. Appl. Catal. B:Environmental, 1990, 63: 1~5.
    [90] A. Pintar, J. Levee. Catalytic liquid-phase oxidation of refractory organic in waste water. Chem. Eng. Sci., 1992, 47: 2395~2400.
    [91] C. Mir6, A. A lejandre, A. Fortuny. Aqueous phase catalytic oxidation of phenol in a trickle bed reactor: efect of the pH. Wat. Res. 2000, 33 (4): 1005~1013.
    [92] S. V erenich, A. L aari, J. K allas. Wet oxidation of concentrated waste water of paper mill for water cycle closing. Waste Management, 2000, 20: 287~293.
    [93] 尹玲,张秋波,李忠等.湿式催化氧化有机废水铜锰铁氧化物催化剂的研制.环境科学,1986,7(3):9~13.
    [94] 宾月景,祝万鹏,蒋展鹏等.催化湿式氧化处理H-酸的反应动力学.环境科学,20009 2(5):77~80.
    [95] 谭亚军,蒋展鹏,祝万鹏等.有机污染物湿式氧化降解中Cu系催化剂的稳定性.环境科学,2000,20(7):82~85.
    [96] 谭亚军,蒋展鹏,祝万鹏等.用于有机污染物湿式氧化的铜系催化剂活性研究.化工环保,2000,20(3):6~10.
    [97] Safia Hamoudi, Faicai L arachi, Abdelhamid Sayari. Wet oxidation of phenolic solution over heterogeneous catalysts: degradation profile and catalyst behavior. Journal of Catalysis, 1998, 177: 247~258.
    [98] S. Imamura, D. Aklra. Wet oxidation of ammonia catalyzed by cerium-based composite. Ind. Eng. Chem. Res. Dev., 1985, 24 : 75~80.
    [99] K. Belkacemi, F. Larachi, S. Hamoudi, A. Sayari. Cataiytie wet air oxidation of high-strength alcobol-distillery liquors. Appl. Catal. A: General. 2000, 199: 199~209.
    [100] C. Leitenburg. Wet oxidation of acetic acid catalyzed by doped ceria. Appl. Catal. B: Environmental, 1996, 11: 29~35.
    [101] C. S. Yao, H. S. Weng. Liquid-phase oxidation of cyclohexane and cyclohexanone over Supported cerium oxide catalysts. Ind. Eng. Chem. Res., 1998, 37: 2647~2653.
    [102] Q. L. Zhang, K. T. Chuang. Kinetics of wet oxidation of black liquor over a Pt-Pd-Ce/AI_2O_3 catalyst. Appl. Catal. B: Environmental, 1998, 17: 321~332.
    [103] Q. L. Z hang, K. L. C huang. Treatment of combined bleach plant effluents via wet oxidation over a Pt-Pd-Ce/alumina catalyst. Envirn. Sci. Technol., 1999, 33:3641~3644.
    [104] Q. L. Z hang, K. T. C huang. Wet oxidation of bleach plant effluents: effect ofpH on the oxidation with or without a Pd/Al_2O_3 catalyst. The Canadian Chem. Eng., 1999, 77 (4): 399~405.
    [105] W. P Zhu, Y. J. Bin, Z. H. Li, Z. P. Jiang, T. Yin. Application of catalytic wet air oxidation for the treatment of H-acid Manufacturing process waste water. War. Res., 2002, 36:1947~1954
    [106] 杨少霞,祝万鹏,陈正雄等.CeO_2-TiO_2催化剂表面结构及其湿式氧化活性.催化学报,2006,217(4):329~334.
    [107] S. S. Lin, C. L. Chen, D. J. Chang, C. C. Chen. Catalytic wet air oxidation of phenol by various CeO_2 catalysts. War. Res., 2002, 36: 3009~3014.
    [108] S. S. Lin, D. J. Chang, C. H. Wang, C. C. Chen. Catalytic wet air oxidation of phenol by CeO_2 catalysts-effect of reaction conditions. Wat. Res., 2003, 37: 793~800.
    [109] Debellefontaine H, Chakchouk M, Foussard J N, et al. Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation[J]. Environmental Pollution, 1996, 92 (2): 155~164.
    [110] Verenich S, Roosalu K, Hautaniemi M, et al. Kinetic modeling of the promoted and unpromoted wet oxidation of debarking evaporation concentrates[J]. Chemical Engineering Journal, 2005, 108(1-2): 101~108.
    [111] Timofeeva M N, Khankhasaeva S T, Badmaeva S V, et al. Synthesis,characterization and catalytic application for wet oxidation of phenol of iron-containing clays[J]. Applied Catalysis B: Environmental, 2005, 59: 249~254.
    [112] Nikolopoulos A N, Iggiessi-Markopoulou O, Papayannakos N. Degradation of 4-hydroxybenzoic acid by combined ultrasound irradiation and catalytic wet peroxide oxidation[J]. Ultrasonics Sonochemistry, 2004, 11 (3-4): 183~186.
    [113] Guelou E, Barrault J, Fournier J, et al. Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron[J]. Applied Catalysis B: Environmental, 2003, 44(1): 1~8.
    [114] Carriazo J G, Guelou E, Barrault J, et al. Catalytic wet peroxide oxidation of phenol over AI-Cu or A1-Fe modified clays[J]. Applied Clay Science, 2003, 22(6): 303~308.
    [115] Catfinescu C, Teodosiu C, Macoveanu M, et al. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite[J]. Water Research, 2003, 37(5): 1154~1160.
    [116] Barrault J, Abdellaoui M, Bouchoule C, et al. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays[J]. Applied Catalysis B: Environmental, 2000, 27(4): L225~L230.
    [117] Barrault J, Bouchoule C, Echachoui K, et al. Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)- pillared clays[J]. Applied Catalysis B: Environmental, 1998, 15(3-4): 269~274.
    [118] Melero J A, Calleja G, Martinez F, et al. Crystallization mechanism of Fe-MFI from wetness impregnated Fe_2O_3-SiO_2 amorphous xerogels: role of iron species in fenton-like processes[J]. Microporous and Mesoporous Materials, 2004, 74(1-3): 11~21.
    [119] Neamtu M, Catrinescu C, Kettrup A. Effect of dealumination of iron (Ⅲ)-exchanged Y zeolites on oxidation of reactive yellow 84 azo dye in the presence of hydrogen peroxide[J]. Applied Catalysis B: Environmental, 2004, 51(3): 149~157.
    [120] Fajerwerg K, Debellefontaine H. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst[J]. Applied Catalysis B: Environmental, 1996, 10(4): L229~L235.
    [121] Centi G, Perathoner S, Torre T, et al. Catalytic wet oxidation with H_2O_2 of carboxylic acids on homogeneous and heterogeneous Fentontype catalysts[J]. Catalysis Today, 2000, 55(1-2): 61~69.
    [122] Calleja G, Melero J A, Marfinez F, et al. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol[J]. Water Research, 2005, 39(9): 1741~1750.
    [123] Valange S, Gabelica Z, Abdellaoui M, et al. Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol [J]. Microporous and Mesoporous Materials, 1999, 30(1): 177~185.
    [124] Carriazo J, Guelou E, Barrault J, et al. Synthesis of pillared clays containing Al, AI-Fe or A1-Ce-Fe from a bentonite: characterization and catalytic activity[J]. Catalysis Today, 2005, (107-108):126~132.
    [125] Carriazo J, Guelou E, Barrault J, et al. Catalytic wet peroxide oxidation of phenol by pillared.clays containing A1-Ce-Fe[J]. Water Research, 2005, 39(16): 3891~3899.
    [126] Kim S C, Lee D K. Preparation of A1-Cu pillared clay catalysts for the catalytic wet oxidation of reactive dyes[J]. Catalysis Today, 2004, 97(2-3): 153~158.
    [127] Neamtu M, Zaharia C, Catrinescu C, et al. Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL[J]. Applied Catalysis B: Environmental, 2004, 48(4): 287~294.
    [128] 董俊明,曾光明,杨朝晖.催化湿式氧化农药废水及催化剂的研究[J].环境污染治理技术与设备,2005,6(8):64~68.
    [129] 城乡建设环境保护部部环境保护局环境监测分析方法编写组.环境监测分析方法,1988.
    [130] 曾新平,唐文伟,赵建夫等.湿式氧化处理高浓度降解有机废水研究.环境科学学报,2004,24(6):945~949.
    [131] 蒋展鹏,杨宏伟,谭亚军等.催化湿式氧化技术处理VC制药废水的试验研究.给水排水,2004,30(3):41~44.
    [132] Patterson D A, Metcalfe I S, Li Vingston A G. Wet air oxidation of linear alkyl benzene sulfonate 2. effect of pH. Ind. Eng. Chem. Res.,2001, 30(23): 5517~5525.
    [133] 祝万鹏,杨宏伟,殷彤.稀土金属铈对湿式氧化剂性能的影响.环境化学,2004,23(4):361~365.
    [134] Wailing C, Goosen A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates [J]. Journal of the American Chemical Society, 1973, 95: 2987~2991.
    [135] Lin S S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanisms and implications[J]. Environmental Science &Technology, 1998, 32(10): 1417~1423.
    [136] Tang W, Tassos S. Oxidation kinetics and mechanisms of trihalomethanes by Fenton~reagent[J]. Water Research, 1997, 31(5): 1117~1125.
    [137] Zazo J A, Casas J A, Mohedano A F, et al. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent[J]. Environmental Science&Technology, 2005, 39(23): 9295~9302.
    [138] Mei J G, Yu S M, Cheng J. Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation[J]. Catalysis Communications, 2004, 5(8): 437~440.
    [139] 杨润昌,周书天.高浓度难降解废水低压湿式催化氧化处理.环境科学,1997,18(5):71~74.
    [140] Wailing C. Fenton's reagent revisited [J]. Accounts of Chemical Research,1975,8:125~131
    [141] Wailing C, Katoo S. The oxidation of Alcohols by Fenton's reagent[J]. Journal of American Chemical Society, 1971,93(17): 4275~4281
    [142] Wailing C. Fenton's regent:Ⅳ. Structure and reactivity relations in the reactions of hydroxyl radicals and the rodox reactions of radicals. Journal of American Chemical Society [J],1974,96(1): 133~139
    [143] Striolo P, Dehellefontaine H, Foussard J N, et al. Wet peroxide oxidation: aqueous organic wastes treatment using hydrogen peroxide at high temperature [A]. The Fourth World Congress of Chemical Engineering[C]. Karlsruhe, Germany, 1991, 486~493.
    [144] Bishop D F, Stern G, Fleischman M, et al. Hydrogen peroxide catalytic oxidation of refractory organics in municipalwaste waters[J]. I & EC Process Design and Development, 1968, 7 (1): 110~117.
    [145] Sanada, A., et al. Involvement of free radicals in the aqueous-phase catalytic oxidation of phenol over copper oxide, J. Catalysis, 1974, 35.
    [146] 李玉敏.工业催化原理.天津大学出版社,1992.pp235.
    [147] 王尚弟,孙俊全.催化剂工程导论.化学工业出版社,2001.pp252.
    [148] 许越.催化剂设计与制备工艺.化学工业出版社,2003.pp209.
    [149] 唐受印,戴友芝.水热氧化技术.化学工业出版社,2002.pp251.
    [150] 催化剂手册—按元素分类.化学工业出版社编,1982.pp189.
    [151] 窦和瑞,朱静东.催化湿式氧化中铜基催化剂的流失与研究[J].催化学报,2003,24(5):328~332.
    [152] S. Imamura, K. Fukuda, T. Nishida and T. Inui. Effect of Sm on the catalytic activity of Co_3O_4 in the oxidation of toluene. Journal of Catalysis, 1985, 93(1): 186~191.
    [153] S. Imamura, M. Nakamura, N. Kawabata, J. Yoshida, S. Ishida, Wet oxidation of ploy (ethylene glycol) catalyzed by manganese cerium composite oxide, Ind. Eng. Chem. Prod. Res. Dev. 1986, 25: 34~38.
    [154] S. Imamura, Y. Okumura, T. Nishio,K. Utani,Y. Matsumura, Wet-Oxidation of a Model Domestic Wastewater on a Ru/Mn/Ce Composite Catalyst, Ind. Eng. Chem. Res, 1998, 37:1136~1139.
    [155] Y. Zhang, S. Andersson, M. Muhammed. Nanophase catalytic oxides: Ⅰ. synthesis of doped cerium oxides as oxygen storage promoters. Applied Catalysis B: Environmental, 1995, 6(4): 325~337.
    [156] D. Terribile, A. Trovarelli, C. De Leitenburg, A. Primavera, G. Dolcetti. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceda-zirconia solid solutions. Catalysis Today, 1999, 47:133~140.
    [157] 王建兵,祝万鹏,杨少霞等.Zr_xCe_(1-x)O_2催化剂催化湿式氧化乙酸的活性研究.化学学报,2006,64(15):1537~1542.
    [158] 杨少霞,祝万鹏,陈正雄等.CeO_2-TiO_2催化剂的表面结构及其湿式氧化活性.催化学报,2006,27(4):329~334.
    [159] Safia Hamoudi, Faical Larachi, Alain Adnot et al. Characterization of spent MnO_2/CeO_2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS. Journal of Catalysis, 1999, 185: 333~344.
    [160] Jing L Q, Xu Z L, Sun X J et al. The surface properties and photocatalytic activities of ZnO uitrafine particles. Appl Serf Sci, 2001, 180:308~314.
    [161] L. Li, P. Chen, E. F. Gloyna. Generalized kinetic model for wet oxidation of organic compounds. J. AICHE., 1991, 37 (11): 1678~1697.
    [162] N. K. V. Leitner, M. Dore. Mechanism of the reaction between hydroxyl radicals and glycolic, glyoxylic, acetic and oxalic acids in aqueous solution: consequence on hydrogen peroxide consumption on the H_2O_2/UV and O_3/H_2O_2 systems. Wat, Res., 1997, 31, 1383~1397.
    [163] S. R. Willms, D. D. Reible, D. M. Wetzel, P. D. Harrison. A queous-phase oxidation: the kinetics of signal organic compounds. Ind. Eng. Chem. Res, 1987, 26: 602~612.
    [164] F. J. Rivas, S. T. Kolaczkowski, F. J. Beltr6n, D. B. McLurgh. Development of a model for wet air oxidation of based on a free radical mechanism. Chem. Eng. Sci. 1998, 53: 2575~2586.
    [165] A. B. Thomsen. Degradation of quinoline by wet oxidation-kinetic aspects and reaction mechanisms. War. Res., 1997, 32 (1): 136~146.
    [166] D. R. Mullins, S. H. Overbury, D. R. Huntley. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci., 1998, 409: 307~319.
    [167] Falcon, M., et al. Wet oxidation of carboxylic acids with hydrogen peroxide, Environ. Technol., 1995, 16.(6): 501~514.
    [168] C. B. Azzoni, A. Paleari. Paleari paramagnetic-defect kinetics in yttria-stabilized zirconia. Solid State Ionics., 1991, 44 (3-4): 267~273.
    [169] M. Arvanitidou, A. Tsakris, T.C. Constantinidis, V.C. Katsouyannopoulos. Transferable Antibiotic resistance among salmonella strains isolated from surface waters, Wat. Res. 1997,31 (5): 1112~1116
    [170] 陶润先,李光明,王华等.废水催化湿式氧化中的催化剂是活问题.化工进展,2003,23(7):755~759.
    [171] Sang-Kyung Kim, Son-Ki Ihm. Nature of carbonaceous on alumina supported transition metal oxide catalysts in the wet air oxidation of phenol. Topics in Catalyst, 2005, 33(1-4): 171~179.
    [172] Li L. et al. Generalized kinetic model for wet oxidation of organic compounds. AICHE Journal, 37(11): 1687~1697.
    [173] W. M. Fassel, D. W. Bridges, Baarber-Colman Co. Apparatus for and method for wet air oxidation of organic mater, 1975, U. S. P3870631.
    [174] De B kker, H. A. M. J. Pieter, J. Van Den Berg, J. Jan. Modelling and construction of a deep well aqueous phase oxidation process. War. Sci. Tech., 1993, 27 (5-6): 457~468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700