固态发酵对棉籽粕棉酚脱毒及蛋白质降解的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了固态发酵中高温高压灭菌处理对棉籽粕的脱毒及假丝酵母菌与黑曲霉单独或复合固态发酵对棉籽粕中棉酚的脱毒及蛋白质降解的影响,探讨微生物固态发酵脱除棉籽粕中游离棉酚(FG)的机理及发酵前后棉籽蛋白质和肽分子量分布范围的变化规律。
     一、假丝酵母菌和黑曲霉生长曲线的测定
     分别通过光电比浊法和菌丝干重法测定了假丝酵母菌和黑曲霉的生长曲线。结果表明:5株假丝酵母菌在麦芽汁培养液中28℃培养24 h达到对数生长末期,2株黑曲霉在马铃薯葡萄糖培养液中28℃培养24 h达到对数生长末期。在对数生长末期将其种子液接入发酵底物中发酵效果最佳。
     二、微生物固态发酵对棉籽粕棉酚脱毒及蛋白质降解的影响
     以棉籽粕、玉米面及麦麸按质量比7:2:1均匀混合后粉碎、过60目筛所得样品为试验的对照组。试验一设5个处理组:加水拌湿不灭菌组和4个湿热灭菌20 min组(105℃、112℃、115℃、121℃);试验二设6个处理组:加水拌湿不灭菌组、2个100℃蒸汽灭菌组(30 min、60 min)及3个湿热灭菌组(115℃20 min、115℃40 min、121℃20 min);试验三研究115℃灭菌40 min条件下,假丝酵母菌和黑曲霉固态发酵脱毒及蛋白质降解规律,试验设9个处理组:灭菌不接种组、5个接种假丝酵母菌组(C1、C2、C3、C4、C5)、2个接种黑曲霉组(A6、A7)及接种复合菌组(C1和A6)。处理结束后立即放入干燥箱中,80℃烘干48 h,粉碎,过60目筛,-20℃低温密封保存待测。苯胺法测定灭菌或发酵处理前后棉籽粕底物中FG与总棉酚(TG)含量变化,SDS-PAGE凝胶电泳法分析发酵前后棉籽蛋白质的分子量分布范围变化,并通过透析袋法测定发酵产物的蛋白质体外消化率。试验一和试验二结果表明:加水拌湿不灭菌组(底物含水47.37%)、其棉籽粕底物混匀拌湿后立即80℃烘干48 h脱毒率为54.57%~68.21%,各灭菌组脱毒率均在85%以上,不同灭菌温度及灭菌时间对棉籽粕底物脱毒率的差异不显著(P>0.05)。试验三结果表明:1)在高温高压灭菌处理对棉籽粕底物中FG已大部分脱毒的情况下,接种假丝酵母菌未见显著降低FG含量(P>0.05),接种黑曲霉A6和A7发酵组反而使FG含量从灭菌处理组的24.739 mg/kg分别增加到211.451 mg/kg和176.135 mg/kg(P<0.01),假丝酵母菌和黑曲霉复合发酵组FG含量为112.244 mg/kg(P<0.01);2)在灭菌处理已极显著(P<0.01)降低棉籽粕底物结合棉酚(BG)和TG含量的情况下,各菌株发酵对BG和TG的含量影响差异不显著(P>0.05);3)假丝酵母及黑曲霉固态发酵均能将棉籽粕底物中分子量在20~100 KDa之间的大分子蛋白质降解为小分子蛋白质和肽,其中黑曲霉可将蛋白质降解为14 KDa以下的小分子蛋白质和肽;4)黑曲霉发酵组的棉籽粕底物蛋白质体外消化率比对照组提高19.25%(P<0.05),复合发酵组提高8.18%(P>0.05);5)棉籽粕假丝酵母菌、黑曲霉单菌种及复合固态发酵的产率分别为96.34%、88.42%和89.69%,粗蛋白(CP)含量分别提高4.31%、13.76%和13.09%,发酵产物的CP含量与发酵产率呈极显著的负相关:y=97.52352-0.52748x(R2=0.9942,P<0.0001)。
     综合本研究结果:1)微生物固态发酵对棉籽粕棉酚脱毒主要是高温高压灭菌作用;2)假丝酵母对棉籽粕中FG有一定的脱毒作用,而黑曲霉增加了FG含量,二者对棉酚均没有降解作用;3)黑曲霉固态发酵棉籽粕具有较强的蛋白降解能力,可将高分子量的棉籽蛋白降解为14 KDa以下的小分子蛋白和肽;4)黑曲霉固态发酵可显著提高棉籽粕CP体外消化率;5)棉籽粕发酵产物中的CP含量与发酵产率之间存在显著的线性负相关。
This article were conducted to study the effect of treatment sterilized by high temperature and high pressure in the solid-state fermentation on free gossypol detoxification of cottonseed meal (CSM) and solid-state fermentation on free gossypol detoxification and protein degradation on CSM by five strains of Candida spp. and two strains of Aspergillus niger solid-state fermentation, respectively.
     Growth curves of Candida spp. and Aspergillus niger were determined by optoelectronic turbidimetry and dry weight of mycelium method, respectively. The results showed that the terminal period of log phase of Candida spp. was occurred at 24 h of incubation at 28℃in the malt extraction liquid, and that of Aspergillus niger was happened at 24 h of incubation at 28℃in potato dextrose liquid. In order to achieve the optimal fermentation product, the seed culture fluid of Candida spp. and Aspergillus niger should be inoculated into the fermentation substrate at the terminal period of log phase of them.
     The control group was the material mixed with CSM, corn flour and wheat bran in the quality ratio of 7:2:1 and grinded by 60 mash screen. Exp.1 and Exp.2 were conducted to study sterilization of solid-state fermentation on free gossypol detoxification of CSM. Exp. 1 had treatment moistened in the ratio 1:0.9 of mixture to water but no sterilization, treatment autoclaved at 105℃for 20 min, treatment autoclaved at 112℃for 20 min, treatment autoclaved at 115℃for 20 min, treatment autoclaved at 121℃for 20 min. Exp. 2 had treatment moistened in the ratio 1:0.9 of mixture to water but no sterilization, treatment steam sterilized at 100℃for 30 min, treatment steam sterilized at 100℃for 60 min, treatment autoclaved at 115℃for 20 min, treatment autoclaved at 115℃for 40 min, treatment autoclaved at 121℃for 20 min. Exp. 3 was conducted to study Candida spp. and Aspergillus niger solid-state fermentation on free gossypol detoxification and protein degradation of CSM in the condition of CSM substrate autoclaved at 115℃for 40 min. Exp.3 had treatment sterilized but no inoculation, treatment inoculated C1, treatment inoculated C2, treatment inoculated C3, treatment inoculated C4, treatment inoculated C5, treatment inoculated A6, treatment inoculated A7, and treatment inoculated C1 and A6. Every sample after treated placed at the drying oven to dry at 80℃for 48 h, and grinded by 60-mash screen, then stored for determined at -20℃. The contents of free gossypol, bound gossypol and total gossypol on the CSM substrate before and after sterilization or fermentation were determined to investigate the mechanism of CSM free gossypol detoxification by microbe solid-state fermentation. The protein and peptide molecular weight distribution of CSM substrate before and after fermentation was analyzed by SDS-PAGE gel electrophoresis to investigate the degradation mechanism of CSM by solid-state fermentation, at the same time, the protein in vitro digestibility of fermented products was analyzed by dialysis tube method. Exp.1 and exp.2 showed that the detoxification rate of treat drying the CSM substrate containing water 47.37% at 80℃for 48 h was 54.57%~68.21%, and that of every treat sterilizing was above 85%, at the same time, the temperature and time of sterilization had no significant difference in the detoxification rate of CSM substrate(P>0.05). Exp. 3 showed as follow: 1)Compared with the free gossypol content of treat sterilizing that have better detoxified free gossypol, that of treats Candida spp. fermenting had no significant difference (P>0.05), and that of treats Aspergillus niger A6 and A7 fermenting increased to 211.451 mg/kg and 176.135 mg/kg from 24.739 mg/kg, respectively(P<0.01),and that of treat of mixed cultured fermentation by Candida spp. C1 and Aspergillus niger A6 was 112.244 mg/kg(P<0.01). 2)Compared with bound and total gossypol content of treat sterilizing, that of treat of microbe fermentation had no significant difference (P>0.05). 3)The solid state fermentation of three kinds of fungi all can degrade the large molecular weight(MW) protein to low molecule proteins and peptides, and especially, Aspergillus niger can degrade protein(MW=20~100 KDa) into low molecule mass(MW<14 KDa). 4)Compared with the protein in vitro digestibility of control, that of CSM substrate fermented by Aspergillus niger had a significant increase by 19.25%(P<0.05), and that of CSM substrate mixingly fermented increased by 8.18%, but they had no significant difference(P>0.05). 5)The productivity of the products fermented by Candida spp., Aspergillus niger or mixingly were 96.34±0.58%, 88.42±1.31% or 89.69±0.62%, respectively. Their crude protein contents had a very significant increase by 4.31%, 13.76% or 13.09%(P<0.01) with that of control. The crude protein contents of fermentation products had a very significant negative correlation with the fermentation productivity of products: y=97.52352-0.52748x(R2=0.9942,P<0.0001).
     The conclusion in this study was that: 1)The treatment by sterilization is the main function that led to the detoxification of free gossypol in CSM. 2)Aspergillus niger increased the content of free gossypol of CSM detoxified by sterilization, however, Candida spp. can detoxify the free gossypol of CSM, but both cann’t degrade the gossypol. 3)Solid-state fermentation of CSM by Aspergillus niger possessed a stronger capability of protein degradation as a result is that the large molecular weight can be degraded to proteins or peptides with MW less than 14 KDa. 4)Aspergillus niger solid-state fermentation can significantly increase the protein in vitro digestibility of CSM substrate. 5)The fermentation could decrease the content of dry matter and increase the content of crude protein of fermented product, and the crude protein contents of fermented products and fermentation productivity had significantly a negative correlation.
引文
[1] 李爱科. 我国主要饼粕类饲料资源开发及利用技术[A]. 动物营养研究进展论文集[C]. 北京: 中国农业科技出版社, 2004: 285-289.
    [2] 中华人民共和国国家标准. 饲料用棉籽粕[S]. GB/T 21264-2007.
    [3] 中国饲料成分及营养价值表 2001 年 12 版[M]. 2001, 北京.
    [4] Longmore J. Cottonseed oil: its coloring matter mucilage and description of a new method of recovering the loss occurring in the refining process [J]. J. Soc. Chem. Ind., 1886, 5: 200-205.
    [5] Clark E P. Studies on gossypol II. Concerning the nature of Carruth’s D gossypol [J]. J. Biol. Chem., 1927, 75: 725-739.
    [6] Campbell R C, Morris R C, Adams R J. The structure of gossypol [J]. Am. Chem. Soc., 1937, 59: 1723-1728.
    [7] Berardi L C, Coldblatt L A. Gossypol, toxic constituents of plant foodstuff(Irvine Eliener ed.) [M]. New York: Academic, 1980: p183-237.
    [8] Randel R D, Chase C C, Wyse S J. Effects of gossypol and cottonseed products on reproduction of mammals [J].J.Anim.Sci.,1992,70:1628-1638.
    [9] Carlos A R, Charles A H, Alex K. Effect of graded concentrations of gossypol on calf performance: toxicological and pathological consider rations [J]. J. Dairy Sci., 1992, 75: 2787-2798.
    [10] Randel R D, Chase C C, Wyse S J. Effects of gossypol and cottonseed products on reproduction of mammals [J]. J. Anim. Sci., 1992, 70: 1628-1638.
    [11] Lordelo M M, Davis A J, Calhoun M C, et al. Relative toxicity of gossypol enantiomers in broilers [J]. Poul. Sci., 2005, 84: 1376-1382.
    [12] BlomJ H, Lee K J, Rinchard J, et al. Reproductive efficiency and maternal-offspring transfer of gossypol in Rainbow Trout (Oncorhynchus mykiss) fed diets containing cottonseed meal [J]. J. Anim. Sci., 2001, 79: 1533-1539.
    [13] GB13078-2001[S].2001,北京.
    [14] NY5072-2002[S].2002,北京.
    [15] http://www.feedtrade.com.cn/market/othermeal/zapozhishi/200708/158845.html.
    [16] 陈刚,彭健. 菜籽饼粕抗营养因子研究进展[J]. 畜禽业,2001,1:14-16.
    [17] 齐莉莉,许梓荣. 饲料中的抗营养因子及其灭活[J]. 粮食与饲料工业,2001,3:23-26.
    [18] 卫生部食品卫生监督检验所. 食品检验方法(理化部分注解)[M]. 北京:1984.
    [19] 叶世柏主编. 化学性食品中毒与检验[M]. 北京大学出版社,1989:182.
    [20] AOCS official and Tentative Methods[S], Ind. ED. Rev. Champaign. L 1975.
    [21] Fisher G. S,Frank A.W,Cherry J.P. Determination of total gossypol at parts-per-million levels [J]. J. Am. Oil Chem. Soc,1987,64(3):376-379.
    [22] 杨伟雄,张开诚. 测定棉籽酚的改良方法[J]. 食品科学,1989,1:42-46.
    [23] 姜永,周同惠. 棉籽中棉酚的库伦测定[J]. 分析化学,1985,13 (7):536-538.
    [24] 张延坤,房玉水,邓峰,等. 用高效液相色谱法(HPLC)测定棉籽蛋白中的游离和总棉酚[J]. 营养学报,1995,17(4):419-424.
    [25] 董仕林,洪加敏. 应用原子吸收法测定游离棉酚[J]. 中国公共卫生,1993,9(8):366-367.
    [26] Nagalakshmi D, Sastry V R B, Agrawal D K. Detoxification of undecorticated cottonseed meal by various physical and chemical methods [J]. Anim. Nutr. and Feed Tech., 2002, 2(2): 117-126.
    [27] Yu F, McNabb W C, Barry T N, et al. Effect of heat treatment upon the chemical composition of cottonseed meal and upon the reactive of cottonseed condensed tannis [J]. J. Sci. Food Agric., 1996, 72: 263-272.
    [28] 宋晓旻,吴德胜. 棉粕膨化加工试验工艺及机理分析[J]. 粮油加工,2006,8:17-19.
    [29] 张嗣炯, 顾镕. 棉籽饼粕脱毒的工艺研究(I)[J]. 浙江工业大学学报, 1995, 23(1): 27-30.
    [30] Hodge J E. Chemistry of browning reactions in model system [J]. J. Agric. Fd. Chem., 1953, 1: 928.
    [31] 张嗣炯. 棉籽饼粕脱毒的工艺研究(II)[J]. 浙江工业大学学报,1995,23(3):219-223.
    [32] Hron R.J,Wan P. J,Kuk P. S. Ethanol vapor deactivation of gossypol in cottonseed meal [J]. J. Am. Oil Chem. Soc, 1996, 73: 1337-1339.
    [33] Johnson L A. Pilot plant studies on extracting cottonseed with methlenechloride [J]. J. AOCS, 1986, 63(2): 56-58.
    [34] Abaham G, et al. Process engineering economic evaluation of the ethanol extraction of cottonseed: preliminary [J]. J. AOCS, 1991, 63(6): 276-279.
    [35] Edumund W, et al. Isopropyl alcohol to be tested as solvent inform [J]. J. AOCS, 1991, 11(2): 78-82.
    [36] 刘光复. 棉籽用混合溶剂去毒的新方法[J]. 油脂科技,1980,5(3):15-22.
    [37] 戴卫东,李泉,钱礼华,等. 丙酮、己烷与水混合溶剂脱除棉酚的实验研究[J]. 化学与生物工程,2004,5:32-33.
    [38] Hron R J, Kuk M S, Abraham G, et al. Ethanol extraction of oil, gossypol and aflatoxin from cottonseed [J]. J. Am. Oil Chem. Soc, 1994, 71(4): 417-421.
    [39] 黄祖德. 混合溶剂一次浸出棉仁脱酚[J]. 中国油脂,1994,19(2):25-27.
    [40] Rubin L J, Diosady L L, Phillips C R. Solvents extraction of oil bearing seeds [P]. U.S. Patent: 446,054, 1984-07-14.
    [41] 李延云,聂宇燕,朱杰. 棉籽饼粕工业化脱毒生产技术[J]. 饲料工业,1999,20(2):11-12.
    [42] 吴小月, 陈金湘. 利用微生物降解棉仁饼粕中游离棉酚的研究[J]. 中国农业科学, 1989, 22(2): 82-86.
    [43] 杨景芝, 孙衍华, 牛钟相, 等. 棉酚脱毒微生物的筛选及其脱毒效果的研究[J]. 山东农业大学学报, 1999, 30(1): 26-30.
    [44] 钟英长, 吴玲娟. 利用微生物将棉籽中游离棉酚脱毒的研究[J]. 中山大学学报(自然科学版), 1989, 28(3): 67-72.
    [45] 聂宇燕,李延云,白云龙,等. 棉饼生物脱毒菌种的筛选及生物蛋白饲料生产工艺的试验研究[J]. 饲料工业,1997,18(6):3-5.
    [46] 施安辉, 张勇, 曲品, 等. 高效降解棉酚菌株的选育及脱毒条件的研究[J]. 微生物学报, 1998, 38(4):318-320.
    [47] 杨继良, 周大云, 杨伟华, 等. 高效降解棉酚菌种的筛选及棉籽饼脱毒参数的研究[J]. 棉花学报, 2000, 12(5): 225-229.
    [48] Shashirekha M N, Rajarathnam S, Bano Z. Enhancement of bioconversion and efficiency and chemistry of the mushroom, Pleurotus sajor-caju(Berk and Br.)Sacc. produced on spent rice straw substrate, supplemented with oil seed cakes [J]. Food Chem., 2002, 76: 27-31.
    [49] 孙建义, 许梓荣. 利用假丝酵母进行棉仁饼固体发酵的培养基筛选[J]. 浙江农业大学学报, 1998, 24(6): 663-666.
    [50] 孙建义, 许梓荣. 微量元素影响酵母生长的响应曲面分析[J]. 中国粮油学报, 1998, 13(6): 52-54.
    [51] 张文举,许梓荣,孙建义,等. 假丝酵母 ZD-3 固体发酵对棉子饼脱毒的效果研究[J]. 棉花学报,2006,18(5):259-263.
    [52] 王冬梅,郭书贤,藏晋,等. 利用 EM 菌剂对棉子饼粕发酵脱毒的研究[J]. 中国棉花,2002,29(8):14-15.
    [53] 闫轶洁. 黑曲霉固体发酵棉仁粕优化工艺的研究[D]. 首都师范大学硕士论文, 北京. 2005.
    [54] Weng X Y, Sun J Y. Biodegradation of free gossypol by a new strain of Candida tropicalis under solid state fermentation: Effects of fermentation parameters [J]. Process Biochem., 2006, 41: 1663-1668.
    [55] Weng X Y, Sun J Y. Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation [J]. J. Biochem Engi., 2006, 32: 226-232.
    [56] Zhang W J, Xu Z R, Zhao S H, et al. Optimization of process parameters for reduction of gossypol levels in cottonseed meal by Candida tropicalis ZD-3 during solid substrate fermentation [J]. Toxicon, 2006, 48: 221-226.
    [57] 院江, 孙新文, 丁宁, 等. 微生物发酵对棉籽壳营养成分及游离棉酚的影响[J]. 石河子大学学报(自然科学版), 2006, 24(3): 299-301.
    [58] 顾赛红, 孙建义, 李卫芬. 黑曲霉 PES 固体发酵对棉籽粕营养价值的影响[J]. 中国粮油学报, 2003, 18(1): 70-73.
    [59] 张文举,赵顺红,许梓荣,等. 复合固体发酵对棉籽饼脱毒效果的影响研究[J]. 粮食与饲料工业,2006,6: 35-37.
    [60] 张文举, 许梓荣, 孙建义, 等. 假丝酵母ZD-3与黑曲霉ZD-8复合固体发酵对棉籽饼脱毒及营养价值的影响研究[J]. 中国粮油学报, 2006, 21(6): 129-135.
    [61] Zhang W J, Xu Z R, Sun J Y, et al. Effect of selected fungi on the reduction of gossypol levels and nutritional vale during solid substrate fermentation of cottonseed meal [J]. J Zhejiang Univ. SCIENCE B, 2006,7(9): 690-695.
    [62] 何学东. 利用棉籽粕生产单细胞饲料蛋白的研究[J]. 高等函授学报(自然科学版),1999,5:44-45.
    [63] 张宗舟. 发酵法菜籽饼脱毒的微生态研究[J]. 天水师范学院学报,2005,25(2):48-50.
    [64] 庄桂. 利用花生粕棉籽粕豆粕为原料混合菌种发酵酿造酱油的研究[J]. 中国酿造,1993,5:12-17.
    [65] 赵建国,钟世博,张明祥. 热带假丝酵母固体发酵黄酒糟生产蛋白饲料的研究[J]. 粮食与饲料工业,2002,2:22-24.
    [66] 刘成江,李德明,卢士玲,等. 多菌种固体发酵玉米渣及玉米浆生产饲料蛋白的研究[J]. 饲料工业,2002,23(12):35-36.
    [67] 赵文慧,吴绵斌,刘黎黎,等. 双菌种固态发酵木糖渣生产饲料蛋白[J]. 饲料工业,2002,23(2):12-13.
    [68] 钟世荣,余伯良,林琦. 菜籽饼粕与酱油渣混合发酵生产蛋白饲料的研究[J]. 粮食与饲料工业,2001,8:27-29.
    [69] 刘超,李学如,柳乐,等. 固态发酵生产新型蛋白饲料工艺研究[J]. 粮食与饲料工业,2006,9:29-31.
    [70] 王水顺,袁彩,陈静蓉,等. 黑曲霉 SL2-111 复合酶固体发酵工艺研究[J]. 工业微生物,2001,31(4):26-31.
    [71] Scerra V, Caridi A, Foti F, et al. Influence of dairy Penicillium spp. on nutrient content of citrus fruit peel [J]. Anim. Feed Sci. and Tech., 1999, 78(1 - 2): 169 - 176.
    [72] 徐姗楠,邱宏端. 微生物发酵生产蛋白饲料的研究进展[J]. 福州大学学报(自然科学版),2002,30:709-713.
    [73] 郭玉东,张洋,张均国. 小肽饲料营养价值及评价方法[J]. 饲料工业,2007,28(7):13-16.
    [74] 袁书林,陈海燕,杨明君,等. 小肽营养研究进展[J]. 中国饲料,2003,1:26-28.
    [75] QB/T 2653-2004[S]. 中华人民共和国轻工行业标准. 北京.
    [76] Schagger H,Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa [J]. Anal Biochem.,1987,166:368-379.
    [77] 王旭,何冰芳,李霜,等. Tricine-SDS-PAGE 电泳分析小分子多肽[J ] . 南京工业大学学报,2003,25(2):79-81.
    [78] 汪建雄,隋秀芝,陈育晖,等. 用 SDS-PAGE 电泳法测定小分子多肽分子量的研究[J]. 丝绸,2001,12:44-46.
    [79] 石继红,赵永同,王俊楼,等. SDS-聚丙烯酰胺凝胶电泳分析小分子多肽[J]. 第四军医大学学报,2000,21(6):761-763.
    [80] Ye M,Zou H,Liu Z,et al . Separation of peptides by strong cation-exchange capillary electrochromatography [J] . J.Chromatogr,2000,869:385-394.
    [81] 杜连祥, 路福平. 微生物学实验技术[M]. 北京: 中国轻工业出版社, 2006: 111-115.
    [82] 赵莹, 樊庆风. 从棉籽中提取棉籽蛋白的研究[J]. 粮油食品科技, 2002, 10(1): 25-26.
    [83] 曹佐武. 有效分离 1KDa 小肽的 Tricine-SDS-PAGE 方法[J]. 中国生物工程杂志, 2004, 24(1): 74-76.
    [84] 黄瑞林, 李铁军, 谭支良,等. 透析管体外消化法测定饲料蛋白质消失率的适宜酶促反应条件研究[J]. 动物营养学报, 1999, 11(4): 51-58.
    [85] 张文举. 高效降解棉酚菌种的选育及棉籽饼粕生物发酵的研究[D]. 杭州: 浙江大学, 2006.
    [86] Raymond R, Hwei C F. The mechanism of gossypol detoxification by ruminant animals [J]. J. Nutr., 1962, 76:215-218.
    [87] Kornegay E T, Kelly T C, Campbell T C, et al. Fungal-treated cottonseed meal for swine[J]. J. Nutr., 1972, 102:1471-1476.
    [88] 孙建义, 许梓荣. 利用假丝酵母进行棉籽饼脱毒的研究[J]. 中国粮油学报, 1995, 10(1): 61-64.
    [89] 周伏忠, 谢宝恩, 贾蕴丽, 等. 几株益生菌发酵豆粕及其产物分析[J]. 饲料工业, 2007, 28(6): 35-37
    [90] 刘国华. .肉仔鸡对小肽的吸收转运及其调控研究[D]. 北京: 中国农业科学院, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700