大功率LED的封装及其散热基板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
散热问题影响到LED的光输出特性和器件的寿命,是大功率LED封装中的关键问题。金属芯的线路板(MCPCB)是LED白光照明系统中连接内外热通路的核心部件,关系到多芯片LED封装的结构和布局;LED外封装的可靠性-整个系统的电气连接,物理支撑,散热特性,封装的工艺流程以及成本,很大程度上取决于MCPCB。
     本文剖析了几种比较有影响力的LED封装方案的结构和散热原理。从解决大功率发光二极管散热和材料热膨胀系数匹配的角度,提出了两种MCPCB方案,并用ANSYS软件对LED进行了热场的有限元模拟以评估其散热性能:
     1.AlN薄膜覆Al基板,可以使内热通道的设计变得非常简单,可以高效地把芯片的热量引导出来。利用磁控溅射系统在6061铝材上制备了3μm的AlN薄膜,X射线衍射仪(XRD)、椭偏测试仪、耐压测试表明,AlN膜为具有良好取向的多晶薄膜,击穿电压接近单晶。利用自动划痕仪对AlN膜进行剥离实验,临界载荷为6N左右。AlN和铝基体间的结合主要是物理吸附和机械锚合。基于AlN膜/Al热沉的LED的封装结构的散热性能优异,模型的内通道热阻小于3K/W。
     这种方案目前尚需解决的问题是生产的效率尚待提升,成本较高,AlN膜与铝基的结合力有限,在后续的封装工艺中膜的附着性较难保证。
     2.等离子微弧氧化(MAO)工艺制作的铝芯金属基板,附着性等机械性能无可争议,MAO铝芯复合基板的工艺重复性好,其低成本、低热阻、性能稳定、便于加工和进行多样结构的封装更是其突出优点。基于MAO-MCPCB基板封装的LED内热通路热阻小于10K/W,有望在普通照明应用中大露头角。热导率更高、厚度更薄的MAO膜,其内部散热通道更通畅,热阻更低。
     通过系列实验,优化了20μm到40μm MAO膜的工艺参数,可以制作膜厚20μm、偏差±1μm(磨抛前)结晶性优良的MAO膜,其热导率达到2.3 WK~(-1)m~(-1)。基于本论文中特殊的应用场合,对厚度20μm到100μm的MAO膜的微观结构(主要是膜的均匀性、表观形貌、表面缺陷)有更多的关注。
     微弧氧化是生成与溶解的共存过程,期间火化放电的强弱、发生的时序以及相互位置关系对膜的均匀性和膜的微观结构形成有决定性的影响。故本论文对表面放电的规律和微熔区的凝固规律作了较深入的研究:
     1.对微弧氧化的击穿放电机制,提出了一种基于趋肤效应的假设:氧化膜和铝基体的界面凹凸不平,在微观上有许多尖端和凹区,由于电荷在铝表面有趋肤效应,尖端形成富电荷区而微观凹区形成贫电荷区。因为正负电荷相吸的原理,正电荷(电子空位,或电子浓度相对较低)在铝表面的分布影响了负电荷(杂质阴离子)在膜/液界面的分布。从而在铝界面的微观尖端位置上加载的电场强度远高于其它区域,击穿更容易发生。经过长时间放电,氧化膜和铝基体的界面不再存在对比非常强的“贫电荷区”和“富电荷区”,击穿放电几率就基本上由所在位置的绝缘强度即厚度决定,这样最终陶瓷膜的厚度生长到比较均衡的程度,场强因而比较均衡地分布,从而击穿放电事件减少甚至终止。
     2.通过实验和模拟拟合,对微弧氧化过程中Al_2O_3膜表面的对流散热系数作了估计,实验过程中发现Al_2O_3/Al界面在微观上也是一个冷却界面,Al基体在冷却过程中起“热量中转”的作用,熔池在淬冷过程中的大部分热量经过了邻近区域的Al_2O_3膜或者铝基体。通过热模拟得到的纵深各点温度-时间曲线来表征微熔区的淬冷过程。通过对各节点的相对冷却速度比较,阐述了淬冷过程对α-Al_2O_3分布和Al_2O_3膜表面形貌的影响,压力因素在微观结构形成过程中所产生的影响作了粗略的分析。
     放电规律针对的主要是均匀成膜和高效率成膜的问题,凝固规律针对的主要是MAO膜微观结构的形成机制。这正是基板制作所重视的两个方面。
Thermal management is a key issue in the high-power LED package, which has great effect on the output power and lifetime of the device. Metal core printed circuit board(MCPCB), as one of decisive components to solve this problem, is attached great importance in the consideration for the structure and configuration of the LED devices. The reliability and stability, including electric-connecting, physical supporting, heat dissipating ability, the packaging process and the system cost, to a great extent dependents on MCPCB.
     Functions of several types of MCPCB have been analyzed in detail. From the angle of thermal management and coefficient of temperature expanding (CTE) matching of the packaging materials and the LED chip, two kind of MCPCB were introduced, advantages& disadvantages was investigated respectively, and finite element method (FEM) was adopted to evaluate the temperature distribution of LED package.
     1. AlN films with thickness of approximately 3μm were deposited by Magnetron sputtering System on 6061 Al substrates. Preferential orientation polycrystalline AlN films were discriminated by XRD and Spectroscopic Ellipsometry. Potential resistance testing showed that breakdown voltage of the AlN film resembles single crystal. The coating -substrate interfacial was investigated on a scratch tester, and the critical load was 6 Newton. Reason of strong adhesion was presented by SEM. The package model of LED was analyzed by FEM, and the internal thermal resistance, was less than 3 K/W.
     AlN/Al composite make easy to design the internal thermal passage, conducting the heat from the chip efficiently. The problems of this composite include low efficiency thus high cost, and adhesive limit of the AlN films was disbennifit to later package processes.
     2. A special MCPCB fabricated by PEO (plasma electrolyte oxidation) is introduced, Excellent Mechanical performance, low cost, good electrical isolation, excellent thermal transfer and its convenience for later package processes is the great advantage. MAO-MCPCB substrate, the internal thermal resistance of the LED package based on which was less than 10 K/W, has a great promise in the future general lighting application. The higher is the thermal conductivity of the MAO coating, or the thinner is the MAO coating, the lower is the internal thermal resistance.
     The technical Parameter fabricating MAO coatings with thickness from 20μm to 40μm was optimized On the basis of a great deal of experiments, and 20μm±1μm (before grinding or finishing) polycrystalline MAO coatings was acquired, the thermal conductivity reached 2. 3 W K~(-1)m~(-1). Aimed at the application for MCPCB, This paper attached great importance on the efficiency of the MAO-Process and microstructure of MAO coatings, such as uniformity, surface morphology and surface-micro-crack-distribution.
     MAO coating growth coexists with the dissolution; at the same time strength, sequence, and ubiety of the discharge has great effect on the uniformity and microstructure of MAO coatings. So the discharge characteristic(I) and quenching process of the micro-melting pool( II) was deeply investigated.
     (I)As to the uniformity of MAO Coatings and efficiency of MAO Process, assumption aboat breakdown was brought up. From microcosmic viewpoint, the Al_2O_3/Al interface was accidented. Because of skin effect, protuberant region is electric-charge-rich (electron-pool) region and concave region electric-charge-pool (electron-rich) region at the anode-positive-loaded half cycle. As like electric charge species repel and unlike attract each other, the distribution of positive electrical charge on the Al interface impact on the distribution of negative ion on the Al_2O_3/solution interface. The Electric Field on electric-charge-rich region was stronger than other region, so this position has more probability to breakdown. When the MAO Coating grow to even enough, and Electric Field was relatively equilibrium, the frequency of discharge events gradually die away.
     (II )The convection heat transfer coefficient on Al_2O_3 coating during microarc oxidation process was estimated by experiment and simulation. The Al_2O_3/Al interface was found to be a heat-transfer passage. During quenching, most heat of the micro-melting-pool was transferred through the Al substrate and the Al_2O_3 coating nearby. The micro-melting-pool was modeled by finite element method (FEM), and the process of quenching was characterized by the simulated temperature-time curves of the nodes along the depth, respectively. The effects of the quenching on the distribution ofα-Al_2O_3 and surface morphology of Al_2O_3 coating were discussed by comparing the relative cooling rate at different positions. The influence of pressure on the microstructure of MAO coating was also discussed briefly.
引文
1. Benefits of Lumileds So]id State Lighting Solutions vs. Conventional Lighting. Lumileds Lighting. Application brief AB17 (2/05).
    2. Energy Savings Potential of Solid State Lighting in general Illumination Applications. Navigant Consulting, Inc., Washington DC, November 2003.
    3. Robert V. Steele. High-brightness LED market overview. Proceedings of SPIE, 2001, 4445:1-4.
    4. D.A. Steigerwald, Jerome C. Bhat, Dave Collins et al. Illumination with Solid State Lighting Technology, IEEE journal on selected topics in Quantum Electronics, 2002, 8(2): 310-320.
    5. A. Y. Kim et al. Performance of High-Power AlInGaN Light Emitting Diodes, Phys. Stat. Sol, 2001, 188: 15-21.
    6. J.Y. Tsao, Ed. "Light Emitting Diodes (LEDs) for General Illumination Update 2002", Optoelectronics Industry Development Association, Washington D.C., 2002.
    7. Paul S. Martin et al. High Power White LED Technology for Solid State Lighting. Proc. SPIE, San Diego, CA, July 2001.
    8. Scott Kern, Markus Mail. Innovative automotive lighting with LEDs: Innovative automotive lighting with LEDs: Luxeon LEDs for automotive front and interior lighting. Release date: 9 February 2005.
    9. Low-Profile LED Luminaries Evaluation Report, Architectural Energy Corporation, January 25, 2004.
    10. Barbara G. A, David J.B, Gabrielle B et al. Assessing Consumer Values and Supply-Chain Relationships for Solid-State Lighting Technologies. June 2004.
    11. S. Muthu, F. J. P. Schuurmans, M. D. Pashley. Red, Green, and Blue LEDs for white light illumination. IEEE J. Select. Topics Quantum Electron. 2002, 8: 333-338.
    12. Narendran N. et al. Solid-state lighting: failure analysis of white LEDs. J. Crystal Growth, 2004, 268:449-456.
    13.罗毅,郭文平,邵嘉平等.GaN基蓝光发光二极管的波长稳定性研究.物理学报,2004,8(53):2720-2723.
    14. Mehmet Arik, James PetroskF, Stanton Weavery. Thermal Challenges in the Future Generation Solid State Lighting Application: Light Emitting Diodes. Proceedings of IEEE-ITHERM eonference, May 2002: 113-120.
    15. N. Narendran, L. Deng, R. M. Pysar et al. Performance characteristics of high power light-emitting diodes. 3rd Int. Conf. on Solid State Lighting, Proc. SPIE, San Diego, CA, 2003, 5187:267-275.
    16. Lumen Maintenance of White Luxeon Power Light Sources. Lumileds Lighting. Application brief ABO7(1/05).
    17. F.M. Steranka, J. Bhat, D. Collins et al. High Power LEDs Technology Status and Market Applications. Lumileds Lighting. (intertech2002, 6)
    18. Thermal Management of Golden Dragon LED, opto semiconductors, August 7, 2002.
    19. Available: www.norluxcorp.com.
    20. Available: www.laminaceramics.com.
    21. Nichia, http://www.nichia.com.
    22. Thermal Design Considerations for Luxeon Power Light Source. Lumileds, Luxeon AB05, Available: www.lumileds.com.
    23.萧元忠.骚光二極髓.産業舆技術(台湾省),2002,(104):88-105.
    24.王国宏.半导体照明大功率LED进展.新材料产业,2004(6):26-29.
    25.罗毅,邵嘉平,孙长征.半导体照明产业化关键技术国内外专利现状分析及应对策略[J].新材料产业,2004(6):34-40.
    26.资料来源:台湾(省)工研院光电所,半导体照明网.
    27. Paul S. Martin. Performance, Thermal, Cost Reliability challenges for solid state Lighting. OIDA Conference, May 30th, 2002.
    28. Regina Mueller-Mach, Gerd O. Mueller, Michael R. Krames et al. High Power Phosphor-Converted Light-Emitting-Diodes Based on Ⅲ-Nitrides IEEE Journal On Selected Topics In Quantum Electronics, March/April 2002, 8(2):339-346.
    29. Shatil Haque, Dan Steigerwald, Serge Rudaz et al. Packaging Challenges of High Power LEDs for Solid State Lighting. Lumileds Lighting.
    30. N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar. "Characterizing LEDs for General Illumination Applications: Mixed-color and phosphor-based white sources," Proceedings of SPIE, Vol. 4445, 2001.
    1.田民波.电子封装工程.北京:清华大学出版社,2003:614-639.
    2.周志敏,周纪海,纪爱华.LED驱动电路设计与应用.北京:人民邮电出版社,2006:1-73.
    3.刘行仁,郭光华,林秀华.InGaN蓝光LED的发射光谱、色品质与正向电流的关系[J].照明工程学报,2004,15(1):14-18.
    4.罗毅,郭文平,邵嘉平等.GaN基蓝光发光二极管的波长稳定性研究.物理学报,2004,8(53):2720-2723.
    5. Traetta G, Carlo A D, Reale A et al. J Cryst. Growth 2001:230-492.
    6. N. Narendran, L. Deng, R. M. Pysar et al. Performance characteristics of high-power light-emitting diodes. 3rd Int. Conf. on Solid State Lighting, Proc. SPIE, San Diego, CA, 2003, 5187:267-275.
    7. Luxeon Product Binning and Labeling. AB21 (2/05)
    8.蒋大鹏,侯凤勤,范希武,等.白色发光二极管色坐标和显色指数的一致性[J].液晶与显示,2002,17(3):219-220.
    9.李忠辉,丁晓民,杨志坚等.高亮度InGaN基白光LED特性研究[J].红外与毫米波学报,2002,21(5):390-392.
    10.钱可元,胡飞,吴慧颖等.大功率白光LED封装技术的研究,半导体光电,2005,26(2):118-120
    11. N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, "Characterizing LEDs for General Illumination Applications: Mixed-color and phosphor-based white sources," Proceedings of SPIE, Vol. 4445, 2001.
    12. D.A. Steigerwald Jerome C. Bhat, Dave Collins et al, Illumination with Solid State Lighting Technology, IEEE journal on selected topics in Quantum Electronics, 2002, 8(2): 310-320.
    13. Zhao F., N. Narendran, J. F. Van Derlofske. Optical elements for mixing colored LEDs to create white Light. SPIE Proceedings 2002, 4776: 207-214.
    14. AGushi Okuno, Yoshiteru Miyawaki, Noritaka Oyama, Wang Dongxu. Unique White LED Packaging Systems. ICEPT 2003 IEEE: 225-229.
    15. Regina Mueller-Mach, Gerd O. Mueller, Michael R. Krames et al. High Power Phosphor-Converted Light-Emitting-Diodes Based on Ⅲ-Nitrides IEEE Journal On Selected Topics In Quantum Electronics, March/April 2002, 8(2):339-346.
    16. Optical Testing Super Flux, SnapLED and Luxeon Emitters. Application brief AB08.
    17.鲍超,超高亮度LED测量问题[J].液品与显示,2003:18(4),244-250.
    18. R. Scott Kern, Markus Maile. Innovative automotive lighting with LEDs: Luxeon~(?) LEDs for automotive front and interior lighting.
    19. Power Supply Considerations for the NorLux Monochromatic Hex. Available: www.norluxcorp.com.
    20. MLXI0801 LED Module with low EMI/EMC, 2004. www.melexis.com.
    21. Luxeon Reliability. Application Brief AB25 (2/04).
    22. Egawa, T. et al. Optical degradation of InGaN/AlGaN light-emitting diode on sapphire substrate grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 1996, 69(6): 830-832.
    23. Yanagisawa T. The degradation of GaAlAs red light-emitting diodes under continuous and low-speed pulse operation. Microelectronics Reliability, 1998, 38:1627-1630.
    24. Narendran N. et al. Solid-state lighting: failure analysis of white LEDs. J. Crystal Growth, 2004, 268:449-456.
    25. D. L. Barton, M. Osinski, P. Perlin et al. Life tests and failure mechanisms of GaN/AlGaN/InGaN light emitting diodes, in Proc. SPIE, San Jose, CA, 1998, 3279:17-27.
    26. G. Meneghesso, S. Levada, E. Zanini et al. Failure modes and mechanisms of DC-aged GaN LEDs. Phys. Stat. Sol. 2002, 194(2):389-392.
    27. F. Manyakhin, A. Kovalev, and A. E. Yunovich. Aging mechanisms of InGaN/AlGaN/GaN light emitting diodes operating at high currents. MRS Internet J. Nitride Semicond. Res., 1998,3:53.
    28. N. Narendran, Y. Gu, J. P. Freyssinier et al. Solid-state lighting: failure analysis of white LEDs. J. Cryst. Growth, 2004, 268(3-4):449-456.
    29. Nadarajah Narendran, Yimin Gu. Life of LED-based white light sources. Journal of Display Technology, 2005, 1(1): 167-171.
    30. N. Narendran, J. Bullough, N. Maliyagoda et al. What is useful life for white light LEDs? J. Illum. Eng. Soc. 2001,30(1): 57.
    31. Materials engineering solutions to fundamental challenges. Lumileds Lighting. (1/04).
    32. Lumileds Iighting, Thermal Design Considerations for Luxeon Power Light Sources, AB05 (September 2001), (San Jose, CA: Lumileds Lighting, 2001).
    33.陈斌,王兴妍,黄辉等.Ⅲ-Ⅴ族半导体品片键合热应力分析.半导体光电,2005,26(5):421-425.
    34.李炳乾.Super Flux Leds的热工控制.国际光电与显示,2002,6:155-160.
    1.Luxeon Thermal Design Guide. Lumileds Lighting. (1/05)
    2.杨世铭,陶文铨.传热学.第三版.北京:高等教育出版社,1998:5,25-28.
    3.张朝辉.ansys8.0热分析教程与实例解析.北京:中国铁道出版社.2005:6,10-15.
    4.李黎明.Ansys有限元分析实用教程.北京:清华大学出版社.2005:298-299.
    5. Lumileds Lighting. Thermal Design Considerations for Luxeon 5 Watt Power Light Sources. Application Brief AB23, 2002.
    6. Lumileds Lighting. Thermal Design Considerations for Luxeon 5 Watt Power Light Sources, Application Brief AB23, 2002
    7. Available: www.norluxcorp.com.
    8. George Craford. Overview on High Brightness LEDs and the Outlook for Red and Yellow Devices. LumiLeds Lighting, intertech2000.
    9. Rainer Huber. Thermal Management of Golden Dragon LED. OSRAM Opto Semiconductors, 2002, 7:1-11.
    10.冯士维,谢雪松,吕长治等.半导体器件热特性的电学法测量与分析.半导体学报,1999,20(5):358~364.
    11.李炳乾,布良基,范广涵.芯片键合材料对功率型LED热阻的影响[J].半导体光电,2003,24(6):422-424.
    12.李炳乾,布良基,范广涵.功率型LED热阻测量新方法[J].半导体光电,2003,24(1):22.
    13.祝效华,余志祥,程迎军等.ANSYS高级有限元分析-范例精选.北京:电子工业出版社,2004,10:285-300.
    1.关振铎,张中太,焦金生.无机材料物理[M].北京:清华大学出版社,2004:344.
    2. Meng W.J. Properties of group Ⅲ nitrides[C]. London: INSPEC Short Run Press, 1994: 222-341.
    3. S.J. Bull, E.G. Berasetegui. An overview of the potential of quantitative coating adhesion measurement by scratch testing[J]. Tribology International, 2006,39(2): 99-114.
    4. Lee Jeong Hoon, KimU Won Mok, Lee Taek Sung, et al. Mechanical and adhesion properties of Al/AlN multilayered thin films[J]. Surf. Coat. Technol., 2000, 133-134:220-226.
    5. J.D. Kamminga, P.F.A. Alkemade, G.C.A.M. Janssen. Scratch test analysis of coated and uncoated nitrided steel[J]. Surf. Coat. Technol. 2004, 177-178:284-288.
    6. H. Ichimura, Y. Ishii. Effects of indenter radius on the critical load in scratch testing[J]. Surf. Coat. Technol. 2003, 165(1): 1-7.
    7. Chang J.H., Duh J.G., Chiou B.S. Morphology and adhesion strength in electroless Cu metallized AlN substrate. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1993,16(8): 1012~1020.
    1. J.A. Curran and T.W. Clyn. The thermal conductivity of plasma electrolytic oxide coatings on aluminum and magnesium. Surface and Coatings Technology. 2005, 199(2-3):177-183.
    2. J. A. Curran and W.W. Clyn. Whermo-physical properties of plasma electrolytic oxide coatings on aluminum. Surface and Coatings Technology. 2005, 199(2-3): 168-176.
    8.吴汉华,于凤荣,李俊杰等.铝合金微弧氧化陶瓷膜形成过程中的特性研究,无机材料学报,2004,19(3):617~622.
    9.朱祖芳.铝合金阳极氧化与表面处理技术.北京:化学丁业出版社,2005,7.
    10. Hanhua Wu, Jianbo Wang, Beiyu Long et al. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminum alloy. Applied Surface Science, 2005, 252:1545-1552.
    11.赵豪民,江俊灵.铝合金微弧氧化陶瓷膜性能及其影响因素探讨.材料保护,2005,38(7):61-63.
    12.吴汉华,龙北红,吕宪义等.铝合金微弧氧化过程中电学参量的特性研究.物理学报,2005,54(4):1697-1701.
    13. A. Plati, J.A. Curran, T.W. Clyne. Adhesion of Plasma Electrolytic Oxidation coatings. Junior Euromat, September 2004, Lausanne. From: http://www.msm.cam.ac.uk/mmc/people/ap346/index.html
    14.张文华,胡正前,马晋.俄岁斯微弧氧化技术的研究进展.有色金属,2004,1:43-46.
    15.吕宪义,金曾孙,吴汉华,等.阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响[J].吉林大学学报(理学版),2005,43(1):64-67.
    16.王乃丹,龙北玉,吴汉华等.单极性脉冲电流密度对铝合金MAO膜相结构和微结构的影响.吉林大学学报(理学版),2005,43(5):645-649.
    17.龙北玉,吴汉华,龙北红等.电解液对铝合金微弧氧化陶瓷膜相组成和元素成分的影响[J].吉林大学学报(理学版),2005,43(1):68-72.
    18. A. L. Yerokhin, T. A. Shatrovb, V. Samsonovb, et al. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf. Coat. Technol. 2005, 199(2-3): 150-157.
    19. L.O. Snizhko, A.L. Yerokhin, A. Pilkington et al. Anodic processes in plasma electrolytic oxidation of aluminum in alkaline solutions. Electrochimica Acta, 2004(49): 2085-2095.
    20. B H Long, H H Wu, B Y Long et al. Characteristics of electric parameters in aluminum alloy MAO coating process. J. Phys. D: Appl. Phys. 2005(38):3491-3496.
    21. David G. Cahill, S. M. Lee. Thermal conductivity of γ-A1203 and a-A1203 wear resistant coatings. Journal Of Applied Physics, 1998 (83):5783-5786.
    22. R. K. Williams, R.S. Graves, M A. Janney et, al. The effects Of Cr203 and Fe203 additions on the thermal conductivity of A1203. J. Apps. Phys. 1987, 61(10): 4894-4901.
    23. J. A. Curran and T. W. Clyn, The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surf. Coat. Technol. 2005,199(2-3): 177-183.
    1.旷亚非,侯朝辉,刘建平.阳极氧化过程中电击穿理论的研究进展.电镀与涂饰,2000,19(3):38-41.
    2. G.C. Wood, C. Pearson. Dielectric breakdown of anodic oxide films on valve metals. Corrosion Science 1967.7(2):119-125.
    3. Albella JM, Montero I, Martinez-Duart JM. A Theory of Avalanche Breakdown during Anodic Oxidation. Electrochim Acta, 1987, 32(2):255-258.
    4. J.A. Curran and T.W. Clyn, Thermo-physical properties of plasma electrolytic oxide coatings on aluminum. Surface and Coatings Technology, 2005, 199(2-3): 168-176.
    5. A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina et al. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminum alloy. Surface and Coatings Technology, 2004, 177-178: 779-783.
    2. Wu Han-hua, Wang Jian-bo, Long Bei-yu, et al. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy. Applied Surface Science, 2005, 252(5): 1545-1552.
    3.王乃丹,龙北玉,吴汉华等.单极性脉冲电流密度对铝合金MAO膜相结构和微结构的影响.吉林大学学报(理学版),2005,43(5):645-649.
    4.龙北玉,吴汉华,龙北红等.电解液对铝合金微弧氧化陶瓷膜相组成和元素成分的影响.吉林大学学报(理学版),2005,43(1):68-72.
    5.赵豪民,江俊灵.铝合金微弧氧化陶瓷膜性能及其影响因素探讨.材料保护,2005,38(7):61-63.
    6.吴汉华,龙北红,吕宪义等.铝合金微弧氧化过程中电学参量的特性研究.物理学报,2005,54(4):1697-1701.
    7.吴汉华,于凤荣,李俊杰等.铝合金微弧氧化陶瓷膜形成过程中的特性研究.无机材料学报,2004,19(3):617-622.
    8. A. L. Yerokhin, T. A. Shatrovb, V. Samsonovb, et al. Oxide ceramic coatings on aluminum alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf. Coat. Technol. 2005, 199(2-3): 150-157.
    9. J.A. Curran, T.W. Clyne. Thermo-physical properties of plasma electrolyric oxide coatings on aluminum. Surf. Coat. Technol. 2005, 199(2-3): 168-176.
    10.薛文彬,邓志威,来永春等.铝合金微弧氧化陶瓷膜的相分布及其形成.材料研究学报,1997,11(2):169~172.
    11. Xue Wen-bin, Wang Chao, Deng Zhi-wei, et al. Evaluation of the mechanical properties ofmicroarc oxidation coatings and 2024 aluminum alloy substcate. J. Phys.: Condens. Matter. 2002, 14(44): 10947-10952.
    12.辛明道.沸腾传热及其强化.重庆:重庆大学出版社,1987:1-11.
    13.杨世铭,陶文铨.传热学,第三版.北京:高等教育出版社,1998:5,215-229.
    14. J. A. Curran, T.W. Clyne. The thermal conductivity of plasma electrolytic oxide coatings on aluminum and magnesium. Surf. Coat. Technol. 2005, 199(2-3): 177-183.
    15.关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,2004:141-149.
    16.国家自然科学基金委员会.等离子体物理学.北京:科学出版社,1994:19.
    17. A. Plati, J.A. Curran, T.W. Clyne. Adhesion of Plasma Electro]ytic Oxidation coatings. Junior Euromat, September 2004, Lausanne. From: http://www.msm.cam.ac.uk/mmc/people/ap346/index.html
    18. R.H.U. Khan, A.L. Yerokhin, T. Pilkington, et al. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surf. Coat. Technol. 2005, 200(5-6): 1580-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700