日粮锰源和水平对产蛋鸡蛋壳品质的影响及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋壳问题常见于蛋鸡生产中,每年因蛋壳问题所造成的经济损失巨大,人们尝试通过各种营养调控手段改善蛋壳品质,已有的大多数研究集中于常量矿物质对蛋壳品质的影响,而关于微量元素的影响研究较少。锰是蛋鸡的必需微量元素之一,但关于锰对蛋壳品质的影响及其机理仍不清楚,有待深入研究。本文通过观测产蛋鸡生产性能、蛋壳品质、壳基质蛋白表达、蛋壳微观结构和材料力学分析系统研究了日粮锰来源和水平对产蛋鸡蛋壳品质的影响及其机理,并采用指数模型估计了有机锰在蛋壳品质上的相对生物学效价。
     试验一日粮锰水平对蛋壳品质的影响及其机理
     试验旨在研究日粮不同锰水平对蛋壳品质的影响及其调控机理。选取50周龄216只体重相近且健康的产蛋鸡,随机分为三个处理,每个处理6个重复,每个重复12只鸡。其中饲养试验分预饲期和正饲期,预饲期(50-58wk)内所有蛋鸡饲喂一种锰不足但其他营养素满足需要的基础日粮;正饲期(59wk-62wk)内三组组动物分别饲喂三种锰添加水平的日粮,分别是Mn0mg/kg,25mg/kg和100mg/kg。不同锰水平对蛋鸡生产性能影响不显著(P>0.05)。与对照组和25mg/kg水平组相比,添加100mg/kg锰显著提高了蛋壳厚度、强度和韧性(P<0.05);扫描电镜图片显示,添加100mg/kg锰显著降低了乳突层厚度和乳突宽度(P<0.05),明显减少了蛋壳表面裂纹。与对照组相比,添加100mg/kg锰显著提高了蛋壳腺中糖基转移酶GlcAT-I mRNA表达(P<0.05),但基质蛋白OC116、OCX32、OCX36mRNA表达差异不显著(P>0.05)。添加100mg/kg锰显著提高了蛋壳膜中糖胺聚糖和糖醛酸的含量(P<0.05),提高了蛋壳中糖基转移酶表达。日粮中添加锰能通过改变蛋壳微观结构和提高蛋壳中糖胺聚糖和糖醛酸的含量以及参与钙化过程中的蛋白表达改善蛋壳品质。
     试验二日粮锰水平对蛋壳基质蛋白表达的影响
     试验旨在探讨日粮锰水平对蛋壳基质蛋白表达的影响。从试验一中0mg/kg锰对照组和100mg/kg锰处理组每个重复取鸡蛋蛋壳,采用同位素标记相对和绝对定量技术(isotope tags forrelative and absolute quantitation,iTRAQ)检测蛋壳中基质蛋白差异表达。与对照组相比,基础日粮添加100mg/kg锰显著影响蛋壳中69种基质蛋白表达,其中31种基质蛋白上调,37种蛋白下调。这些差异表达的蛋白或与蛋壳钙化有关,或与产蛋鸡免疫功能有关。日粮锰水平通过对蛋壳基质蛋白的影响而改变蛋壳钙化过程或产蛋鸡免疫功能。
     试验三不同锰源和锰水平对蛋壳品质的影响及相对生物学效价比较
     试验旨在研究不同锰源和锰水平对蛋壳品质的影响及相对生物学效价比较。648只50周龄体重相近且健康的产蛋鸡,随机分为9个处理,每个处理6个重复,每个重复12只鸡。其中饲养试验分预饲期和正饲期,预饲期(50-54wk)内所有蛋鸡饲喂一种锰不足但其他营养素满足需要的基础日粮;正饲期(55wk-62wk)内9组蛋鸡分别给饲9种不同锰源和锰添加水平日粮,分别是对照组:0mg/kg;无机锰:25mg/kg、50mg/kg、100mg/kg、200mg/kg;氨基酸锰:25mg/kg、50mg/kg、100mg/kg、200mg/kg。不同锰源和锰水平对产蛋鸡生产性能影响不显著(P>0.05)。与对照组相比,基础日粮中添加有机锰100mg/kg和200mg/kg显著降低了蛋重(P<0.05),但添加无机锰无显著影响(P>0.05)。与对照组相比,基础日粮中添加无机锰100mg/kg、200mg/kg和氨基酸锰100mg/kg、200mg/kg均显著提高了60wk和62wk产蛋鸡蛋壳破损力、厚度和韧性(P<0.05),对56wk和58wk产蛋鸡蛋壳品质各项指标影响不显著(P>0.05)。在等摩尔添加水平下,不同锰源对蛋壳品质各项指标影响差异不显著(P>0.05)。采用NLIN指数模型计算氨基酸锰在蛋壳品质指标上的相对生物学效价,结果表明:在等摩尔水平上,氨基酸锰相对于无机锰的生物学效价分别是蛋壳破损力159.1%、蛋壳弹性107.8%和蛋壳厚度189.2%。
     试验四蛋壳微观材料力学模型的建立
     试验旨在分析蛋壳微观结构改变引起蛋壳破损力变化的机理。根据试验一中扫描电镜所获蛋壳微观结构图像,建立了蛋壳的微观结构力学模型,用材料力学方法建立了蛋壳应力变化随着蛋壳微观结构变化的数学模型。乳突层排列越紧密,蛋壳应力越大,蛋壳破损力越大;乳突层越厚,栅栏层越薄,蛋壳应力越小,蛋壳破损力越小。这一结果与试验一的实际观测结果一致。通过建立蛋壳微观材料力学模型和分析,结果表明:日粮锰水平能通过影响蛋壳微观结构变化改变蛋壳稳定性。
Eggshell quality is of primary concern to the egg industry as the commercial processing andmarketing of eggs usually causes a high rate of cracked or broken eggshells. It is generally accepted thateggshell quality decreases with hen age, and the incidence of cracked eggs can exceed20%at the end ofthe laying period. Many nutritional approaches to improving eggshell quality have been explored.Numerous studies have concentrated on the effects of macro minerals (calcium and phosphorus) andvitamin D3on eggshell and bone quality. It is well known that macro minerals act as an eggshellstructural component and play an essential role in eggshell function. However, the relationship betweentrace elements and eggshell quality still awaits further study.Manganese (Mn) is an important traceelement in poultry nutrition, this study explored the mechanism of effect of Mn supplementation oneggshell quality, and investigated the bio-efficacy of organic Mn compare to the inorganic Mn oneggshell quality.
     Experiment1.Effect of dietary Mn supplementation on eggshell quality
     This study investigated the effect of dietary manganese (Mn) supplementation on eggshell quality,ultrastructure, glycosaminoglycan (GAG) and uronic acid content, and mRNA and protein expression ofGalβ1,3-glucuronosyltransferase (GlcAT-I). A total of216layers (Hy-Line Grey) at age50wk weredivided into three groups. In the first8wk of the12wk feeding trial, all groups were fed a basal dietthat met all layer nutrient requirements except for Mn. In the last4wk, each group was fed one of threediets supplemented with Mn levels at0,25, or100mg Mn/kg. Dietary Mn deficiency did not affect theegg performance of layers. Dietary Mn supplementation significantly improved the breaking strength,thickness and fracture toughness of eggshells (p<0.05). In photographs of eggshell ultrastructure, thesize of mammillary cones and cracks in the outer surface were decreased by dietary Mnsupplementation. The contents of glycosaminoglycans (GAGs) and uronic acids in eggshell membranewere significantly increased by dietary Mn addition (p<0.05). This result was further confirmed byincreased mRNA expression and protein expression of GlcAT-I when Mn was added to the diet. Thisstudy suggests that dietary Mn supplementation can improve eggshell quality by enhancing the GAGand uronic acid synthesis in the eggshell glands, which can affect the ultrastructure of eggshells.
     Experiment2. Effect of dietary Mn supplementation on matrix protein in the eggshell
     This study investigated the effect of dietary Mn supplementation on matrix protein expression inthe eggshell. The eggshell fragments were randomly sampled from the replicates of0mg/kg or100mg/kg Mn supplementation treatment. Isotope tags for relative and absolute quantitation technologywas applied to investigate the difference of matrix protein expression in the eggshell. Dietary Mnsupplementation significantly influence the68matrix proteins expression in the eggshell. There were31 matrix proteins up regulated and38matrix proteins down regulated by the dietary100mg/kg Mnsupplementation. These up or down regulated matrix proteins were related to eggshell calcification orlayer's immunity. In conclusion, dietary Mn supplementation influenced the process of eggshellcalcification and layer's physiological status.
     Experiment3.Effect of different sources and levels dietary of Mn supplementation on eggshellquality and bio-efficacy comparison of organic and inorganic Mn on eggshell quality of layinghens.
     This study investigated the effect of different Mn resources supplementation on eggshell qualityand compared the bio-efficacy of organic Mn to the inorganic Mn on eggshell quality. A total of648layers (Hy-Line brown) at age50wk were divided into nine groups. In the first4wk of the12wkfeeding trial, all groups were fed a basal diet that met all layer nutrient requirements except for Mn. Inthe left8wk, each group was fed one of nine diets supplemented with different Mn resources at:0mg,inorganic25,50,100,200mg; organic (Amino acid manganese, AA-Mn)25,50,100,200mg Mn/kg.Dietary Mn deficiency did not affect the egg performance of layers (p>0.05). Dietary Mnsupplementation significantly improved the breaking strength, thickness and fracture toughness ofeggshells at62wk (p<0.05). Dietary supplementation of AA-Mn100mg/kg or200mg/kg Mnsignificantly reduced the egg weight (p<0.05), but there were no difference between the inorganic Mntreatments(P>0.05). Compare to the control group, dietary supplementation of100mg or200mginorganic or organic Mn/kg significantly increased the breaking strength, thickness and fracturetoughness of eggshell at the age of60wk or62wk. On the equimolar basis, there were no difference ofeffect between AA-Mn and inorganic Mn treatments. Regression analysis revealed the AA-Mn was159.1%(breaking strength),107.8%(elastic modulus) and198.2%(thickness) as efficacious asinorganic Mn on the quimolar basis.
     Experiment4.Modeling of mechanics of eggshell ultra-structure
     This study discussed the mechanics of eggshell ultra-structure affected by dietary Mnsupplementation. A model of eggshell ultra-structure mechanic was set on the base of photographs ofscanning electronic microscope in experiment1. Formulas of material mechanics were applied to justifythe difference of ultra-structure lead to different stress in the eggshell. The eggshells with more compactand uniform mammilaries and thicker palisade layer were tested as with more compressive strength. Theconclusion justified from the eggshell model were in agreement with results from experiment1. Thisstudy revealed that dietary Mn supplementation can influence the mechanics of eggshell ultra-structure.
引文
[1]陈阳生,胡剑清,马述仕.骨质疏松与补钙[J].中国骨质疏松杂志,2001,7(20):188-189.
    [2]呙于明.家禽营养.2004.中国农业大学出版社.
    [3]冀文丽,王勤英.检测维生素D结合蛋白在重型肝炎中的意义[J].中国药物与临床,2008(8):
    [4]刘汉林,吴维辉,韩有文等.家禽锰营养研究.东北农学院学报[J].1993,24(3):268-275.
    [5]彭秀丽,邓干臻,赵辉.日粮钙、锰水平对蛋鸡生产性能及蛋品质的影响[J].中国兽医学报,22(3):311-313
    [6]谭占坤,白世平,张克英,等.磷来源与水平对蛋鸡生产性能和蛋壳质量的影响[J].动物营养学报,2011,23(10):1684-1696
    [7]王晓霞,霍启光.石粉粒度与饲喂时间对产蛋鸡生产性能及蛋壳质量的影响[J].动物营养学报,1999,11,4:60
    [8]俞路,王雅倩,章世元等.不同钙磷水平对新扬州蛋鸡生产性能、蛋壳质量及骨代谢的影响[J].西北农业学报,2008,17(4):32-37
    [9]俞路,王雅倩,严桂琴等.稳定同位素技术在蛋鸡钙营养研究中的应用探讨[J].中国饲料,2008(1):36-40
    [10]袁建敏,呙于明,吴四朝.日粮锰水平对蛋鸡生产性能的影响[J].中国畜牧杂志,2000,36(1):14-16.
    [11]李素芬.有机锰源的化学特性及其对肉仔鸡的相对生物学利用率研究.[博士学位论文].中国北京:中国农业科学院,2002, p18-28,69-78.
    [12]白世平.不同形态锰在肉仔鸡小肠中的吸收机理研究.[博士学位论文].中国北京:中国农业科学院,2008. p10-30.
    [13]成廷水,呙于明,袁建敏.日粮中添加氨基酸络合锌、铜.锰对蛋鸡产蛋性能、免疫及组织抗氧化技能的影响[J].中国家禽,2004,26:15-18
    [14]王福明.蛋氨酸锰对蛋鸡生产性能的影响[J].安徽农业科学,2007,35:6798,6804.
    [15]王希国.蛋氨酸锌对产蛋后期母鸡生产与非特异性免疫性能的影响.[硕士学位论文].哈尔滨:东北农业大学,2002.
    [16]张亚男.饲粮锌对产蛋后期蛋鸡蛋壳品质及抗氧化机能的影响.[硕士学位论文].中国北京:中国农业科学院,2013.
    [17]赵波,丁雪梅,张克英等.蛋氨酸微量元素螯合物对产蛋鸡蛋品质及生理功能的影响[J].四川农业大学学报,2005,23:238-243.
    [18] AbdallahAG, Harms RH, Wilson HR, et al. Effect of removing trace minerals from the diet of henslaying eggs with heavy or light shell weight[J]. Poult. Sci.,1994,73:295-301.
    [19] Abu-Serewa S, Karunajeewa H A. Comparison of methods for rehabilitating aging hens[J]. Aust. J.Exp. Agri.,1985,25:320-325.
    [20] Addadi, L. and S. Weiner. Interactions between acidic proteins and crystals: Stereochemicalrequirements in biomineralization[J]. Proc. Natl. Acad. Sci. USA.1985,82:4110-4114.
    [21] Aebersold R, M. Mann. Mass spectrometry-based proteomics.Nature,2003.422(6928):198-207
    [22] Ahmad H A, Balander R J. Alternative feeding regimen of calcium source and phosphorus level forbetter eggshell quality in commercial layers[J]. J. Appl. Poult.Res.,2003,12:509-514.
    [23] AhmedAM, Rodriguez HA,Vidal ML, et al. Changes in eggshell mechanical properties,crystallographic texture and in matrix proteins induced by moult in hens[J]. Bri.Poult. Sci.,2005,46:268-279.
    [24] Al-BatshanHA, Scheidler SE, Black BL, et al. Duodenal calcium uptake, femur ash, and eggshellquality decline with age and increase following molt[J]. Poult. Sci.1994,73:1590-1596.
    [25] AOAC.1995. Official Methods of Analysis[M].15th ed. Assoc. Off.Anal.Chem., Arlington, VA.
    [26] Ashmead D. The role of metal animo acid chelate[M]. New York: American Academic Press,1993a,p32
    [27] Ashmead D. The role of metal anino acid chelate[M]. New York: merican Academic Press,1993b,p57
    [28] Arias J L, Jure C, Wiff J P, et al. Effect of sulfate content of biomacromolecules on thecrystallization of calcium carbonate[J]. Mater. Res. Society Symposium Proceedings,2002,711:243–248
    [29] Arias J L, Fink D J, Xiao S, et al. Biomineralization and eggshells: cell-mediated acellularcompartments of mineralized extracellular Matrix[J]. Int. Rev. Cytol.,1993,145:217-250.
    [30] AriasJL, FernandezMS, DennisJE, et al.. The fabrication and collagenous substructure of theeggshell membrane in the isthmus of the oviduct[J]. Matrix,1991b,11,313–330.
    [31] Arias J L, Carrino D A, Fernandez M S, Rodriguez J P, Dennis J E, Caplan A I.1992. Partialbiochemical and immunochemical characterization of avian eggshell extracellular matrices[J].Arch. Biochem. Biophys.298,293-302.
    [32] Arias J L, Nakamura O, Fernandez M S, et al. Role of type X collagen on experimentalmineralization of eggshell membranes[J]. Connect. Tissue Res.,1997,36,21-33.
    [33] Arias J L, Fernandez M S. Role of extracellular matrix molecules in shell formation andstructure[J]. World's Poult Sci J,2001,57,349-357.
    [34] Balnave, D and Yoselewitz, I. The relation between sodium chloride concentration in drinkingwater and egg-shell damage[J]. Br. J. Nutr,1987,58:503-509
    [35] Balnave D, Zhang D. Research note: responses of laying hens on saline drinking water to dietarysupplementation with various zinc compounds[J]. Poult.Sci.,1993,72:603-606.
    [36] Bar, A. and S. Hurwitz. Egg shell quality, medullary bone ash, intestinal calcium and phosphorusabsorption, and calcium-binding protein in phosphorus-deficient hens[J]. Poult. Sci.,1984,63:339-343.
    [37] Baumgarner S, Brown D J, Salevsky E Jr, et al. Copper deficiency in the laying hen[J]. JNutr.,1978,108,804-811.
    [38] Becker W A, Bearse G E. Selection for high and low percentages of chicken eggs with bloodspots[J]. Br Poult Sci.,1973,14:31-47.
    [39] Berry W D. The physiology of induced molting[J]. Poult.Science82:971-980.2003
    [40] Bitter, T., H. M. Muir. A modified uronic acid carbazole reaction[J]. Anal.Biochem.1962,4:330-334.
    [41] BollengierleeS, Mitchell M A, Utomo D B, et al. Influence of dietary vitamin E supplementationon egg production and plasma characteristics in hens subjected to stress[J]. Br. Poult. Sci.,1998,39:106-112.
    [42] Bradford, M. M.1976. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Anal.Biochem.72:248-254.
    [43] Caldwell R B, Kierzek A M, Arakawa H, et al. cDNAs from chicken bursal lymphocytes tofacilitate gene function analysis[J]. Genome Biol.,2005.6(1)
    [44] Carlson M S, Hoover S L, Hill G M, et al. The impact of organic and inorganic sources of zincsupplementation on intestinal metallothionein concentration in the nursery pig[J]. J Anim Sci.,1997,75(Suppl.1):188(Abstr.)
    [45] Carrino D A, Dennis J E, Wu T M, Arias J L, Fernandez M S, Rodriguez J P, Fink D A, Heuer A H,Caplan A I.1996. The avian eggshell extracellular matrix as a model of biomineralization. Cont.Tissue Res.35,325-329.
    [46] Carrino D A, Rodriquez J P, Caplan A I. Dermatan sulfate proteoglycans from the mineralizedmatrix of the avian eggshell[J]. Cont. Tissue Res.,1997,36:175–193
    [47] Cash H L, Whitham C V, Behrendt C L, et al. Symbiotic bacteria direct expression of an intestinalbactericidal lectin[J]. Sci.,2006,313:1126–1130
    [48] Chowdhury, S D.1990. Shell membrane system in relation to lathyrogen toxicity and copperdeficiency[J]. World’s Poult Sci. J,46:153–169.
    [49] Chen, J and Balnave, D. The influence of drinking water containing sodiumchloride onperformance and eggshell quality of a modern, colored layer strain.Poult.Sci.,2001,80:91-94..
    [50] Chien Y C, Hincke M T, McKee M D. Avian eggshell structure and osteopontin[J]. Cells TissueOrgans,2009,189:38–43
    [51] Chien Y C, Hincke M T, Vali H, et al. Ultrastructural matrix-mineral relationships in avian eggshell,and effects of osteopontin on calcite growth in vitro[J]. J. Struct. Biol.,2008,163:84–99
    [52] Choct M, Hughes R J. The nutritive value of new season grains for poultry[M]. Recent Advances inAnimal Nutrition in Australia1997, University of New England, Armidale, NSW,2351. Australia:146-150.1997.
    [53] Cooke A S. Studies of membrane, mammillary cores and cuticle of the hen eggshell[J].Br.Poult.Sci.,1970,11:345-352
    [54] Curtis P A, Gardner F A, Mellor D B. A comparision of selected quality and compositionalcharacteristics of brown and white shell eggs[J]. Poult.Sci.,1995,64:297-301
    [55] Daghir N J. Nutrient Requirements of Poultry at High Temperatures[M]. In: Poultry Production inHot climates, CAB International, University Press, Cambridge. pp.101-123.1995a.
    [56] Daghir N J. Replacement pullet and layer feeding and mangement in hot climates[M]. In:Poultryproduction in hot climates, CAB international, University press, Cambridge. pp.219-253.1995b.
    [57] Dann S M, Eckmann L. Innate immune defenses in the intestinal tract[J]. Curr.Opin.inGastroen.,2007,23:115–120
    [58] Dale N, Strong C. Inability to demonstration an effect of Eggshell49on shell quality in olderlaying hens[J]. J. Appl. Poult. Res.,1998,7:219-224
    [59] Dominguez-Vera J M, Gautron J, Garcia-Ruiz J, et al. The effect of avian uterine fluid on thegrowth behavior of calcite crystals[J]. Poult.Sci.,2000,79:901–907
    [60] Dunn I C, Joseph N T, Bain M, et al. Polymorphisms in eggshell organic matrix genes areassociated with eggshell quality measurements in pedigree Rhode Island Red hens[J]. Anim. Gen.,2008,40:110–114
    [61] DunnIC, Rodriguez-Navarro AB, Mcdade K, et al.. Genetic variation in eggshell crystal size andorientation is large and these traits are correlated with shell thickness and are associated witheggshell matrix protein markers[J]. Anim. Gen.,2012,43:410-418.
    [62] Edwards R E. The influence of salinity transition on benthic nutrient regeneration in estuaries[M].In: Cross R D and Williams D L (Editors), Proceedings of the National Symposium on FreshwaterInflow to Estuaries, Vol.2. U.S. Dep Inter., Washington, D C.,1981, pp2-16.
    [63] ElaroussiMA, Forte LR,Eber SL,et al.Calcium homeostasis in the laying hens.1. age and dietarycalcium effects[J]. Poult. Sci.,1994,73:1581-1589.
    [64] FarndaleRW,Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfatedglycosaminoglycans in cartilage cultures[J]. Conn.Tissue Res.1982,9:247-248.
    [65] FassaniJE, Bertechini AG, de Oliveira BL, et al. Manganese in nutrition of the leghorn hens in thesecond cycle of production (in Portuguese)[J]. Revista Ciencia e Agrotecnologia,2000,24:468-478.
    [66] Fernandez M S, Escobar C, Lavelin I, et al. Localization of osteopontin in oviduct tissue andeggshell during different stages of the avian egg laying cycle[J]. J. Struct. Biol.,2003,143:171–180
    [67] Fernandez M S, Araya M, Arias J L. Eggshells are shaped by a precise spatio-temporalarrangement of sequentially deposited macromolecules[J]. Matrix Biol.,1997,16:13–20
    [68] Fly A D, Izquierdo O A, Lowry K L, et al. Manganese bioavailability in a manganese-methioninechelate[J]. Nutr. Res.,1989,9:901-910.
    [69] Gautron J, Hincke M T, Nys Y. Precursor matrix proteins in the uterine fluid change with stages ofeggshell formation in hens[J]. Conn.Tissue Res.,1997,36:195–210Gautron J, Hincke M T, Panheleux M, et al. Ovocalyxin-32, a novel chicken eggshell matrix protein.Isolation, amino acid sequencing, cloning, and immunocytochemical localization[J]. J. Biol. Chem.,2001,276:39243–39252
    [70] Gautron J, Murayama E, Vignal A, et al. Cloning of ovocalyxin-36, a novel chicken eggshellprotein related to lipopolysaccharide-binding proteins (LPB) bactericidal permeability-increasingproteins (BPI), and Plunc family proteins[J]. J. Biol. Chem.,2007,282:5273–5286
    [71] Glatz, PC. Cool drinking water for layers and broilers in summer[M]. Proceedings of the9thAustralian Poultry and Feed Convention, Gold Coast, Australia,204
    [72] GordonRW, Roland DASr. Influence of supplemental phytase on calcium and phosphorusutilization in laying hens[J]. Poult. Sci.,1998,88:338-353.
    [73] Halpin E M, Chausow D G, Baker D H. Efficiency of manganese absorption in chicks fed corn-soyand casein diets[J]. J Nutr.,1986,116:1747-1751.
    [74] Hailman E, Lichenstein H S, Wurfel M M, et al. Lipopolysaccharide (LPS)-binding proteinaccelerates the binding of LPS to CD14[J]. J. Exp. Med.,1994,179:269–277
    [75] Hernandez A, Gomez-Morales J, Rodriguez-Navarro A B, et al. Identification of some activeproteins in the process of hen eggshell formation[J]. Crystal Growth&Design,2008,8:4330–4339
    [76] Henry P R, Ammerman C B, Miles R D. Relative bioavailability of manganese in amanganese-methionine complex for broiler chicks[J]. Poult. Sci.,1989,68:107-112
    [77] Hincke M T, Chien Y C, Gerstenfeld L C, et al. Colloidal-gold immunocytochemical localization ofosteopontin in avian eggshell gland and eggshell[J]. J. Histochem. Cytochem.,2008,56:467–476
    [78] Hincke M T, Gautron J, Mann K, et al. Purification of ovocalyxin-32, a novel chicken eggshellmatrix protein[J]. Connect Tissue Research,2003,44:16–19
    [79] Hincke M T, Guest S, Gautron J, et al. Gene organization of ovocalyxin-32, an eggshell matrixprotein[A]. In: Proceedings of the10th European symposium on the quality of eggs and eggproducts,2003,vol3. Saint-Brieuc, France, pp13–19(23–26September2003)
    [80] Hincke M T, Tsang C P W, Courtney M, et al. Purification and immunochemistry of a solublematrix protein of the chicken eggshell (ovocleidin17)[J]. Calcified Tissue Int.,1995,56:578–583
    [81] Hincke MT, Gautron J, Tsang CPW, et al. Molecular cloning and ultrastructural localization of thecore protein of an eggshell matrix proteoglycan, ovocleidin-116[J]. J. Biol. Chem.,1999,274:32915–32923
    [82] Hocking P M, Bain M, Channing C E, et al. Genetic variation for egg production, egg quality andbone strength in selected and traditional breeds of laying fowl[J]. Br. Poult. Sci.,2003,44:365-373.
    [83] Hocking P M, Bain M, Channing C E., et al. Genetic variation for egg production, egg quality andbone strength in selected and traditional breeds of laying fowl[J]. Br. Poult. Sci.,44:365-373.2003
    [84] HockingPM, Bain M,Channing CE, et al. Genetic variation for egg production, egg quality andbone strength in selected and traditional breeds for laying fowl[J]. Br. Poult. Sci.,2003,44:365-373.
    [85] Holm L, Blomqvist A, Brandt I, et al. Embryonic exposure to o, p′-DDT causes eggshell thinningand altered shell gland carbonic anhydrase expression in the domestic hen[J]. Environ.Toxico.Chem.,2006,25:2787-2793.
    [86] Hunter G K, Szigety S K, et al. Effects of proteoglycan on hydroxyapatite formation undernon-steady-state and pseudosteady-state conditions[J]. Matrix,1992,12:362–368
    [87] Hunter G K. Role of proteoglycan in the provisional calcification of cartilage. A review andreinterpretation[J]. Clin.Orthop.Relat.Res.,1991,262:256–280
    [88] InalF, Coskun B, G lsen N, et al. The effects of withdrawal of vitamin and trace mineralsupplements from layer diets on egg yield and trace mineral composition[J]. Br. Poult. Sci.2001,42:77-80.
    [89] International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of thechicken genome provide unique perspectives on vertebrate evolution[J]. Nature,2004,432:695–716
    [90] Ji F, Luo X G, Lu L, Liu B, Yu S Y. Effects of manganese source and calcium on manganese uptakeby in vitro gut sacs of broiler's intestinal segments[J]. Poult. Sci.,2006a,85:1217-1225.
    [91] Ji F, Luo X G, Lu L, Liu B, Yu S Y. Effect of manganese source on manganese absorption by theintestine of broilers[J]. Poult Sci.,2006b,85:1947-1952.
    [92] Johnson A L. Reproduction in the female. In: Sturkie's Avian Physiology[M].5th ed. Ed. Whittow,G C. Academic Press, San Diego, London, Boston,569-596.2000.
    [93] JoynerC J, Peddie MJ, Taylor TG. The effect of age on egg production in the domestic hen[J]. Gen.Comp. Endocrinol,1987,65:331-336.
    [94] Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J].Nucleic Acids Res.,2008,36:480-484.
    [95] Karunajeewa H, Abu-Serewa S, Harris P A. Effects of an induced pause in egg production andsupplementation of the diet with iron on egg shell colour, quality and performance of brown egglayers[J]. Br. Poult. Sci.,1989,30:257-264.
    [96] Kawasaki K, Weiss K M. Evolutionary genetics of vertebrate tissue mineralization: the origin andevolution of the secretory calcium-binding phosphoprotein family[J]. J. Exp. Zool. Part B:Molecular and Developmental Evolution,2006,306:295–316
    [97] Kawasaki K, Weiss K. Mineralized tissue and vertebrate evolution: the secretory calcium-bindingphosphoprotein gene cluster[J]. Proc. Nati. Acad. Sci. USA,2003,100:4060–4065
    [98] Kruse J P, Gu W. Modes of p53regulation[J]. Cell,2009,137(4):609-622
    [99] Lakshminarayanan R, Valiyaveettil S, Roa V S, et al. Purification, characterization, and in vitromineralization studies of a novel goose eggshell matrix protein ansocalcin[J]. J. Biol. Chem.,2003,278:2928–2936
    [100] LeachRM,GrossJR.The effect of manganese deficiency upon the ultrastructure of the eggshell[J].Poult. Sci.,1983,62:499-504.
    [101] Lee K. Effects of forces molt period on postmolt performance of Leghorn hens[J]. Poult.Sci.,1982,61:1594-1598.
    [102] Li S F, Luo X G, Liu B, et al. Use of chemical characteristics to predict the relative bioavailabilityof supplemental organic manganese sources for broilers[J]. J Anim Sci.,2004,82:2352-2363
    [103] Li S F, Luo X G, Liu B, et al. Bioavailability of organic manganese sources in broilers fed highdietary calcium[J]. Anim Feed Sci Tech.,2005,123-124:703-715.
    [104] Lim H, Paik I. Effects of supplementary mineral methionine chelates (Zn, Cu, Mn) on theperformance and eggshell quality of laying hens[J]. Asian Austral.J. Anim. Sci.,2003,16:1804-1808.
    [105] LivakKJ., Schmittgen TD. Analysis of relative gene expression data using real-time quantitativePCR and the2-△△CT CT method[J]. Methods.,2001,25:402-408.
    [106] LongstaffM, HillR. The hexosamine and uronic acid contents of the matrix of shells of eggs frompullets fed on diets of different manganese content[J]. Br. Poult. Sci.,1972,13:377-385.
    [107] MabeI, Rapp C, Bain MM, et al.Supplementation of a corn-soybean meal diet with manganese,copper and zinc from organic or inorganic sources improves eggshell quality in aged laying hens[J].Poult. Sci.,2003.82:1903-1913
    [108] Mann K, Hincke M T, Nys Y. Isolation of ovocleidin-116from chicken eggshells, correction of itsamino acid sequence and identification of disulfide bonds and glycosylated Asn[J]. Matrix Biol.,2002,21:383–387
    [109] Mann K, Macˇek B, Olsen J V. Proteomic analysis of the acid-soluble organic matrix of thechicken calcified eggshell layer[J]. Proteomics,2006,6:3801-3810
    [110] Mann K, Olsen J V, Macek B, et al. Phosphoproteins of the chicken eggshell calcified layer[J].Proteomics,2007,7:106-115
    [111] Mann K, Siedler F. The amino acid sequence of ovocleidin-17, a major protein of the avianeggshell calcified layer[J]. J. Biochem. Mol. Biol.,1999,47:997-1007
    [112] Miksik I, Eckhardt A, Sedlakova P, et al. Proteins of insoluble matrix of avian (Gallus gallus)eggshell[J]. Conn. Tissue Res.,2007,48:1-8
    [113] Nakano T, Ikawa N, Ozimek L. Extraction of glycosaminoglycans from chicken eggshell[J].Poult.Sci.,2001.80,681-684.
    [114] Nakano T, Ikawa N, Ozimek L. Galactosaminoglycan composition in chicken eggshell[J].Poult.Sci.,2002,81,709-714.
    [115] NeijatM, House JD, Guenter W, et al. Calcium and phosphorus dynamics in commercial layinghens housed in conventional or enriched cage systems[J]. Poult. Sci,2011,90:2383-2396.
    [116] NRC.1994. Nutrient Requirements of Poultry[M].9th rev. ed. Natl. Acad. Press, Washington,DC.
    [117] Nys Y, Gautron J,Garcia-Ruiz JM, et al. Avian eggshell mineralization: biochemical andfunctional characterization of matrix proteins[J]. Comptes. Rend. Paleovol.,2004,3:549-562.
    [118] Nys Y, Hincke MT, Arias JL, Garcia-Ruiz JM, et al. Avian eggshell mineralization[J]. Poult. AvianBiol. Rev.,1999,10:143-166.
    [119] Nys, Y.1986. Relationships between age, shell quality and individual rate and duration of shellformation in domestic hens[J]. Bri.Poult. Sci.,27:253-259.
    [120] Nys, Y.2001. Recent developments in layer nutrition for opimising shell quality[A]. Pages42-52in Proc.13th European Symposium on Poultry Nutrition.Blankenberge, Belgium.
    [121] NysY, Gautron J, Mckee MD, et al. Biochemical and functional characterization of eggshellmatrix proteins[J]. World’s Poult. Sci. J.,2001,57:401-403
    [122] Nys Y, Gautron J, Garcia-Ruiz J M, et al. Avian eggshell mineralization: biochemical andfunctional characterization of matrix proteins[J]. C R Palevol.,2004,3:549-562.
    [123] O'Farrell P H. High resolution two-dimensional elect rephoresis of proteins[J]. Biol Chem.,1975,250(10):4007-4021
    [124] OchrimentoC, Lemser A, Richtter G, et al. Effect of manganese content in laying hen feed withdifferent Ca and mineral level on the eggshell quality and bone mineralization of hens[J]. Arch.Tiernahr.,1992.42:25-35.
    [125] Oh-Ishi M,Kodera Y,Furudate S,et al. Disease proteomics of endocrine disorders revealed bytwo-dimensional gel electrophoresis and mass spectrometry[J]. Proteomics.Clin. Appl.,2008,2(3):327-337
    [126] OuzzineM, Gulberti S, Netter P, et al. Structure/Function of the humanGalβ1,3-glucuronosyltransferase[J]. J. Biol. Chem.,2000,275:28254-28260.
    [127] Paik I. Application of chelated minerals in animal production[J]. J Anim Sci,2001,14:191-198.Panheleux M, Nys Y, Williams J, et al. Extraction and quatification by ELISA of eggshell organicmatrix proteins (Ovocleidin-17, Ovoalbumin, Ovotransferrin) in shell from young and old hens[J].Poult.Sci.,2000,79,580-588.
    [128] Pines M, Knopov V, Bar A. Involvement of osteopontin in egg shell formation in the layingchicken[J]. Matrix Biol.,1994,14:765–771
    [129] PoggenpoelDG, Ferreira GF, Hayes JP, et al. Response to long-term selection for egg productionin laying hens[J]. Bri.Poult. Sci.,1996,37:743-756
    [130] Powers J P, Hancock R E. The relationship between peptide structure and antimicrobial activity[J].Peptides,2003,24:1681–1691
    [131] Roberts J R, Choct M, Ball W. Effect of different commercial enzymes on egg and egg shellquality in four strains of laying hens[A]. Proceedings of the Australian Poultry Science Symposium,Ed. Farrell D J.1999,11:139-142.
    [132] ReddyPM, Reddy VR, Reddy C V, et al.1979. Egg weight, shape index and hatch ability in KhakiCampbell duck egg[J]. Ind. J. Poul. Sci.14:26-31.
    [133] Reyes-Grajeda J P, Jauregui-Zuniga D, Rodriguez-Romero A, et al. Crystallization andpreliminary X-ray analysis of ovocleidin-17a major protein of the Gallus gallus eggshell calcifiedlayer[J]. Protein and Peptide Lett.,2002,9:253–257
    [134] Reyes-Grajeda J P, Moreno A, Romero A. Crystal structure of ovocleidin-17, a major protein ofthe calcified Gallus gallus eggshell: implications in the calcite mineral growth pattern[J]. J. Biol.Chem.,2004,279:40876–40881
    [135] Richter G, Kiessling G, Ochrimenko W I, et al. Influence of particle size and calcium source onlimestone solubility in vitro, performance and eggshell quality in laying hens[J]. Archiv.fur.Geffugelkunde,1999,63:208-213..
    [136] Robert J R. Factors affecting egg internal quality and egg shell quality in laying hens[J]. J. Poult.Sci.,2004,41:161-177
    [137] Roberts J R, Choct M, Ball, W. Effect of different commercial enzymes on egg and egg shellquality in four strains of laying hen[A]. Proceedings1999Australian Poultry Sciences SymposiumVolume No11, University of Sydney, Sydney, NSW, February1999:139-142.
    [138] Rodriguez-NavarroA, Kalin O, Nys Y, et al. Influence of microstructure on the shell strength ofeggs laid by hens of different ages[J]. Bri.Poult. Sci.,2002,43:395-403.
    [139] Roland D A, Brake J. Influence of premolt production on postmolt performance with explanationfor improvement in egg production due to force molting[J]. Poult.Sci.,1982,61:2473-2481.
    [140] Roland D A, Sloan D R, Harms R H. The ability of hens to maintain calcium deposition in the eggshell and egg yolk as the hen ages[J]. Poult.Sci.,1975,54:1720-1723.
    [141] Roland D A. Factors influencing shell quality of aging hens[J]. Poult.Sci.,1979,58:774-777..
    [142] RolandDA,Slolan DR, Harms RH.. The ability of hens to maintain calcium deposition in the eggshell and egg yolk as the hen ages[J]. Poult.Sci.,1975,54:1720-1723.
    [143] Rose M L H, Hincke M T. Protein constituents of the eggshell: eggshell-specific matrixproteins[J]. Cell.Mol. Life Sci.,2009,66:2707-2719
    [144] SAS Institute.2001. SAS User’s Guide[M]. Version8.02ed. SAS Institute Inc., Cary, NC.
    [145] Saunders-Blades J L, Maclsaac J L, Korver D R, et al. The effect of calcium source and particlesize on the production performance and bone quality of laying hens[J]. Poult Sci.,2009,88:338-353.
    [146] Scheideler S E. Interaction of dietary calcium, manganese and manganese source (Manganeseoxide or manganese methionine chelate) on chick performance and manganese utilization[J]. Biol.Trace Elem. Res.,1991,29:217-223
    [147] Settle E A, Mraz F R, Douglas C R, et al. Effect of diet and manganese level on growth perosisand54Mn uptake in chicks[J]. J Nutr.,1968,97:141-146.
    [148] Simons, P C M. Ultrastructure of the hen eggshell and its physiological interpretation[M]. Centrefor Agricultural Publishing and Documentation, Wageningen,1971
    [149] Solomon S E. Egg and eggshell quality[M]. Wolfe Publishing Limited, London.1991.
    [150] Spears J W. Zinc methionine for ruminants: relatvie bioavailability of zinc in lambs and effects ofgrowth and performance of growing heifers[J]. J Anim Sci.,1989,67:835-843.
    [151] Stahl J L, Cook M, Sunde M. Zinc supplementation: its effect on egg production, feed conversion,fertility, and hatchability[J]. Poult Sci.1986,65:2104-2109.
    [152] Stevenson M. H. Effect of added cassava root meal, ZnO and their interaction on the productionand quality of eggs from laying hens[J]. J. Sci. FoodAgri.,1985,36:909-914.
    [153] Suksupath S, Cole, E A, Cole, R J, et al. Toxicity of cyclopiazonic acid in the laying hen[A].Proceedings of the Australian Poultry Science Symposium, Sydney,94.1989.
    [154] Underwood E J. Manganese[M]. Pages125-131in the mineral nutrition of livestock.2nd ed.Commonw.Agric. Bureaux, Slough, UK,1981.
    [155] ValkonenE, Ven l inen E, Rossow L, et al. Effects of calcium diet supplements on egg strength inconventional and furnished cages, and effects of2different nest floor materials[J]. Poult. Sci.,2010,89:2307-2316.
    [156] VenkatesanN, BarrèL, Benani A, et al.Stimulation of proteoglycan synthesis byglucuronosyltransferase-I gene delivery: A strategy to promote cartilage repair[J]. Proc. Natl. Acad.Sci. USA.,2004,52:18087-18092.
    [157] Wellman-Labadie O, Picman J, Hincke M T. Comparative microbial toxicity of cuticle and outereggshell protein from three species of domestic bird[J]. Br. Poult. Sci.,2008,49:133–143
    [158] Wellmann-Labadie O, Lakshminarayanan R, Hincke M T. Antimicrobial properties of avianeggshell specific C-type lectinlike proteins[J]. FEBS L,2008,582:699–704
    [159] WhisenhuntJE, Maurice DV. Effect of dietary manganese and phosphorus on the strength of avianeggshell[J]. Nutr. Rep. Int.,198531:757-763.
    [160] WilgusHS, Norris LC, Heuser GF. The role of certain inorganic elements in the cause andprevention of perosis[J]. Sci.,1936,84:252-253.
    [161] Wedekind K J, Tigemeyer E C, Twardock A R, et al. Phosphorus, but not calcium, affectsmanganese absorption and turnover in chicks[J]. J Nutr.,1991,121:1776-1786.
    [162] Wu H Y, Tseng V S, Chen L C, et al. Combining alkaline phosphatase treatment and hybrid linearion trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for theefficient and confident identification of protein phosphorylation[J]. Anal Chem.2009,81(18):7778-7787
    [163] Xing J, Wellman-Labadie O, Gautron J, et al. Recombinant eggshell ovocalyxin-32: Expression,purification and biological activity of the glutathione S-transferase fusion protein[J]. Comp.Biochem. Physiol.,2007,147:172–177
    [164] Yang K T, Lin C Y, Liou J S, et al. Differentially expressed transcripts in shell glands from lowand high egg production strains of chickens using cDNA microarrays[J]. Anim. Reprod.Sci.,2007,110:113–124.
    [165] Yang X, Zhong L, An X, Zhang N, et al. Effects of diets supplemented with zinc and manganeseon performance and related parameters in laying hens[J]. Anim. Sci. J.2012,83:474-481.
    [166] YoungWH, Son MJ, Yun KS, et al. Relationship between eggshell strength and keratin sulfate ofeggshell membranes[J]. Comp. Biochem. Physiol. A.,2007,147:1109-1115.
    [167] Zamani A, Rahmani H R, Pourreza H R. Eggshell quality is improved by excessive dietary zincand manganese[A]. In: Proceedings15th European Symposium on Poultry Nutrition,25-29September, Balatonfured, Hungary,520-522.
    [168] Zelensky A N, Gready J E. The C-type lectin-like domain superfamily[J]. FEBS J,2005,272:6179–6217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700