悬浮载体生物流化床反应器脱氮试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个干旱、严重缺水的国家,随着城市化率的不断提高,污水量大幅度增加,自然水体富营养化日趋严重,符合标准的可供水源急剧减少,水资源短缺已成为制约我国社会经济发展的瓶颈。提高中小型点源污水的处理率、降低排水中氮的含量是控制水体富营养化的关键,因此开发高效、节能的中小型点源污水脱氮工艺具有重大的现实意义。
     本文在全面分析污水生物脱氮原理及生物流化床特点的基础上,试验研究了一种新型污水生物脱氮工艺,即悬浮载体生物流化床反应器。本研究首次提出了一种全新的反应器——悬浮载体生物流化床。该工艺为缺氧好氧一体式,并在好氧区投加填料,强化了系统的硝化功能;好氧区内不安装导流装置,通过改变曝气装置的位置来达到气、液、固三相的均匀混合;缺氧区内设计安装了搅拌片及三相分离器,使反硝化产生的N2及时排出系统,促进反应向正方向进行,提高脱氮效率,搅拌片的作用还使缺氧区布水均匀;同时将传统的水平流动方式改为向上流动方式,节省了占地面积及投资,在一个反应器的不同区域内完成了生物脱氮过程,实现了污水处理一体化,简化了工艺流程。
     填料是该工艺的核心部分,内部有波纹隔板支撑,圆柱体表面呈波纹状凹凸不平,容易挂膜,主要挂膜区域为填料内部。填料内部表面凹陷处所形成的生物膜比较厚,反应器内的生物量大,试验期间MLSS值可高达9 500~11 000mg/L;同时在填料表面生物膜较厚处易形成厌氧层,进而形成缺氧——好氧微环境,使同步硝化反硝化脱氮成为可能,提高了反应器的脱氮效率。填加投加量约为好氧区体积的30% ,密度为0.4~0.45×103kg/m3,质轻高强,节省动力,运行中填料在曝气作用下呈流化状态,三相接触充分,达到良好的处理效果。因此可得出结论,以波纹状圆柱体聚丙烯填料作为流化床的悬浮载体填料为佳。
     论文首先研究了悬浮载体生物流化床反应器的脱氮效能。结果表明,悬浮载体生物流化床反应器是一种有效的城市污水处理工艺,并对水质的变化有一定的抗冲击能力。该工艺对有机物和氨氮均有较高的去除率,对总氮也有明显的去除效果。正式运行期间进水容积负荷在1~28kgCOD/m3.d之间变化,试验结果表明,当容积负荷小于15kgCOD/m3.d时,COD平均出水浓度为23.59mg/L,平均去除率为89.52%,最高可达98.38%;氨氮平均出水浓度为6.91mg/L,平均去除率为83.66%,最高可达96.38%;总氮平均去除率为52.49%,最高可达69.71%。
     论文分别研究了有机负荷、水温、pH值及硝化液回流比对反应器处理效能的影响。结果表明,当容积负荷小于15kgCOD/m3.d时,COD出水平均浓度为23.59mg/L,氨氮去除效果随COD容积负荷的增加而降低,其出水平均浓度为6.52mg/L,满足《污水综合排放标准》一级标准;当容积负荷在9~17kgCOD/m3.d范围内,TN去除率随COD容积负荷的增加逐渐提高,低于9kgCOD/m3.d时,由于碳源缺少,TN去除率较低,高于17kgCOD/m3.d时,因氨氮硝化受阻,反硝化失去基础,TN去除率亦开始下降。系统中COD、氨氮及TN的去除效率均随水温的降低而降低,当水温低于10℃时,异养碳化菌和自养硝化菌活性都大为降低,系统对COD、氨氮及TN平均去除率分别低至69.62%、62.53%、17.51%,因此本试验中临界温度点为10℃。硝化液回流比对COD和氨氮的去除效果影响不大,而对总氮的去除效果产生了较大的影响,当硝化液回流比为2:1时,TN平均去除率为48.97%,回流比为4:1时,去除率为59.32%,当回流比为3:1时,TN去除效果最好,平均去除率可达61.90%。
     论文揭示了悬浮载体流化床好氧区内同步硝化反硝化的过程。结果表明,好氧区总氮浓度低于缺氧区,证明了同步硝化反硝化的存在,约有19.53%的总氮通过同步硝化反硝化作用去除。DO是影响同步硝化反硝化的一个重要因素。当DO值为3.7mg/L时,硝化和反硝化速率接近,总氮去除效果最佳可达57.98%。同时由于硝化反硝化是由自养菌和异养菌共同作用的结果,所以有机负荷必须控制在一个最佳的范围内才能达到较好的同步硝化反硝化效果。本试验中容积负荷应控制在9~17kgCOD/m3.d。通过显微镜和扫描电镜的观察,考察了反应器启动及正式运行阶段活性污泥及生物膜的微生物组成和形态特征,分析了反应器内的微生物特性。生物膜的存在使反应器内生存着世代周期较长的微生物,丰富的生物相为系统功能的正常运行提供了有效的保证。反应器表现出处理效果好、抗冲击负荷能力强、污泥产量低等高效运行特征。
     最后,在对试验数据进行分析的基础上,对反应器的实际运行机理进行了研究,并根据Monod公式,推导出了反应器有机物降解动力学模型及同步硝化反硝化动力学模型,并从传质的角度进行了分析。
China is drought and lack of water strictly,with the development of the cities in China,the amount of wastewater is going up greatly and eutrophication of natural waters is severe,the amount of water resources measuring up the standard reduces rapidly. Economy development is limited by the shortage of water resources. The key issue for controlling eutrophication is improving the wastewater treating rate and reducing the amount of nitrogen in the effluent. So it is important to develop high efficiency and energy-saving middle and small-scale process for point-sources nitrogen removal.
     This project developed a new style wastewater treatment process for nitrogen removal based on the theory of biological nitrogen removal and the characteristics of biological fluidized beds,that is suspended carriers biological fluidized bed reactor.
     This process settled aerobic and anoxic zone into one reactor and put suspended carriers into aerobic zone to enhance nitrifying capacity of the system. There is no liquid directing device in aerobic zone and mix gas-liquid-solid equably by changing the position of aeration devices. Stirrer and three-phase separator was settled in anoxic zone to ensure the efficiency of denitrification. In this reactor wastewater goes up from the bottom. This will resolve the problem of occupying large area existed in traditional processes and predigest the process. Carriers is the core part of the process and its material is polypropylene. The outer and inner surface of the carriers is moiréand is easy to be attached by microorganisms. In the recess of the biofilm is thick,the amount of MLSS is high and can reach 9 500~11 000mg/L. At the same time the thick part of the biofilm can form anaerobic zone and simultaneous nitrification and denitrification can achieve. So the efficiency of total nitrogen removal will improve. The density of carriers is low of 0.4~0.45×103kg/m3 and can save power when mixing three phases.
     This project first studied the efficiency of nitrogen removal using suspended carriers biological fluidized bed reactor. The results show that this process is an effective process for urban wastewater treatment and is suitable for the change of water quality of influent to some extent. The removal efficiency of COD and ammonia is upper and obvious to TN. During the period of experiment the average concentration of COD is 23.59mg/L,the average removal efficiency is 89.52% and the top value can reach 98.38% ; To ammonia the average concentration of the effluent is 6.91mg/L and the average removal efficiency is 83.66%,the top value can reach 96.38%;To total nitrogen the average removal efficiency is 52.49% and the top value is 69.71%.
     Also the project studied the influence factors for nitrogen removal using suspended carriers biological fluidized bed. This paper discussed influence factors to nitrogen removal such as organic load,influent temperature,pH value and reflux ratio of nitrated liquid. The results show that when organic load is less than 15kgCOD/m3.d,the average COD concentration of effluent is 20.72mg/L and reach the first class of Sewage Comprehensive Discharge Standard; the removal efficiency of ammonia reduced with the increase of influent organic load; but of TN goes up. When the organic load is less than 7 kgCOD/m3.d,TN removal efficiency is low because of the shortage of carbon sources. When it is more than 17kgCOD/m3.d,TN removal efficiency goes down because denitrification is limited with bad nitrification. Temperature is also an important influence factor. The removal efficiency of COD,ammonia and TN go down with the water temperature,and when the temperature is less than 10℃,the activity of bacteria goes down deeply and the removal efficiency of COD,ammonia and TN reduced to 69.62%、62.53%、17.51% respectively,so the critical temperature of this reactor is deemed to 10℃. Nitrifying liquid reflux ratio has little effect to COD and ammonia removal but it affected TN removal greatly. When reflux ratio is 2:1,the average removal efficiency of TN is 48.97% and the value is 59.31 when the ratio is 4:1,and when reflux ratio is 3:1,the average removal efficiency of TN can reach 61.90%
     This paper also studied the simultaneous nitrification and denitrification in aerobic zone. The concentration of total nitrogen in aerobic zone is lower than that of in anoxic zone and that shows simultaneous nitrification and denitrification exists and approximately 19.53% is removed by simultaneous nitrification and denitrification. According to the results,dissolved oxygen is an important factor to simultaneous nitrification and denitrification. The reaction rate of nitrification and denitrification is close to each other when controlling the DO value in the range of 2.8~3.7mg/L and the removal efficiency of TN is well. When the value of DO is 3.7mg/L,TN efficiency is the best and can reach 57.98%. The organic load should be controlled in a best range for getting a good TN removal result because of mutual function of autotrophic bacteria and heterotrophic bacteria in the process of simultaneous nitrification and denitrification. In this pilot the organic load should be controlled in the range of 9~17kgCOD/m3.d. Dynamics equation of simultaneous nitrification and denitrification in the aerobic zone was derived based on Monod model and analysis of the experiment data.
     By the observation of microscope and scanning electron microscopy,it was found that the variety of microorganisms in the reactor make the system has higher energy and substances transforming efficiency. This make the reactor has higher treatment efficiency and show good results when temperature and load exchanging greatly. These make sure that the system has stable removal efficiency. Also the process can run normally because of having these characteristics.
     Finally,basing on the analysis of experimental data,the actual principles of the process was studied. According to Monod equation,kinetic models of organic degradation and simultaneous nitrification and denitrification were achieved.
引文
1 姜文来.水资源价值论.科学出版社,1999:4~29 240~243
    2 钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告.中国水利水电出版社,2001:2
    3 建设部.城市水环境可持续发展研究报告.中国建筑工业出版社,2000:18~21
    4 国家环保总局.2005 年中国环境状况公报.http://www.sepa.gov.cn/
    5 郑兴灿,李亚新.污水脱氮除磷技术.中国建筑工业出版社,1998:8
    6 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版社,1999:167~196
    7 罗固源,吉芳英,罗宁等.硝酸盐电子受体反硝化同时除磷试验分析.2004,22 (1):32~35
    8 董春娟,潘青业.生物脱氮除磷工艺的现状及发展趋势.太原大学学报.2002,3 (1):41~45
    9 郑兴灿,李亚新.污水脱氮除磷技术. 中国建筑工业出版社,1998:206~215
    10 Klangduen Pochana,Jurg Keller. Study of Factors Affecting Simutanneous Nitrification and Denitrifiction (SND).Wat.Sci.Tech.1999,39 (6):61~68
    11 S.Teissier,M.Torre.Simultaneous Assessment of Nitrification and Denitrification on Freshwater Epilithic Biofilms by Acetylene Block Method.Wat.Res.2002,36:3803~3811
    12 郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系.环境污染治理技术与设备.2000,1 (1):8~15
    13 T. Kuba,M.C.M.Van Loosdrecht,Brandse F A,et al.Occurrence of Denitrifying Phosphourus Removal Bacteria in Modified UCT-Type Waste Water Treatment Plants.Wat.Res.1997,31 (41):777~786
    14 田淑媛,杨睿,顾平等.生物除磷工艺技术发展.城市环境与城市生态.2000,13 (4):45~47
    15 Andreottoia G,Foladori P,Ragazzi M. On—line Control of a SBR System for Nitrogen Removal from Industrial Wastewater.Wat.Sci.Tech.2001,43 (3):93~100
    16 张统.间歇式活性污泥法污水处理技术及工程应用.化学工业出版社,2002:3~28
    17 王闯,杨海真,顾国维.改进型序批式反应器 (MSBR) 的试验研究.中国给水排水.2003,19 (5):41~43
    18 金兆丰,徐竟成等.城市污水回用技术手册.化学工业出版社.2004:209~215
    19 董春娟,潘青业.生物脱氮除磷工艺的现状及发展趋势.太原大学学报.2002,3 (1):41~45
    20 董滨,周增炎,高廷耀.投料倒置A/A/O 脱氮除磷工艺中试.中国给水排水.2004,20 (11):14~17
    21 周增炎,高廷耀.传统活性污泥法污水厂增加脱氮功能的研究.同济大学学报,2003,31 (10):1229~1231
    22 C.F. Alves,L.F.Melo, M.J.Vieira, Influence of Medium Composition on the Characteristics of a Denitrifying Biofilm Formed by Aicallgenes Denitrificans in a Fluidized Bed Reactor . Process Biochem.2002,37,837~845
    23 F.Larachi,I.Iliut,O.Rival,et al.Prediction of Minimum Velocity in Three-phase Fluidized Bed Reactors, Ind.Eng.Chem.Res.2000,
    39,563~572
    24 张自杰主编.排水工程 (下) (第四版).中国建筑工业出版社,2001:
    144~148
    25 XU Gong-di . Combined Treatment of Dyeing Wastewater by a New Dequential Bi-cycling Biological Fluidized Bed . Journal of Shanghai University (English Edition).2006,10 (2):179~181
    26 韩苗苗,孔令炜.生物流化床处理废水的研究进展与展望.地下水.2005,(27) 5:325~326
    27 李思敏,孟庆梅,姚宏伟.生物砂滤池去除亚硝酸盐氮的效果及影响因素分析.中国给水排水.2006,22 (3):55~57
    28 李春华,张洪林.生物流化床处理废水的研究与应用进展.环境技术.2002,4:28~32
    29 李春华,张洪林,邱峰等.生物流化床的类型及特点.工业用水与废水.2002,33 (6):7~11
    30 韩苗苗,孔令炜.内循环生物流化床处理氮磷废水的试验研究.化工技术与开发.2006,35 (4):44~46
    31 张洪林,邱峰,蒋林时等.生物流化床的类型及特点.工业用水与废水.2002,33:(6):7~l1
    32 李敏,王光谦等.内循环生物流化床反应器流体力学特性的数值模拟.环境科学学报.2004,24 (3):400~404
    33 刘刚,徐高田,裴勇.内循环三相生物流化床处理废水研究进展.化学工程师.2004,12:16~18
    34 李丽,焦伟堂,冯旭东.外循环三相生物流化床载体挂膜的研究.化工时刊.2005,19 (7):5~8
    35 华彬,陆永生,胡龙兴等.外循环三相流化床处理染料废水.过程工程学报.2000,2 (2):107~111
    36 P. M. Sutton,D. Kothari,P. N. Mishra,et al. Biological Treatment of Metalworking Fluids : a New Application for Fludized Bed Technology.Proceedings of the Industrial Wastes Symposia.58th annual Conference. Kansas City, MO: Water Pollution Control Federation, 1985,19~30
    37 蓝平,廖安平,谢涛等.三相生物流化床处理生活废水.环境污染与防治.2003,25 (5):298
    38 晏波,蒋文举,谢嘉.三相好氧生物流化床污水处理技术研究应用进展.四川环境.2001,20 (3):5~9
    39 周少奇.环境生物技术.科学出版社,2003:23
    40 刘涛,邱廷省.废水生物流化床处理技术现状.能源环境保护.2005,19 (1):22~24
    41 A. Hirata, Y.Hosaka, B. T. Basuki, et al.Nitrification of Ammonia Nitrogen in a Three-phase Fluidized Bed.Water Pollution Research, 1989,12:575~581
    42 A. Hirata , T . Takemoto, K. Ogawa , et al . Evaluation of Kinetics Parameters from Concentration Step Change Response of Three-phase Fluidized Bed Biofilm Reactor for Wastewate Treatment. Biochemical Engineering,2000,5:165~171
    43 J. S. Jeris,R. W. Owens,F. Flood,Secondary Treatment of Minicipal Wastewater with Fluidized-bed Technology . Biological Fluidized Bed Treatment of Water and Wastewater. Cooper P F and Atkinson B,eds.,London,Ellis Horwood,1981,112~120
    44 P. M. Sutton,P. N. Mishra,Acticated Carbon Based Biological Fluidized Beds for Contaminated Water and Wastewater Treatment: a State-of-the-art Review.Wat.Sci.Tech. 1994,29:309~317
    45 CUI Youwei, PENG Yongzhen, GAN Xianging,et al.Achieving and Maintaining Biological Nitrogen Rremoval via Nitrite Under Normal Conditions. Journal of Environmental Sciences.2005,17 (5):794~797
    46 时彦芳,胡翔,王建龙等. 生物流化床反应器脱氮技术的研究与应用进展. 工业水处理.2005,25 (3):9~12
    47 何国富等.悬浮填料活性污泥法的脱氮效果及影响因素.中国给水排时水,2003.6
    48 Htilyka Yavuz,Serdar S Celebi. Effects of Magn etic Field on Activity of Activated Sludge in Wastewater Treatment . Enzyme and Microbial Technology,2000,26 (1):22~27
    49 李竞梅,郑秋月.提高 A/O 法处理生活污水脱氮效率探究.环境科学与技术.2004,27 (1):73~74
    50 刘俊新,丛丽,王宝贞.生物膜与活性污泥结合工艺脱氮除磷研究.中国给水排水.2000,16 (12):1~5
    51 Jcan-Paul Nicol. Activated Sludge System with Biomass Particle Support Structures. Biotechnology and Bioengeering.1988,31:682~695
    52 曹斌,袁宏林,王晓昌等.膜生物反应器设计中工艺参数的探讨.环境工程.2004,22 (5):24~26
    53 彭永臻,马勇,王洪臣.A/O工艺中内循环控制策略的建立与研究.北京工业大学学报.2004,30 (2):201~206
    54 YUAN Zhi-guo,Oehmen A,Inglidsen P.Control of Nitrate Recirculation Flow in Predenitrification System,Wat.Sci.Tech.,2002,45 (4-5):29~36
    55 何国富,周增炎,高廷耀等.悬浮填料活性污泥法优化填料投配比试验.环境工程.2006,24 (1):78~80
    56 夏四清.悬浮填料生物反应器去除有机污染物和氨氮的中试研究.给水排水,2000.2
    57 徐婷,张波,毕学军等.低温条件下曝气生物滤池脱氮试验研究.西南给排水.2005,27 (3):11~1
    58 崔玉波.生物流化床反硝化实例.吉林建筑工程学院学报.2004,21 (2):36~38
    59 张亚雷,赵建夫,吴勇等.AmOn一体化污水生物处理装置的开发.中国给水排水.2005,21 (1):72~74
    60 Wang Jianlong.Wastewater Treatment by a Hybrid Bio—logical Reactor (HBR):Effect of Loading rates.Process Biochemistry,2000,36:297~303.
    61 张景丽,幸福堂.移动床生物膜工艺特点、研究现状及发展.工业安全与环保,2003,29 (4):13~15.
    62 刘宇航,陆晓中,赵明等.PVF悬浮填料的制备及其污水处理效果的研究.北京化工大学学报.2006,33 (1):36~40
    63 张凡,程江,杨卓如.废水处理用生物填料的研究进展.环境污染治理技术与设备.2004,5 (4):9~12
    64 王占生,刘文军.微污染水源饮用水处理.中国建筑工业出版社,1999:133
    65 Htllyka Yavuz,S. Serdar.Celebi.Efects of Magnetic Field on Activity of Activated Sludge in Wastewater Treatment . Enzyme and Microbial Technology,2000,(26):22~27
    66 Zhang Fan,Chang Jiang,Hai Jing,et al.Physical,Chemical and Biological Effects of Magnetic Field and Their Application in Biodegradation of W astewater. Modern ChemicalIndustry. 2003, 23 (12):47~50
    67 江帆,陈维平.新型水环境治理材料的研究进展.水处理技术.2006,32 (2):1~4
    68 M. Meganck,D. Malnou,P. Loflohie, et al. The Importance of the Aidogenic Microflora in Biological Phosphorus Removal. Wat. Sci. Tech. 2000,22 (3):211~216
    69 高红,贾绍义.磁化处理对溶液在聚丙烯填料表面润湿性能的影响.化工科技.2002,30 (5):15~19
    70 Nicholas J R.Toward a Molecular Understanding of Cold Ativity of Enzymes from Psychrophiles. Extremophiles, 2000,4: 83~90
    71 P. Chevalier Nitrogen,Phosphoras. Removal by High Latitude Mat-FormingCyano-bacteria for Potential Use in Tertiary Wastewater Treatment.J. Applying of Phycology,2002,12 (2):105~113
    72 赫俊国.惯性效应理论在特种水质中的应用.哈尔滨建筑大学硕士学位论文.1997,25~35
    73 赫俊国,李军,张金松等.好氧处理工艺传质强化的机理与应用研究. 环境科学学报,2003,4: 432~435
    74 国家环保局.水和废水监测分析方法.第三版.中国环境科学出版社,1998:67~365
    75 Rosenberger,S.,Krüger,U.,Witzig,R.Performance of a Bioreactor With Submerged Membranes for Aerobic Treatment of Municipal Waste Water. Water Research,2002,36 (2):413~420
    76 Chen, K.-C.Kuo-Cheng, Chen, C.-Y.Ching-Yen. Real-time Control of an Immobilized-cell Reactor for Wastewater Treatment Using ORP. Water Research,2002,36 (1): 230~238
    77 Popiel , C.O. , Wojtkowiak , J. , Biernacka , B. Measurements of temperature distribution in ground . Experimental Thermal and Fluid Science,2001,25 (5): 301~309
    78 Koops,Hans-Peter..Distribution and Ecophysiology of the Nitrifying Bacteria Emphasizing Cultured Species. FEMS Microbiology Ecology, 2001,37 (1):1~9
    79 Chandran,Kartik, Barth F. Estimating Biomass Yield Coefficients for Autotrophic Ammonia and Nitrite Oxidation from Batch Respirograms. Water Research, 2001,35 (13):3153~3156
    80 Tam H L S,Tang D T W,Leung W Y. Perfommance Evaluation of Hybrid and Conventional Sequencing Batcl Reactor and Continuous Processes[J].Water Science Technology,2004,50 (10):59~65
    81 Shen,Q.R.,Ran,W.,,Cao,Z.H. Mechanisms of Nitrite Accumulation Occurring in Soil Nitrification.Chemosphere,2003,50 (6):747~753
    82 Satoh,Hisashi,Ono,Hideki,Rulin,Bian.Macroscale and Microscale Analyses of Nitrification and Denitrification in Biofilms Attached on Membrane Aerated Biofilm reactors.Water Research,2004,38 (6): 1633~1641
    83 赵庆良,刘淑彦,王琨.复合式生物膜反应器中生物膜量、厚度及活性.哈尔滨建筑大学学报,1999,32 (6):39~43
    84 夏四淸,王学江等.悬浮填料浮动床石化废水处理初步研究,环境科学,2000,3 (21):92~94
    85 何强,段秀举.曝气生物滤池处理城市污水试验及效能研究.资源环境与工程.2006,20 (2):178~181
    86 G. Bacquet,J. C.Joret,F.Rogalla.Biofilm Start-up and Control in Aerated Filter. Environment Technology.1991,12:747~756
    87 J. W. Park, Granczar, J. J. Czyk. Gravity Separation of Biomass Washed out from Aerated Submerged Filter . Environment Technology.1994,15:945~955
    88 周大石,夏澜.活性污泥培养与驯化.环境科技.2003,9 (2):35~37
    89 邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的试验究.环境工程.2001,19 (2):22~24
    90 Nicolella C,I~osdrecht M C M van,He~nen J J.Wastewater Treatment With Particulate Biofilm Reactors.Journal of Biotechology. 2000,80:1~33
    91 Ik-Keun Yoo and Dong Jin Kim.Efects of Hydraulic Backwash Load on Efluent Quality of Upflow BAF.Environ.SCI.Health.200l,A36 (4):575~585
    92 吴永明,罗春晖,李晓明.曝气生物滤池及其填料作用机理.2004,23 (5):16~18
    93 Brdjanovic D,van Loosdrecht MCM, Versteeg P,et al. Modeling COD , N and P Removal in a Full-scale WWTP Haarlem Waarderpolder.Water Res.2000.34:846~858
    94 S . Wijeyekoon , T . Mino , H . Satoh , et al . Growth and Novel Structural Features of Tubular Biofilms Produced Under Different Hydronamic Conditions. Wat.Sci.Tech.2000,41 (4~5):129~138
    95 S.Wasche,H.Horn,D.C.Hempel.Mass Transfer Phenomena in Biofilm Systems.Wat.Sc.Tech.2000,41 (4~5):357~360
    96 J.B.Xavier,R.Malho,A.M.Reis et al.Description of Biofilm Formation by Determination of Developmental Axis.Wat.Sci.Tech. 2000,41 (4~5):121~127
    97 S.De Rosa,F.Sconza,L.Volterra.Biofilm Amount Estimation byFluoredcein Diacetate.Wat.Res.1998,32 (9):2621~2626
    98 H.Satoh,S.0kabe,N.Norimatsu,Y.Watanabe.Significance of Substrate C/N Ratio on Structure and Activity of Nitrifying Biofilms Determ ined by in situ Hybridization and the Use of Microelectrodes.Wat.Sci.Tech.,2000,41 (4):317~321
    99 J . C . Villasefior , M . C . M . van Loosdrecht , C . Picioreanu ,J.J.Heijnen.Influence of Different Substrates on the Formation of Biofilms in a Biofilm Airlift Suspension Reactor. Water Science and Technology,2000,41 (4):323~330
    100 周群英,高廷耀.环境工程微生物学.高等教育出版社.2005:248~254
    101 邢国平,陈若宇,孙宝盛等.缺氧-好氧生物膜反应器挂膜的试验研究.新疆环境保护,2001,23 (1):25~27
    102 S . Wijeyekoon , T . Mino , H . Satoh , et al . Growth and Novel Structural Features of Tubular Biofilms Produced Under Different Hydronamic Conditions.Wat.Sci.Tech.2000,41 (4~5):129~138
    103 刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.中国建筑工业出版社,2000:60~67
    104 张自杰,周帆.活性污泥生物学与反应动力学.中国环境科学出版社,1989:432~433
    105 P.M. Janssen, W.H.Riesenk and H.F.Van Der Roest.The Ptential for Metazoa in Biological Wastewater Treatment.WQI.1998,47 (9/10):25~27
    106 吕炳南,陈志强.污水生物处理新技术.哈尔滨工业大学出版社,2004:6~9 222~230
    107 冯叶成,王建龙,钱易..同步硝化反硝化的试验研究.上海环境科学. 2002,21 (9):527~529
    108 罗固源,吉芳英,罗宁等.硝酸盐电子受体反硝化同时除磷试验分析.2004,22 (1):32~35
    109 J.Pachana , P.Keller , Lant . Model Devolopment for Simutaneous Nitrification and Dennitrification.Wat.Sci.Tech.1999,39 (1):235~243
    110 C. Collivignarelli, G. Bertanza. Simutaneous Nitrification DenitrificationProcess in Activated Sludge Plants : Performance and Applicability.Wat.Sci.Tech.1999,40 (4~5):187~194
    111 曹国民,朱南文,李数平等.有氧情况下同时硝化/反硝化的反应动力学模式.中国给水排水.1999,15 (6):58~60
    112 堵国成,耿金菊,陈坚.好氧同时硝化—反硝化脱氮微生物的混合培养.无锡轻工大学学报.2002,21 (5):528~532
    113 T.J.Smith,L.J.Msthias.New Methacrylate Derivatives Baseed on Pyroglutamic Acid. Polymer Preprints.2000,41 (2):1254~1255
    114 Hu Z-R,Wentzel MC,Ekama GA.The Significance of Denitrifying Polyphosphate Accumulating Organisms in Biological Nutrient Removal Activated Sludge Systems.Wat.Sci.Tech.2002,46:129–138.
    115 M.C.M. van Loosdrecht,M.S.M. Jetten.Microbiological Coversions in Nitrogen Removal.Wat.Sci.Tech.1998,38 (1):1~7
    116 H.W.Zhao,D.S.Mavinic,W.K.Oldham,et al.Controlling Factors for Simutaneous Nitrification and Dennitrification in a Two-stage Intermittent Aeration Process Treating Domestic Sewage. Wat.Res.1999,33 (4):961~970
    117 吕锡武. 同步硝化反硝化的理论和实践. 环境化学. 2002,21 (6):564~570
    118 K . Pachana , Keller J . Study of Factors Affecting Simutaneous Nitrification and Denitrification (SND).Wat.Sci.Tech.1999,39 (6):61~68
    119 吕锡武,李丛娜,稻川悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响.城市环境和城市生态.2001,14 (1):33~35
    120 P.Menound,Wong CH,H. A. Robinson.et al.Barton.Simutaneous Nitrification Denitrification Using Siprax Carriers . Wat . Sci . Tech. 1999,40 (4~5):153~160
    121 曹国民,赵庆祥,龚剑丽等.固定化微生物在好氧条件下同时硝化和反硝化.环境工程.2000,18 (5):17~21
    122 N.Puznava,M.Payraudeau,D.Thornberg.Simutaneous Nitrification Denitrification in Biofilters with Real Time Aeration Control.Wat.Sci.Tech.2001,43 (1):269~276
    123 K.Hanaki,Z.Hong,T.Matsuo. Production of Nitrous Oxide Gasduring Denitrification of Wastewater.Wat.Sci.Tech.1992,26 (7):1027~1032
    124 S, Marshall. Production and Decomposition of Nitrous Oxide during Biological Denitrification. Water Enviroment Research.1998,70 (6):1096~1098
    125 H . Zheng . Greenhouse Gas-N2O Production During Denitrifition in Wastewater Treatmen.Wat.Sci.Tech.1993,28 (7):203~207
    126 H.Lloyd,J. Ketchum.Design and Physical Features of Sequencing Batch Reactor.Wat.Sci.Tech.1997,35 (1):11~18
    127 A . Carucci, D . Dionisi , M. Majone , et , al . Aerobic Storage by Activated Sludge on Real Wastewater.Wat.Res.2001,35:3833~3844.
    128 Musvoto EV,Samson K,Taljard M,et al.Calculation of Peak Oxygen Demand in the Design of Full Scale Nitrogen Removal Activated Sludge Plants.Water SA,Special Ed WISA.2002,56~60.
    129 S.Scuras,G.T.Daigger,C.P.L.Grady.Modelling the Activated Sludge Flocmicroenvironment.Wat.Sci.Tech,1998,37(4-5):243~251
    130 J . J . Beun , A . Hendriks , M . C . M . Van Loosdrech . Aerobic granulation in a Seqencing Batch Reactor.Wat.Res,1999,33 (10):2283-2290
    131 J.B. Holman,D.G.Wareham.COD,Ammonia and Dissolved Oxygen Time Profiles in the Simultaneous Nitrification/Denitrification Process.Biochemical Engineering Journal,2005,22:125-133
    132 S. Q. Zhou,H.H.Fang Simultaneous Nitrification and Denitrification of Ammonia Organic Wastewater Treatment. In: CO-R of 1999 Asian Industrial Technology Congress.Hong Kong,ET-E3-3,1999,3:11-56
    133 祝贵兵,彭永臻,吴淑云.碳氮比对分段进水生物脱氮的影响.中国环境科学.2005,25 (6):641~645
    134 Larrea L,Larrea A,Ayesa E,et al.Development and Verification of Design and Operation Criteria for the Step Feed Process with Nitrogen Removal.Wat.Sci.Tech.2001,43 (1):261~268
    135 B.Z. Wang et al.A Study on Simultaneous Organic and NitrogenRemoval by Extended Aeration Submeraged Biofilm Process.Wat.Sci.Tech.1991,24 (5):197~214
    136 P.Antoniou,J. Hamilton,B.Koopman,et al.Effect of Temperature and pH on the Effective Maximum Specific Growth Rate of Nitrifying Bacteria.Wat.Res.1990,24 (1):97~101
    137 H. Painter and J. Loveless. Effect of Temperature and pH Value on the Growth-rate Contents of Nitrifying Bacteria in the Activated Sludge Process. Wat.Res.1983,17 (2):237~248
    138 Rosenwinkel, K.-H. , Weichgrebe, D. , Meyer, H. Suspended Solids from Industrial and Municipal Origins. Ecotoxicology and Environmental Safety,2001,50 (2):135~142
    139 Y.Z.Peng,D.F.Yu,D.W.Liang et al.Nitrogen Removal via Nitrite from Seawater Contained Sewage . Journal of Environmental Science and Health.2004,A39 (7):1667~1680
    140 S . Villaverde , F . Fdz-Polanco , P . A . Garcla Encina . Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters Start-up Influence.Wat.Res.2000,34 (2):602- 610
    141 M. C. M van Loosdrecht,M. S. M Jetten,T. Kuba.Microbiological Conversions in Nitrogen Removal. Wat.Sci.Tech.1998,38 (1):1~7
    142 孙锦宜.含氮废水处理技术与应用.化学工业出版社,2003:164~168
    143 柘元蒙.滇池富营养化现状、趋势及其综合防治对策.云南环境科学.2002,21 (1):35~38
    144 钱易,米祥友.现代废水处理新技术.中国科学技术出版社,1993:26~37
    145 L. Kuai,W. Verstraete. Autotrophic Denitrification with Elemental Sulphur in Small Scale Wastewater Treatment Facilities.Environ.Tech.1999,20 (1):201~209
    146 M. Kshirsagar,A. B. Gupta,K. S. Gupta.Aerobic Denitrification Studies on Activate Sludge Mixed with Thiosphaera Pantotropha.Environ.Tech. 1995,16 (1):35~43
    147 E. V. Munch..Simultaneous Nitrification and Denitrification in Bench-Scale Sequencing Batch Reactors.Wat.Res.1996,30 (1):277~284
    148 L. A. Robertson , E. W. J. van Niel , R. A. M. Torremans , etal.Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera Pantotropha.Appl.Envir.Microbiol.1988,54 (11):2812~2818
    149 L. A. Vandegraaf,A. A. A. Mulder.Anaerobic Oxidation of Ammonium is a Biologically Mediated Process.Appl.Envir.Microbiol.1995,64 (4):1246~1251
    150 C. Helmer,S. Kunst,S. juretschko,et al.Nitrogen Loss in a Nitrifying Biofilm System.Wat,Sci,Tech..1999,39 (7):13~21
    151 D. Patureau,E.Helloin,E. Rustrian,et al.Combined Phosphate and Nitrogen Removal in a Sequencing Batch Reactor Using the Aerobic Denitrifier,Microvirgula Aerodenitrificans.Wat.Res.2001,35 (1):189~197
    152 C. Helmer , S. Kunst. Simultaneous Nitrification/Denitrification in an Aerobic Biofilm System.Wat.Sci.Tech.1998,27 (4~5):183~187
    153 A. Mulder,A. A. van de-Graaf,L. A. Robertson,et al.Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor.FEMS Microbiology Ecology.1995,16 (3):177~183
    154 E. I. Bock,R. Stueven,D. Zart. Nitrogen Loss Caused by Denitrifying Nitrosomonas Cell Using Ammonium or Hydrogen as Electron Donors and Nitrite as Electron Acceptor. Arch. Microbiol.1995,163:16~20
    155 袁林江,彭党聪,王志盈.短程硝化—反硝化生物脱氮.中国给水排水.2000,16 (2):29~31
    156 S. Mike , M. Jetten , J. Horn , et al . Towards a More Sustainable Municipal Wastewater Treatment System.Wat.Sci.Tech.1997,35 (9):171~180
    157 C. Hellinga,A. A. J. C. Schellen,J. W. Mulder,et al. The SHARON process:An Innovative Method for Nitrogen Removal from Ammonium-Rich Wastewater.Wat.Sci.Tech.1998,37 (9):135~142
    158 J. W. Mulder,M. C. M. van Loosdrecht,C. Hellinga,et al. Full-scale Application of the SHARON Process for Rejection Water of Digested Sludge Dewatering Dewatering.Wat.Sci.Tech. 2001,43 (11):127~134
    159 R. van Kempen,J. W. Mulder,C. A. Uijterlinde et al. Overview:Full Scale Experience of the SHARON Process for Rejection Water of DigestedSlusge Dewatering.Wat.Sci.Tech.2001,44 (1):145~152
    160 L . Kuai. . Ammonium Removal by the Oxygen-limited Autotrophic Nitrification-denitrification System.Envir.Microbiol.1998,64 (11):4500~4506
    161 王建龙.生物脱氮新工艺及其技术原理.中国给水排水.2000,16 (2):25~28
    162 S . Masuda , Y . Watanabe , M. Ishiguro . Biofilm Properties and Simultaneous Nitrification and Denitrification in aerobic Rotating Biological Contactors.Wat. Sci. Tech. 1991:23:1355~1363
    163 Christine Helmer,Sabine Kunst. Simultaneous Nitrification/denitrification in Anaerobic Biofilm System.Wat.Sci.Tech.1998,37 (4~5):183~187
    164 Elisabeth V.Munch,Paul Lant,Jiirg Keller. Simultaneous Nitrification and Denitrification in Bench-Scale Sequencing Batch Reactors.Wat. Res. 1996,30 (2):277~284
    165 Klangduen Pochana,Jurg Keller. Study of Factors Affecting Simultaneous Nitrification and Denitrification (SND).Wat.Sci.Tech.1999,39 (6):61~68
    166 Klangduen Pochana,Jurg Keller,Paul Lant.Model Development for Simultaneous Nitrification and Denitrification.Wat.Sci.Tech.1999,39 (1):235~243
    167 Hyungseok Yoo, Kyu-Hong Ahn,Hyung Jib Lee,et al. Nitrogen Removal From Synthetic Wastewater by Simultaneous Nitrification and Denitrification (SND) via Nitriteinan in an Intermittently-aerated Reactor.Wat.Res.1999,33 (1):145~154
    168 杨麒,李小明,曾光明等.SBR 系统中同步硝化反硝化好氧颗粒污泥的培养.环境科学.2003,24 (4):94~98
    169 Bruce E.Rittmann,Wayne E.Langeland.Simultaneous Denitrification with Nitrification in Single-channel Oxidation Ditches. Journal WPCF. 1985,57 (4):300~308
    170 Mervyn . C . Goronszy , Gunnar Demouiin , Mark Newland . Aerated Nitrification in Full-scale Activated Sludge Facilities.Wat.Res.Tech. 1997,35 (10):216~225
    171 Priyali Sen,Steven K. Dentel. Simultaneous Nitrification -Denitrification in a Fluidized Bed Reacto.Wat.Sci.Tech.1998,38 (1):247~254
    172 N. Puznava,M. Payraudeau,D. Thornberg. Simultaneous Nitrification and Denitrification in Biofilters with Real time Aeration Control.Wat.Sci.Tech.2001,43 (1):269~276
    173 Kazuaki Hibiya,Akihiko Terada,Satoshi Tsuneda,et al.Simultaneous Nitrification and Denitrification by Controlling Vertical and Horizontal Microenvironment in a Membrane-Aerated Biofilm Reactor. Journal of Biotechnology.2003,100 (1):23~32
    174 邹联沛,刘旭东,王宝贞等.MBR 中影响同步硝化反硝化的生态因子. 环境科学.2001,22 (4):51~55
    175 A. Mulder,A. A. van de-Graaf,L.A.Robertson,et al.Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbiology Ecology. 1995,16 (3):177~183
    176 E . Broda . Two Kinds of Lithotrophs Missing in Nature. Zeitschrift.Allg.Milkrobiologie.1977,17:491~493
    177 Van de Graaf A A,K. H. Schleifer,M. C. Schmid. Anaerobic Oxidation of Ammonium is a Biologically Mediated Process.Appl.Environ.Microbiol. 1995,61 (4):1246~1251
    178 R.Bzkke,S.R.Kommendal,S. Kalvenes,Quantification of Biofilm Accumulation by an Optical Approach,J,Microb.Methods.2001, 44, 13~26
    179 Beccari M,Dionisi D,Giuliani A,et,al.Effect of Different Carbon Sources on Aerobic Storage by Activated Sludge . Water Sci.Tech.2002,45 (6):157~168.
    180 Harper WF Jr,Jenkins D. The Effect of An Initial Anaerobic Zone on the Nutrient Requirements of Activated Sludge . Water Environ Res.2003.75:216~224.
    181 邵友元,Krzysztof W. Szewczyk,李卫,黄光斗,孙军逸.SFBR工艺顺序进行硝化和反硝化的动力学研究.环境污染治理技术与设备,2006,7 (6):73~76.
    182 姚重华.废水处理计量学导论.化学工业出版社,2002:103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700