氟吡菌酰胺等10农药在中国和苏丹典型农产品和土壤中的残留分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用快速、简单、廉价、有效、可靠、安全的分散固相萃取(QuEChERS)为样品前处理方法,建立了四种杀菌剂(fluopyram, tebuconazole, trifloxystrobin and trifloxystrobin acid)在蔬菜(西红柿、豇豆),水果(梨、葡萄、苹果、西瓜)和土壤中超高效液相色谱-串联质谱联用分析方法。样品采用乙腈提取,C18作为吸附剂净化,超高效液相色谱-串联质谱联用测定。多反应监测模式下,3分钟内完成了四种目标物的分离。该方法在各个基质中的检出限(LOD)为0.2~2μg kg-1,定量限(LOQs)为0.5~7μg kg-1。在0.01mg、0.1mg和1mg三个添加水平,四种杀菌剂在不同基质中的平均回收率分别为71.7%-116.4%,相对标准偏差为1.3%-20%。
     氟吡菌酰胺和戊唑醇在番茄和土壤中的残留动态表明:氟毗菌酰胺和戊唑醇的残留消解动态符合一级动力学方程C=Coek,且相关系数(R2)在0.9761~0.9999之间。2012-2013年,在山东、河南、北京试验点,氟毗菌酰胺番茄和土壤中的降解半衰期分别为7.0~24.5天,2.8~13.8天和8.9~21.9天。最终残留浓度分别为0.12-1.35mg,1.13-1.53mg以及<0.06-1.221mg。2011-2012年,在安徽和北京验点,氟毗菌酰胺和肟菌酯在西瓜和土壤中的降解半衰期分别为3.1~14.1天和1.9~8.1天。最终残留浓度分别为0.01-0.132mg0.01-0.083mg。
     同时,我们也建立了六种杀虫剂(Imidacloprid、acetamiprid、Thiacloprid、 Thiamethoxam、clothianidin and floncamid)在黄秋葵和洛神葵的残留分析方法。多反应监测模式下,3分钟内完成了目标化合物的分离。该方法在各个基质中的检出限(LODs)为0.11~5.9μg kg-1,定量限(LOQs)为0.09~17.5μg kg-1。在0.01mg、0.1mg和1mg三个添加水平,六种化合物在不同基质中的平均回收率分别为72.4%-105.1%,相对标准偏差为2.2%-20%。方法的灵敏度、准确度、精密度等均符合农药残留检测的要求,且为制定和建立这六种杀虫剂在黄秋葵和洛神葵的最大残留限量和分析方法提供了理论依据。
In the present study, a quick, easy, cheap, effective, rugged and safe (QuEChERS) method based on liquid chromatography tandem mass spectrometry (LC-MS-MS) for simultaneous determination of four fungicides (fluopyram, tebuconazole, trifloxystrobin and trifloxystrobin acid) in vegetables (tomato, and cowpea), fruits (pear, grape, apple, and watermelon), and soil was developed. The fungicides were extracted from six fruits and vegetables matrices using acetonitrile and subsequently cleaned up only using octadecylsilance (C18) as sorbent prior to UPLC-MS/MS analysis. The target compounds were separated achieved in less than3.0min and detected with an electrospray ionization source in positive mode (ESI+). The limits of detection (LOD) and limits of quantification (LOQ) were obtained using the peak areas of the product ion obtained through MS/MS mode. The limits of detection (LOD) ranged between0.2to2μg kg-1, while the limits of quantification (LOQs) ranged between the0.5to7μg kg-1in different matrices. The recoveries and relative standard deviations (RSDs) were satisfying in different matrices at three spiked levels (0.01,0.1and1mg kg-1) by matrix-matched standards. The recovery results were from71.7%to116.4%with RSD in the range of1.3%to20%.
     The degradation of fluopyram and tebuconazole in tomato and soil also were investigated, with correlation Coefficients (R2) between0.9761to0.9999for fluopyram and tebuconazole in tomato and soil matrix. The dissipation half-lives of fluopyram in tomato and soil were7.0-24.5days,2.8-13.8days and8.9-21.9days for Shandong, Henan and Beijing respectively in two years2012and2013. The final residues of floupyram and tebuconazole ranged from0.12to1.35mg/kg in Shandong,1.13to1.53mg/kg in Henan and<0.06to1.221mg/kg in Beijing samples respectively.
     The degradation results of fluopyram and trifloxystrobin in watermelon and soil, the dissipation half-lives of fluopyram and trifloxystrobin in watermelon and soil were ranged between3.1and14.1days for Anhui and1.9to8.1days to Beijing for two years2011and2012. The final residues of floupyram and trifloxystrobin ranged from0.01to0.132mg/kg for Anhui and0.01to0.083mg/kg for Beijing samples respectively.
     For the second part of this thesis, the simultaneous residue analysis of six insecticides (imidacloprid, acetamiprid, thiacloprid, thiamethoxam, clothianidin and flonicamid) in Okra and Roselle was developed. The determination of the target compounds was achieved in less than2.0min using an electrospray ionization source in positive mode (ESI+) for imidacloprid, acetamiprid, thiacloprid, thiamethoxam, clothianidin but negative mode (ESI-) for flonicamid. The limits of quantification (LOQ) for the six insecticides ranged between the0.11to5.9kg-1, while the limits of detection (LOD) were ranged between0.09to17.5μg/kg-1in all matrices. The overall average recoveries in Roselle and Okra at three spiked levels (0.1,0.5and1mg L-1) and (0.01,0.1, and1mg L-1) ranged from72.4%to105.1%with RSD in the range of2.2-20%for all analytes. This study provides a theoretical basis to recommend MRLs and analytical method for these insecticides in Okra and Roselle.
引文
1. Abd El-Zaher T., Nasr N.I., and Mahmoud A. H., Behavior of Some Pesticide residues in and on Tomato and Kidney Beans Fruits Grown in Open Field. American-Eurasian Journal of Toxicological Sciences 2011,3:213-218.
    2. Alba R. F. A., Tejedor A., and Aguera A., Contreras C., Garrido J., Determination of Imidacloprid and Benzimidazole Residues in Fruits and Vegetables by Liquid Chromatography-Mass Spectrometry after Ethyl Acetate Multi-residue Extraction. Journal of AOAC International 2000,83: 748-755.
    3. Ali I. M., Khan A. M., Abdul Rashid A., Ul-haq M. E., Javed T. M. and Sajid M. Epidemiology of Okra Yellow Vein Mosaic Virus (OYVMV) and Its Management through Tracer, Mycotal and Imidacloprid. American Journal of Plant Sciences 2012,3:1741-1745.
    4. Anonymous, Environmental protection, environmental fate, http://www.al.gov.bc.ca/ pesticides/c_2.htm.28 April 2009.
    5. Avenot H.F. and Michailides T.J., Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection 2010,29:643-651.
    6. Baigl A. S., Akhter A. N., Ashfaq M., Asi R. M., and Ashfaq U., Imidacloprid residues in vegetables, soil and water in the southern Punjab, Pakistan. Journal of Agricultural Technology 2012, 8:903-916.
    7. Bakirci T. G. and HIsIL Y., Fast and Simple extraction of pesticide residues in selected fruits and vegetables using tetrafluoroethane and toluene followed by ultrahigh performance liquid chromatography/tandem mass spectrometry. Food Chemistry 2012,135:1901-1913.
    8. Battershill J. M., Edwards P. M. and Johnson M. K., Toxicological assessment of isomeric pesticides:a strategy for testing of chiral organphosphorus (OP) compounds for delayed polyneuropathy in a regulatory setting. Food and Chemical Toxicology 2004,42:1279-1285.
    9. Bauder T., Waskom W., Best Management Practices for Agricultural Pesticide Use to Protect Water Quality 2010.
    10. Blasco C., Fernandez M., Pico Y., Font G and Manes J. Simultaneous determination of imidacloprid, carbendazim, methiocarb and hexythiazox in peaches and nectarines by liquid chromatography-mass spectrometry. Analytica Chimica Acta 2002,461:109-116.
    11. Brooks G. T. and Roberts T. R. Pesticide Chemistry and Bioscience. Royal Society of Chemistry 1999.
    12. Cajkaa T., Sandy C., Bachanovaa V., Drabovaa L., Kalachovaa K., Pulkrabovaa J. and Hajslovaa J., Streamlining sample preparation and gas chromatography-tandem mass spectrometry analysis of multiple pesticide residues in tea. Analytica Chimica Acta 2012,743:51-60.
    13. Cameron, Walker J. P., Hodson P. G., Kale J. A., Herman J. A. and T. J. B, Trends in IPM and insecticide use in processing tomatoes in New Zealand. Crop Protection 2009,28:421-427.
    14. Cervera I. M., Medina C., Protoles T., Pitarach E.,, Beltran J., Serrahima E., Pineda L., Munoz G., Centrich F., Hernandez F., Multi-residue determination of 130 multiclass pesticides in fruits and vegetables by gas chromatography coupled to triple quadrupole tandem spectrometry. Analytical and Bioanalytical Chemistry 2010,397:2873-2891.
    15. Chen M., Collins E. M., Tao L., and Lu C. Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography-tandem mass spectrometry. Analytical and bio analytical chemistry 2013,405:9251-64.
    16. Claudi R. and Mackie L.G. Chapter 4, Mitigation by Chemical Treatment. Practical Manual for Zebra Mussel Monitoring and Control. CRC Press, Inc. Boca Raton, FL 1994,227:97-112.
    17. Cserhati T., Forgacs E., Deyl Z., Miksik I. and Eckhardt A. Chromatographic determination of herbicide residues in various matrices. Biomedical Chromatography 2004,18:350-359.
    18. Deng Z., Hu J.,Qin D. and Li H., Simultaneous Analysis of Hexaconazole, Myclobutanil, and Tebuconazole Residues in Apples and Soil by SPE Clean-Up and GC with Nitrogen-Phosphorus Detection. CHROMTOGRAPHIA 2010,71:679-684.
    19. Dong B. and Hu J., Dissipation and residue of fluopyram and tebuconazole residue determination in watermelon and soil by GC-MS. International Journal of Environmental Analytical Chemistry 2014, 94:493-503.
    20. European Food Safety Authority,Reasoned Opinion of EFSA, Modification of the existing MRLs for tebuconazole in swedes ad turnips, prepared by the Pesticides Unit (PRAPeR) Scientific Report, Journal 2009,318:1-30.
    21. European Food Safety Authority,Reasoned Opinion on the review of the existing maximum residue levels (MRLs) for trifloxystrobin according to Article 12 of Regulation (EC) No 396/20051, Journal 2014; 12,3592.
    22. European Food Safety Authority, Setting of new MRLs and import tolerances for fluopyram in various crops. Journal 2011,9:2388.
    23. FAO/WHO Food Standard, Pesticides residue in food and feed. (www.codexalimentarius.net/pestres/data/pesticides/index.html)
    24. FAO/IAEA-Validation of thin-layer chromatographic methods for pesticide residue analysis, Results of the coordinated research projects organized by the Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture 1996-2002, July (2005).
    25. FAO-International Code of Conduct on the Distribution and Use of Pesticides, Rome Italy 1989.
    26. FAO-Statistical year book, Food and Agriculture Organization of the United Nations Rome,2013.
    27. Fenoll F., Hellin P., Martinez M. C. and Flores P., Multi-residue analysis in vegetables and citrus fruits by LC-MS-MS. Chromatographia 2010,72:857-866.
    28. Fossen M., Environmental Fate of Imidacloprid, Environmental Monitoring, Department of Pesticide Regulation 2006, CA.
    29. Freemark, K. and Boutin, C., Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes:a review with special reference to North America. Agriculture, Ecosystems & Environment 1995,52:67-91.
    30. Garland S., Menary R. and Davies N., Dissipation of proiconazole and tebuconazole in peppermint crops (Mentha piperita) (Land iatae) and their residue in distilled oils. Journal of Food Chemistry 1999,47:294-298.
    31. Garry V. F., Schreinemachers D. M., Harkins M.E. and others "Pesticide Appliers, Biocides, and Birth Defects in Rural Minnesota." Environmental Health Perspectives 1996,104:394-399.
    32. Guan W., Ma Y. and Zhang H., Residue and dissipation dynamics of fluopyram in cucumber and soil. Advanced Materials Research 2012,347:2255-2259.
    33. Guidance for Evaluating Residual Pesticides on Lands Formerly Used for Agricultural Production Oregon Department of Environmental Quality. Land Quality Division, Cleanup Program, FIFRA 2006.
    34. Guidelines for Responsible Pesticide Use. Environment Protection Authority 2005.
    35. Hass U., Christiansen S., Axelstad M., Boberg J., Andersson M. A., Bay K., Holbech H., Kinnberg, L. K., and Bjerregaard P., Evaluation of tebuconazole, triclosan, methylparaben and ethylparaben according to the Danish proposal for criteria for endocrine disrupters 2012.
    36. Hem L., Park H. H., and Shim H.J., Residual Analysis of Insecticides (Lambda-cyhalothrin, Lufenuron, Thiamethoxam and Clothianidin) in Pomegranate Using GC-μECD or HPLC-UVD. Korean Journal of Environmental Agriculture 2010,29:257-265.
    37. Hengel M. J. and Miller M., Analysis of flonicamid and its metabolites in dried hops by liquid chromatography-tandem mass spectrometry, Journal of agricultural and food chemistry 2007, 55:8033-8039.
    38. Hites A. R., Gas Chromatography-Mass Spectrometry, Handbook of Instrumental Techniques for Analytical Chemistry 1985,609-626.
    39. Hjorth K., Poulsen E. M., and Christensen B. H, Determination of pesticide residues in cereals by GC-MS/MS and LC-MS/MS,2010.
    40. Howard Deer, Pesticides Adsorption and Half-life, Cooperative Extension Service, Utah State University, (2004).
    41. Hrelia P., Fimognari C., Maffei F., Vigagni F., Mesirca R., Pozzetti L., Paolini M., and Cantelli F. G., The genetic and non-genetic toxicity of the fungicide Vinclozolin. Mutagenesis 1996.11:445-453.
    42. Jeschke P., Moriya K., Lantzsch R., Seifert H., Lindner W., Jelich K., Go"hrt A., Beck M. W. and Etzel. Thiacloprid (Bay YRC 2894)-a new member of the chloronicotinyl insecticide (CNI) family. Pflanzenschutz-Nachirchten Bayer 2001,54:147-160.
    43. Jeschke P., Uneme H., Buchholz B., Stolting J., Sirges W., Beck E. M., and Etzel W. Clothianidin (TI-435). The third member of the chloronicotinyl insecticide (CNITM) family. Planz.-Nach. Bayer 2003,56.
    44. Jonsson O. and Kreuger J., Determination of Pesticides in Bees and Pollen by Liquid and Gas Chromatography coupled to Mass Spectrometry.
    45. Jyot G., Arora K. A., Sahoo K. S., Singh B. and Buttu S.R., Presistence of Trifloxystrobin and Tebuconazole on Grape leaves, Grape Berries and Soil. Bulletin of Environmental Contamination and Toxicology 2010,84:305-310.
    46. Keith H. L., Crummett W. and Deegan Jr D. J., Principles of Environmental Analysis. Analytical Chemistry 1983,55:2210-2218.
    47. Koesukwiwata U., Lehotay J. S. and Leepipatpiboon N., Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. Journal of Chromatography A 2011,1218:7039-7050.
    48. Kupiec T., Quality Control Analytical Methods:High-Performance Liquid Chromatography International Journal of Pharmaceutical Compounding 2004,8:No.223-227.
    49. Lambropoulou A. D., Konstantinou K. I. and Albanis A.T. Determination of fungicides in natural waters using solid-phase microextraction and gas chromatography coupled with electron-capture and mass spectrometric detection. Journal of Chromatography A 2000,893:143-156.
    50. Larissa C., Evaluation of the new active trifloxystrobin in the product flint fungicide, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra Australia 2000,1-48.
    51. Latijnhouwers M., de Wit P. J. and Govers F. Oomycetes and fungi:similar weaponry to attack plants. Trends in Microbiology 2000,11:462-469.
    52. Lazic S., Sunjka D., Grahovac N., Guzsvany V., Bagi F. and Budakov D., Application of Liquid Chromatography with Diode-Array Detector for Determination of Acetamiprid and 6-chloronicotinic Acid Residues in Sweet Cherry Samples. Pesticides and Phytomedicine 2012 27:321-329.
    53. Lethotay J. S., KOK D. A., HIEMSTRA M., and BODEGRAVEN V. P., Validation of a Fast and Easy Method for the Determination of Residues from 229 Pesticides in Fruits and Vegetables Using Gas and Liquid Chromatography and Mass Spectrometric Detection. Journal of AOAC International 2005,88:565-614.
    54. Liu X., Wang X., Xu J., Dong F., Song W. and Zheng Y., Determination of tebuconazole, trifloxystrobin and its metabolite in fruits and vegetables by Quick, Easy, Cheap, Effective, Rugged, and safe (QuEChERS) method using gas chromatography with a nitrogen - phosphours detector and ion trap mass spectrometry. Biomedical Chromatography 2011.
    55. Maiensfisch P., Huerlimann H., Rindlisbacher A., Gsell L., Dettwiler H., Haettenschwiler J., Sieger E. and Walti M., The discovery of thiamethoxam:a second-generation neonicotinoid. Pest Management Science 2001,57:165-176.
    56. Mar'in A., Vidal M. J.L., Egea G. F.J., Frenich A. G., Glass C.R. and Sykes M., Assessment of potential (inhalation and dermal) and actual exposure to acetamiprid by greenhouse applicators using liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 2004, 804:269-275.
    57. Martel A.C., Lair C., Determination of neonicotinoid residues in bees by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Euro Reference 2012,6:15-17.
    58. Mellors S.J., Jorgenson W. J., The Use of 1.5 micron Porous Ethyl-Bridged Hybrid Particles as a Stationary Phase Support for Reversed-Phase Ultra-High Pressure Liquid Chromatography, Analytical Chemistry 2004,76:5441-5450.
    59. Mohamed B. B., Sulaiman A., A., and Dahab A. A., Roselle (Hibiscus sabdariffa L.) in Sudan, Cultivation and Their Uses. Bulletin of Environment, Pharmacology and Life Sciences 2012,1:48-54.
    60. Morita M., Ueda T., Yoneda Y., Koyanagi T., Haga T., Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pesticide Science 2007,63:969-973.
    61. Morland K., Steve W., Ana D. R. and Charles P., Neigborhood characteristics associated with the location of food stores and food service places. American Journal of Preventive Medicine 2002,22: 23-29.
    62. Motes C.W., Modern Agriculture and its benefits trends, implications and outlook. Pre-publication draft,3-16-10.
    63. Naval'on A., Casado A. G., El-Khattabi R., Vilchez J. L. and Alba A. R.F., Determination of Imidacloprid in Vegetable Samples by Gas Chromatography-Mass Spectrometry. Analyst 1997,122: 579-581.
    64. Netherland M. D. and Getsinger K.D., Chemical control research strategy for zebra mussels. Technical Note, Zebra Mussel Research Program ZMR-3-18. U.S. Army Corps of Engineers, Waterways Experiment Station 1998.
    65. Nguyen D.T., Lee H. M., and lee H. G., Multi-residue Determination of 156 Pesticides in watermelon by Dispersive Solid Phase Extraction and Gas Chromatography/Mass Spectrometry. Bulletin of the Korean Chemical Society 2008,29:2482-2486.
    66. Novakova K., Navratil N., Dytrtova J. J. and Chylkova J., Application of Copper Solid Amalgam Electrode for Determination of Fungicide Tebuconazole, International Journal of Electrochemical science 2013,8:1-16.
    67. Obana H., Okihashi M., Akutsu K., Kitagawa Y. and Hori S., Determination of Acetamiprid, Imidacloprid, and Nitenpyram Residues in Vegetables and Fruits by High Performance Liquid Chromatography with Diode-Array Detection, Journal of Agricultural and Food Chemistry 2002,50: 4464-4467.
    68. Park S., Lee J. S., Kim G. H., Jenog Y. W., Shim H. J., Abd El Alty M. A., Jeong W. S., Lee S.W., Kim T. S. and Shin C.S., Residue analysis of multi-class pesticides in water melon by LC/MS/MS. Journal of Separation Science 2010,33:493-501.
    69. Paya P., Anastassiads M., Mack D., Sigalova I., Tasdelen B., Oliva J. and Barba A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multi residue method in combination with gas and liquid chromatography and tandem mass spectrometer detection. Analytical and Bioanalytical Chemistry 2007,389:1697-1714.
    70. Pesticide Residue Monitoring and Food Safety. Cornell University Program on Breast Cancer and Environmental Risk Factors in New York State (BCERF),1999.
    71. Pihlstom T., Blomkvist G., Friman F., Pagard U.and Osterdahl G. B., Analysis of pesticides in fruits and vegetables with ethyl acetate extraction using gas and liquid Chromatography with tandem mass spectrometric detection. Analytical and Bioanalytical Chemistry 2007,389:1773-1789.
    72. Pous X., Ruiz J. R., Pico Y. and Font G., Determination of imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Fresenius Journal of Analytical Chemistry 2001, 371:182-189.
    73. Rancan M., Rossi S.and Sabatini G. A., Determination of Thiamethoxam residues in honeybees by high performance liquid chromatography with an electrochemical detector and post-column photochemical reactor. Journal of Chromatography A 2006,1123:60-65.
    74. Reuveni M., Efficacy of trifloxystrobin (Flint), a new strobilurin fungicide, in controlling powdery mildews on apple, mango and nectarine, and rust on prune trees. Crop Protection 2000,19: 335-341.
    75. Saati A., Investigation of residual pesticides in some plants in saudia Arabia. ASSIUT University Bulletin for Environmental Researches 2011,14:13-26.
    76. Sahoo K. S., Jyot G., Buttu S. R., Singh B., Dissipation of Trifloxystroblin and Tebuconazle in Chili and Soil. Bulletin of Environmental Contamination and Toxicology 2012,88:368-0464.
    77. Sexton E. S., Lei Z., and Zilberman Z., The Economics of Pesticides and Pest Control, International Review of Environmental and Resource Economics 2007,1:271-326.
    78. Shams El Din A. M., Azab M. M., Abd El-Zaher T. R., Zidan Z.H. A. and Morsy R.A., Persistence of Acetamiprid and Dinotefuran in Cucumber and Tomato Fruits. American-Eurasian Journal of Toxicological Sciences 2012,4:103-107.
    79. Sherma J., Thin-Layer Chromatography of Pesticides. A review of Application for 2002-2004 ACTA Chromatographia 2005,15.
    80. Sprecher S. L. and Getsinger D. K., Zebra Mussel Chemical Control Guide. ERDC/EL TR-00-1, U.S. Army Engineer Research and Development Center, Vicksburg, MS.114,2000.
    81. Srivastava A. K., Srivastava M. K., Patel D. K., Mudiam M. K. R. and Srivastava L. P. Gas-Chromatographic Determination of Imidacloprid in water. Journal of Environmental Research and Development 2012,2:643-651.
    82. Srivastava B., Sharma B. K., Baghel U. S., Yashwant and Sethi S., Review Article Ultra Performance Liquid Chromatography, A Chromatography Technique, International Journal of Pharmaceutical Quality Assurance 2010,2:19-25.
    83. Steven J. Lehotay, New technologies applied in pesticide residue analysis.
    84. Steven J. Lehotay, Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) Approach for Determining Pesticide Residues. Pesticide Analysis in Methods in Biotechnology, USA Nov 2004.
    85. Steven J. Lehotay, Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) Approach for Determining Pesticide Residues. Pesticide Analysis in Methods in Biotechnology, Eds. J.L. Vidal Martinez and A. Garrido Frenich, Humana Press, USA Nov.2004.
    86. Subhani Q., Huang P. Z., Zhu Y. Z., Liu Y. L. and Zhu Y., Analysis of insecticide thiacloprid by ion chromatography combined with online photochemical derivatisation and fluorescence detection in water samples. Chinese Chemical Letters 2014,25:415-418.
    87. Swartz M. E., Ultra Performance Liquid Chromatography (UPLC), An Introduction, Separation Science re-defined, LC-GC Supplement 2005.
    88. Szczesniewski A., Culber E. and Barry R., Fast Analysis of flonicamid and its metabolites in Agricultural foods by RPLC-MS/MS, Agilent Technologies 2009.
    89. Taylor L.E., Holley G. A. and Kirk M., Pesticide Development, a Brief Look at the History, Southern Regional Extension Forestry. A Regional Peer Reviewed Publication 2007.
    90. The Japan Food Chemical Research Foundation, (www.m5.ws001.squarestart.ne.jp/foundation/agrdtl.php?a_inq=8800)
    91. Tim Coolong. University of Kentucky. College of Agriculture, Food and Environment 2010.
    92. USDA Foreign Service report at 2009. MRL Changes in Indoxacarb and other five chemicals. GAIN Report Number:JA9064.
    93. USDA Pesticide MRL Database:http://www.mrldatabase.com, Maximus Residue Limits (MRLs) for USA/European Union (EU) & Canada.
    94. Veloukas T., Karaoglanidis G.S., Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Management Science 2012, 68:858-864.
    95. Ware, GW. The Pesticide Book,4th ed; W.H. Freeman:Fresno, CA, (1994).
    96. Watanabe E., Review on Current Analytical Methods with Chromatographic and Nonchromatographic Techniques for New Generation Insecticide Neonicotinoids. Insecticides-Advances in Integrated Pest 2012:481-510.
    97. Wilson S.J. and Otsuki T., To Spray or Not to Spray:Pesticides, Banana Exports, and Food Safety, Development Research Group (DECRG), World Bank, USA 2002.
    98. World Health Organization. Public Health Impact of Pesticide used in Agriculture,1990.
    99. Xu Y, Shou L. F. and Wu Y. L., Simultaneous determination of flonicamid and its metabolites in vegetables using QuEChERS and reverse-phase liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2011,23; 1218 (38):6663-6. (http://www.ncbi.nlm.nih.gov/pubmed/21831390).
    100. Zhang J. J., Wang Y, Xiang H., Xue M., and Li W. H., et al. Oxidative stress:Role in acetamiprid induced impairment of the male mice reproductive system. Agricultural Sciences in China 2010,10: 786-796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700