全基因组外显子测序发现Marie Unna遗传性少毛症致病基因EPS8L3
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景Marie Unna遗传性少毛症(Marie Unna hereditary hypotrichosis,MUHH,MIM146550/612841)是一种罕见的呈常染色体显性遗传模式的遗传性毛发疾病。Marie Unna于1925年首次报道1例德国患者。该病发病无男女性别差异,但男性患者病情比女性严重。其临床特点为:患者出生时头发正常或稀少或缺乏,随后开始缓慢生长,但已生长的头发粗糙、不规则扭曲呈金属丝样外观,至青春期头发弥漫性脱落且逐渐加重,严重者可呈全秃。此外,睫毛可缺如,眉毛、腋毛、阴毛和男性胡须稀少,但不伴有其他外胚层结构异常,且体格检查和智力均正常。组织病理学显示毛囊周围有少量炎性细胞浸润或纤维化,但成熟的毛囊数量显著减少、毛囊缩小;光学显微镜镜检显示毛发呈扁平、粗糙和不规则扭曲状;扫描电镜显示可有纵嵴、纵沟、纵裂、不规则横断面、毛小皮广泛的剥脱和毛鞘异常。自1999年至2004年,多个研究小组分别对来自荷兰、英国、德国、比利时、美国和中国等不同种族的MUHH家系进行了连锁和单倍型分析,均将MUHH的致病基因位点定位于8p21。前期许多研究小组先后针对定位区域内人类无毛基因(Human hairless gene,HR)的编码区和剪接位点进行突变分析,但均未检测到HR基因的致病性突变。2009年,张学教授在来自不同种族的19个MUHH家系中发现了HR基因U2HR区域的13种不同突变,建立了MUHH遗传突变谱。随后多个研究小组也在中国、土耳其、德国家系或散发病例中发现了HR基因U2HR区域的致病突变。
     2004年Yan等通过微卫星标记研究对1个4代的MUHH家系进行分析,发现该家系的致病基因与8p区域不连锁,提示MUHH具有遗传异质性;2005年Yang等对该家系进行全基因组扫描研究,证实该家系致病基因与8p区域不连锁,并将致病基因定位于1p21.1-1q21.3上D1S248和D1S2345之间的17.5cM区域。随着新一代测序技术的迅猛发展,全基因组外显子测序策略已成功应用于单基因病的致病基因研究,癌症和多基因病易感基因的筛查以及临床上疑难病例的诊断,全基因组外显子测序得到了迅猛的发展。
     目的结合前期的全基因组定位信息,运用全基因组外显子测序技术搜寻MUHH的致病基因,为将来基因诊断、基因治疗奠定基础。
     方法(1)从家系1中挑选出2个临床表型典型的患者和1个家系内对照,进行全基因组外显子测序;(2)通过逐步滤过dbSNP数据库和家系内对照中的常见突变,并且结合前期定位信息获得候选基因集;(3)利用Sanger测序,在家系内患者和对照中对候选基因集的突变位点进行测序验证,分析突变点是否与疾病共分离,获得候选基因;(4)在独立的家系2和其他4个散发病例中,对候选基因的编码区外显子和外显子与内含子交界区的序列进行测序,以期在其他病例中发现候选基因的突变;(5)采用PCR反应扩增HR基因U2HR区域,用直接测序方法对候选基因突变筛查阴性的病例对HR基因U2HR区域进行突变检测,并通过PubMed及中国生物医学光盘CBM,对已报道的关于HR基因U2HR区域的突变报道进行总结,以其发现其基因型与表型的关系。
     结果(1)通过全基因组外显子测序,获得3个全基因组外显子测序样本的SNPs、 indels的数据集合;(2)考虑到引起疾病的变异是罕见的,在家系内对照和公共数据库中(如dbSNP135)中不存在,通过逐步滤过后,满足2个患者共有、dbSNP135和家系内对照不存在的条件的突变点有91个。其中EPS8L3基因上一个错义突变即c.22G>A位于定位区域lp21.1-1q21.3,该突变导致了丙氨酸变成苏氨酸,且ANNOVAR和PhastCons软件预测为有害突变,EPS8L3基因作为候选基因作进一步研究;(3)通过Sanger测序对家系内成员(包括全基因组外显子测序的2个患者和1个对照)的该位点进行测序验证,证实8个患者均存在该错义突变,3个对照均无该突变;(4)通过筛查676例正常对照和781例有其他疾病的病例的全基因组外显子测序数据,在676例正常对照和781例其他疾病的病例中均未发现该位点突变,从而说明该突变是一个致病性突变而非多态性变化;(5)通过对家系2的先证者和4例散发病例的EPS8L3基因编码区进行测序,未发现EPS8L3基因潜在性的致病性突变;(6)在家系2的先证者和其母亲中检测到HR基因U2HR区域的1个错义突变:c.73C>G(p.pro25ala),而先证者的父亲(正常人)中不存在该突变,该突变曾在荷兰、英国、意大利种族的MUHH患者中报道过;(7)目前已报道HR基因U2HR区域的突变有16种,包括5个起始密码子突变,2个无义突变,7个错义突变,2个终止密码子突变,总结了MUHH临床特点和突变类型,但尚未发现基因型与表型之间的关系。
     结论(1)结合全基因组连锁分析的定位研究,通过全基因组外显子测序发现了一个中国汉族Maire Unna遗传性少毛症家系的致病基因—EPS8L3基因。证实了全基因组外显子测序结合全基因组定位信息鉴定单基因病致病基因的有效性。(2)通过直接测序的方法在另外1个中国MUHH家系中检测出HR基因U2HR区域错义突变c.73C>G(p.pro25ala),丰富了U2HR遗传突变谱,为将来的遗传咨询、产前诊断及基因治疗打下理论基础;同时表明MUHH具有遗传异质性,不同家系致病基因可能不同。
Background Marie Unna hereditary hypotrichosis(MUHH, MIM146550/612841) is a rare autosomal dominant inheritance congenital hair disease. MUHH was first reported by Marie Unna in1925.The incidence of men and women was alike, but the clinical manifestations of male patient is more serious than female patient. MUHH is characterized by normal, sparse or absent hair at birth, then develop to coarse, twisted and wiry hair during childhood and progress during puberty to an almost complete alopecia. Eyebrows, eyelashes, armpit hair, pubic hair and beard hair are also markedly diminished or absent. But no other ectodermal abnormalities are observed. The physical and intelligence of all patients are normal. The histopathological examination showed that hair follicle is surrounded by a small amount of inflammatory cell infiltration or fibrosis, but the number of mature hair follicles is a significant reduction and hair follicles were shrink. Optical microscopy showed that the hair was flat, rough and irregular-shaped distortions.Scanning electron microscopic studies display an irregularly twisted hair, longitudinal fractures, longitudinal split, irregular cross section, mild peeling and irregular hair shafts in MUHH. Many genetic linkage studies have mapped the MUHH locus to chromosome8p21, but no genes responsible for MUHH were identified, including HR (Human hairless gene) gene. In2009, Professor Zhang Xue found13different disease-causing mutations in the U2HR region of HR gene and established MUHH genetic mutation spectrum through international cooperation in19different ethnic MUHH families. Followed by multiple research groups had found the pathogenic mutation of U2HR.
     In2004, Yan et al excluded a four-generation MUHH pedigree by microsatellite markers, which indicated that MUHH is a heterogeneous disorder. In2005, Yang et al found a locus for MUHH on chromosome1p21.1-1q21.3to a17.5cM region between markers D1S248and D1S2345in this family. With the rapid development of next-generation sequencing technology, whole genome exome sequencing strategy has been successfully applied to identify causing gene of Mendel disease, susceptibility genes of cancer and complex disease, as well as helped for clinical diagnosis which difficult to diagnose cases.
     Objective We used whole genome exome sequencing strategy and combined with the result of genome-wide linkage study to identify the causative gene of this family.
     Methods (1) We conducted exome sequencing in two affected individuals and one unaffected individual from this MUHH family.(2) We got the candidate gene set which filter the mutations of exited in dbSNP database(version135) and unaffected individua step by step and located in location region.(3) To identify complete co-segregation between the mutation and MUHH phenotype, we sequenced the mutation of the candidate gene set in the extended pedigree of this family.(4) We sequenced all coding exons and flanking introns of the candidate genes in one family and four sporadic patients in order to discovery new mutations.(5) We sequenced the U2HR in one pedigree and four sporadic patients with MUHH. We also searched for the mutation reports of U2HR through Chinese Biology Medicine (CBM) disk and Pubmed, and find the relationship between genotype and phenotype.
     Results (1) We obtained SNP and indels of three samples by whole genome exome sequencing.(2) We focused our analyses primarily on nonsynonymous variants (NS), splice acceptor/donor site mutations (SS) and coding insertions/deletions (indels) that are more likely to be pathogenic mutations. In addition, we predicted that variants underlying MUHH are rare and thus unlikely identified previously. We therefore selected the variants that were absent from most updated dbSNP database (version135) for further analysis. Assuming a dominant model, we found91novel NS/SS/indels that were shared by the two affected individuals but absent in the unaffected individual in this family. Of the91variants, only one heterozygous mutation in EPS8L3(c.22G>A [p.Ala8Thr]) was found to be located within the linkage region on1p21.1-1q21.3established in our previous linkage study. The mutation was predicted to be "damaging" by ANNOVAR program and affect a conserved amino-acid residue by PhastCons software.(3) We analyzed the mutation in all the available affected and unaffected individuals (including three samples performed with exome sequencing) of this family by Sanger sequencing. All the eight affected individuals carried this heterozygous mutation in EPS8L3(c.22G>A [p.Ala8Thr]) which was absent in the three unaffected family members, suggesting complete co-segregation between the mutation and MUHH phenotype.(4) This mutation was not detected in additional exome sequencing data of676unrelated, ethnically and geographically matched controls. In addition, we also checked the exome sequencing data of781unrelated, ethnically and geographically matched patients of other disease and did not found the mutation. All these results suggested that this mutation is a causal variant for MUHH, instead of a rare polymorphism.(5) We did not find mutation of EPS8L3gene in the other family2and four sporadic patients.(6) We identified one missense mutation c.73C G (p.pro25ala) in U2HR of proband and his mother from family2, but the mutation was not detected in the patient's unaffected father.(7) There are16species mutations of U2HR which had been reported, including5initiation codon mutations, two nonsense mutations, seven missense mutations, two stop codon mutations. And we did not observe obvious genotype-phenotype correlation in MUHH patients.
     Conclusion (1) Our study identified EPS8L3as a novel disease gene for MUHH by combining exome sequencing with previously established linkage information in a large multi-generation MUHH family of Chinese population. Our study has also demonstrated the effectiveness of exome sequencing, combined with linkage analysis, in discovering disease genes for Mendelian disorders.(2) We had found a missense mutation (c.73C>G, p.pro25ala) of U2HR which had been reported in family2. This study contributes to lay the foundation for future genetic counseling, prenatal diagnosis, gene therapy and suggested that MUHH is a genetically heterogeneous disorder.
引文
1. He, P.P., C.D. He, Y. Cui, et al., Refined localization of dyschromatosis symmetrica hereditaria gene to a 9.4-cM region at 1q21-22 and a literature review of 136 cases reported in China. Br J Dermatol,2004.150(4):p.633-9.
    2. Yan, K.L., P.P. He, S. Yang, et al., Marie Unna hereditary hypotrichosis:report of a Chinese family and evidence for genetic heterogeneity. Clin Exp Dermatol,2004. 29(5):p.460-3.
    3. Yang, S., M. Gao, Y. Cui, et al., Identification of a novel locus for Marie Unna hereditary hypotrichosis to a 17.5 cM interval at 1p21.1-1q21.3. J Invest Dermatol, 2005.125(4):p.711-4.
    4. Cui, Y, S. Yang, M. Gao, et al., Identification of a novel locus for progressive symmetric erythrokeratodermia to a 19.02-cM interval at 21q11.2-21q21.2. J Invest Dermatol,2006.126(9):p.2136-9.
    5. Zhang, X.J., M. Li, T.W. Gao, et al., Identification of a locus for punctate palmoplantar keratodermas at chromosome 8q24.13-8q24.21. J Invest Dermatol, 2004.122(5):p.1121-5.
    6. Gao, M., S. Yang, M. Li, et al., Refined localization of a punctate palmoplantar keratoderma gene to a 5.06-cM region at 15q22.2-15q22.31. Br J Dermatol,2005. 152(5):p.874-8.
    7. Gao, M., P.G. Wang, Y. Cui, et al., Inversa acne (hidradenitis suppurativa):a case report and identification of the locus at chromosome 1p21.1-1q25.3. J Invest Dermatol,2006.126(6):p.1302-6.
    8. Johnson, J.O., J.R. Gibbs, L. Van Maldergem, et al., Exome sequencing in brown-vialetto-van laere syndrome. Am J Hum Genet,2010.87(4):p.567-9.
    9. Lalonde, E., S. Albrecht, K.C. Ha, et al., Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat,2010.31(8):p.918-923.
    10. Ng, S.B., A.W. Bigham, K.J. Buckingham, et al., Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet,2010.42(9):p.790-3.
    11. Ng, S.B., K.J. Buckingham, C. Lee, et al., Exome sequencing identifies the cause of a mendelian disorder. Nat Genet,2009.42(1):p.30-5.
    12. Pierce, S.B., T. Walsh, K.M. Chisholm, et al., Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet,2010.87(2):p.282-8.
    13. Liu, Y., M. Gao, Y.M. Lv, et al., Confirmation by Exome Sequencing of the Pathogenic Role of NCSTN Mutations in Acne Inversa (Hidradenitis Suppurativa). J Invest Dermatol,2011.131(7):p.1570-2.
    14. Ku, C.S., E.Y. Loy, Y. Pawitan, et al., The pursuit of genome-wide association studies:where are we now? J Hum Genet,2010.55(4):p.195-206.
    15. McClellan, J. and M.C. King. Genetic heterogeneity in human disease. Cell,2010. 141(2):p.210-7.
    16. McClellan, J.M., E. Susser, and M.C. King, Schizophrenia:a common disease caused by multiple rare alleles. Br J Psychiatry,2007.190:p.194-9.
    17. Botstein, D. and N. Risch, Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet,2003.33 Suppl:p.228-37.
    18. Stenson, P.D., E.V. Ball, M. Mort, et al., Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat,2003.21(6):p.577-81.
    19. Harms, M.B., K.M. Ori-McKenney, M. Scoto, et al., Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology,2012.
    20. Lee, H., J.M. Graham, Jr., D.L. Rimoin, et al., Exome Sequencing Identifies PDE4D Mutations in Acrodysostosis. Am J Hum Genet,2012.
    21. Choi, M., U.I. Scholl, W. Ji, et al., Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A,2009.106(45):p. 19096-101.
    22. Ng, S.B., E.H. Turner, P.D. Robertson, et al., Targeted capture and massively parallel sequencing of 12 human exomes. Nature,2009.461(7261):p.272-6.
    23. Simpson, M.A., M.D. Irving, E. Asilmaz, et al., Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet, 2011.43(4):p.303-305.
    24. Comino-Mendez, I., F.J. Gracia-Aznarez, F. Schiavi, et al., Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet, 2011.43(7):p.663-7.
    25. Yamashita, Y., J. Yuan, I. Suetake, et al., Array-based genomic resequencing of human leukemia. Oncogene,2010.29(25):p.3723-31.
    26. Yan, X.J., J. Xu, Z.H. Gu, et al., Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011.43(4):p.309-15.
    27. Musunuru, K., J.P. Pirruccello, R. Do, et al., Exome Sequencing, ANGPTL3 Mutations, and Familial Combined Hypolipidemia. N Engl J Med,2010.363(23):p. 2220-2227.
    28. Myers, R.A., F. Casals, J. Gauthier, et al., A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet,2011. 7(2):p.e1001318.
    29. Kahvejian, A., J. Quackenbush, and J.F. Thompson, What would you do if you could sequence everything? Nat Biotechnol,2008.26(10):p.1125-33.
    30. Shendure, J. and H. Ji, Next-generation DNA sequencing. Nat Biotechnol,2008. 26(10):p.1135-45.
    31. Hillier, L.W., G.T. Marth, A.R. Quinlan, et al, Whole-genome sequencing and variant discovery in C. elegans. Nat Methods,2008.5(2):p.183-8.
    32. Droege, M. and B. Hill, The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol,2008.136(1-2):p.3-10.
    33. Hashimoto, S., W. Qu, B. Ahsan, et al., High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer. PLoS One,2009.4(1):p. e4108.
    34. Rothberg, J.M. and J.H. Leamon, The development and impact of 454 sequencing. Nat Biotechnol,2008.26(10):p.1117-24.
    35. Sprecher, E., Genetic hair and nail disorders. Clin Dermatol,2005.23(1):p.47-55.
    36. Unna, M., Uber hypotrichosis congenita herdetaria. Derm Wschr,1925.82:p. 1167-1178.
    37. Peachey, R.D. and R.S. Wells, Hereditary hypotrichosis (Marie Unna type). Trans St Johns Hosp Dermatol Soc,1971.57(1):p.157-66.
    38. Bentley-Phillips, B. and H.J. Grace, Hereditary hypotrichosis. A previously undescribed syndrome. Br J Dermatol,1979.101(3):p.331-9.
    39. Lalevic-Vasic, B.M., D. Polic, and M.M. Nikolic, [Marie Unna hereditary hypotrichosis]. Ann Dermatol Venereol,1992.119(1):p.25-9.
    40. Solomon, L.M., N.B. Esterly, and M. Medenica, Hereditary trichodysplasia:Marie Unna's hypotrichosis. J Invest Dermatol,1971.57(6):p.389-400.
    41. Wong, S.N., Y.C. Giam, and Y.S. Lee, Marie Unna hypotrichosis in a Chinese family. Pediatr Dermatol,2002.19(3):p.250-5.
    42. van Steensel, M., F.J. Smith, P.M. Steijlen, et al., The gene for hypotrichosis of Marie Unna maps between D8S258 and D8S298:exclusion of the hr gene by cDNA and genomic sequencing. Am J Hum Genet,1999 65(2):p.413-9.
    43. Lefevre, P., A. Rochat, C. Bodemer, et al., Linkage of Marie-Unna hypotrichosis locus to chromosome 8p21 and exclusion of 10 genes including the hairless gene by mutation analysis. Eur J Hum Genet,2000.8(4):p.273-9.
    44. Sreekumar, G.P., J.L. Roberts, C.Q. Wong, et al., Marie Unna hereditary hypotrichosis gene maps to human chromosome 8p21 near hairless. J Invest Dermatol,2000 114(3):p.595-7.
    45. Cichon, S., R. Kruse, A.M. Hillmer, et al., A distinct gene close to the hairless locus on chromosome 8p underlies hereditary Marie Unna type hypotrichosis in a German family. Br J Dennatol,2000.143(4):p.811-4.
    46. He, P.P., X.J. Zhang, Q. Yang, et al., Refinement of a locus for Marie Unna hereditary hypotrichosis to a 1.1-cM interval at 8p21.3. Br J Dermatol,2004.150(5): p.837-42.
    47. Ahmad, W., M. Faiyaz u1 Haque, V. Brancolini, et al., Alopecia universalis associated with a mutation in the human hairless gene. Science,1998.279(5351):p. 720-4.
    48. Sprecher, E., R. Bergman, R. Szargel, et al., Atrichia with papular lesions maps to 8p in the region containing the human hairless gene. Am J Med Genet,1998.80(5):p. 546-50.
    49. Wen, Y., Y. Liu, Y. Xu, et al., Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet,2009.41(2):p.228-33.
    50. Cai, L.Q., P.G. Wang, M. Gao, et al., A novel U2HR non-synonymous mutation in a Chinese patient with Marie Unna Hereditary Hypotrichosis. J Dermatol Sci,2009. 55(2):p.125-7.
    51. Duzenli, S., S. Redler, M. Muller, et al., Identification of a U2HR gene mutation in Turkish families with Marie Unna hereditary hypotrichosis. Clin Exp Dermatol,2009. 34(8):p. e953-6.
    52. Mansur, A.T., N.H. Elcioglu, S. Redler, et al., Marie Unna hereditary hypotrichosis: A Turkish family with loss of eyebrows and a U2HR mutation. Am J Med Genet A, 2010.152A(10):p.2628-2633.
    53. Redler, S., R. Kruse, S. Eigelshoven, et al., Marie Unna hereditary hypotrichosis: Identification of a U2HR mutation in the family from the original 1925 report. J Am Acad Dermatol,2010.
    54. Zhou, C, D. Zang, X. Ma, et al., Identification of a novel U2HR mutation C.14C>T in a Chinese patient with Marie Unna hereditary hypotrichosis. Eur J Dermatol,2012. 22(1):p.34-5.
    55. Ramot, Y., L. Horev, I. Smolovich, et al., Marie Unna hereditary hypotrichosis caused by a novel mutation in the human hairless transcript. Exp Dermatol,2010. 19(8):p. e320-2.
    56. Gnirke, A., A. Melnikov, J. Maguire, et al., Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol,2009.27(2):p.182-9.
    57. Li, R., Y. Li, K. Kristiansen, et al., SOAP:short oligonucleotide alignment program. Bioinformatics,2008.24(5):p.713-4.
    58. Li, R., C. Yu, Y. Li, et al., SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics,2009.25(15):p.1966-7.
    59. Li, R., Y. Li, X. Fang, et al., SNP detection for massively parallel whole-genome resequencing. Genome Res,2009.19(6):p.1124-32.
    60. McKenna, A., M. Hanna, E. Banks, et al., The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res,2010.20(9):p.1297-303.
    61. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics,2009.25(14):p.1754-60.
    62. Wang, J.L., X. Yang, K. Xia, et al., TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain,2010.133(Pt 12):p.3510-8.
    63. Zhou, C., D. Zang, Y. Jin, et al., Mutation in ribosomal protein. L21 underlies hereditary hypotrichosis simplex. Hum Mutat,2011.32(7):p.710-4.
    64. Offenhauser, N., A. Borgonovo, A. Disanza, et al., The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol Biol Cell,2004.15(1):p.91-8.
    65. Murillas, R., F. Larcher, C.J. Conti, et al., Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. EMBO J, 1995.14(21):p.5216-23.
    66. Schneider, M.R., S. Werner, R. Paus, et al., Beyond wavy hairs:the epidermal growth factor receptor and its ligands in skin biology and pathology. Am J Pathol, 2008.173(1):p.14-24.
    67. Mann, G.B., K.J. Fowler, A. Gabriel, et al., Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell,1993.73(2):p.249-61.
    68. Luetteke, N.C., H.K. Phillips, T.H. Qiu. et al., The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev,1994. 8(4):p.399-413.
    69. Sibilia, M. and E.F. Wagner, Strain-dependent epithelial defects in mice lacking the EGF receptor. Science,1995.269(5221):p.234-8.
    70. Ferby, I., M. Reschke, O. Kudlacek, et al., Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat Med,2006.12(5):p. 568-73.
    1. Cotsarelis, G., T.T. Sun, and R.M. Lavker, Label-retaining cells reside in the bulge area of pilosebaceous unit:implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell,1990.61(7):p.1329-37.
    2. Ohyama, M., Hair follicle bulge:a fascinating reservoir of epithelial stem cells. J Dermatol Sci,2007.46(2):p.81-9.
    3. Oshima, H., A. Rochat, C. Kedzia, et al., Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell,2001.104(2):p.233-45.
    4. Beaudoin, G.M.,3rd, J.M. Sisk, P.A. Coulombe, et al., Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc Natl Acad Sci U S A,2005. 102(41):p.14653-8.
    5. Huelsken, J., R. Vogel, B. Erdmann, et al., beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell,2001.105(4):p. 533-45.
    6. Laurikkala, J., J. Pispa, H.S. Jung, et al., Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development,2002.129(10):p. 2541-53.
    7. Mill, P., R. Mo, M.C. Hu, et al., Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev Cell,2005.9(2):p.293-303.
    8. Qiao, W., A.G. Li, P. Owens, et al., Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene,2006.25(2):p. 207-17.
    9. Schlake, T., FGF signals specifically regulate the structure of hair shaft medulla via IGF-binding protein 5. Development,2005.132(13):p.2981-90.
    10. Yang, L., C. Mao, Y. Teng, et al., Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res, 2005.65(19):p.8671-8.
    11. Sprecher, E., Genetic hair and nail disorders. Clin Dermatol,2005.23(1):p.47-55.
    12. Ahmad, M., H. Abbas, and S. Haque, Alopecia universalis as a single abnormality in an inbred Pakistani kindred. Am J Med Genet,1993.46(4):p.369-71.
    13. Ahmad, W., A.D. Irvine, H. Lam, et al., A missense mutation in the zinc-finger domain of the human hairless gene underlies congenital atrichia in a family of Irish travellers. Am J Hum Genet,1998.63(4):p.984-91.
    14. Nothen, M.M., S. Cichon, I.R. Vogt, et al., A gene for universal congenital alopecia maps to chromosome 8p21-22. Am J Hum Genet,1998.62(2):p.386-90.
    15. Ahmad, W., M. Faiyaz u1 Haque, V. Brancolini, et al., Alopecia universalis associated with a mutation in the human hairless gene. Science,1998.279(5351):p. 720-4.
    16. Sprecher, E., R. Bergman, R. Szargel, et al., Atrichia with papular lesions maps to 8p in the region containing the human hairless gene. Am J Med Genet,1998.80(5):p. 546-50.
    17. Kim, H., M. Wajid, L. Kraemer, et al., Nonsense mutations in the hairless gene underlie APL in five families of Pakistani origin. J Dermatol Sci,2007.48(3):p. 207-11.
    18. Aita, V.M., W. Ahmad, A.A. Panteleyev, et al., A novel missense mutation (C622G) in the zinc-finger domain of the human hairless gene associated with congenital atrichia with papular lesions. Exp Dermatol,2000.9(2):p.157-62.
    19. Ashoor, G.G., R.M. Greenstein, H. Lam, et al., Novel compound heterozygous nonsense mutations in the hairless gene causing atrichia with papular lesions. J Dermatol Sci,2005.40(1):p.29-33.
    20. Henn, W., A. Zlotogorski, H. Lam, et al., Atrichia with papular lesions resulting from compound heterozygous mutations in the hairless gene:A lesson for differential diagnosis of alopecia universalis. J Am Acad Dermatol,2002.47(4):p.519-23.
    21. Indelman, M., R. Bergman, G.G. Lestringant, et al., Compound heterozygosity for mutations in the hairless gene causes atrichia with papular lesions. Br J Dermatol, 2003.148(3):p.553-7.
    22. Klein, I., R. Bergman, M. Indelman, et al., A novel missense mutation affecting the human hairless thyroid receptor interacting domain 2 causes congenital atrichia. J Invest Dermatol,2002.119(4):p.920-2.
    23. Kruse, R., S. Cichon, M. Anker, et al., Novel Hairless mutations in two kindreds with autosomal recessive papular atrichia. J Invest Dermatol,1999.113(6):p.954-9.
    24. Paradisi, M., G.S. Chuang, C. Angelo, et al., Atrichia with papular lesions resulting from a novel homozygous missense mutation in the hairless gene. Clin Exp Dermatol. 2003.28(5):p.535-8.
    25. Paradisi, M., M. Masse, A. Martinez-Mir, et al., Identification of a novel splice site mutation in the human hairless gene underlying atrichia with papular lesions. Eur J Dermatol,2005.15(5):p.332-8.
    26. Sprecher. E., G.G. Lestringant, R. Szargel. et al.. Atrichia with papular lesions resulting from a nonsense mutation within the human hairless gene. J Invest Dermatol,1999.113(4):p.687-90.
    27. Toribio, J. and P.A. Quinones, Hereditary hypotrichosis simplex of the scalp. Evidence for autosomal dominant inheritance. Br J Dermatol,1974.91(6):p.687-96.
    28. Ibsen, H.H., O.J. Clemmensen, and F. Brandrup, Familial hypotrichosis of the scalp. Autosomal dominant inheritance in four generations. Acta Derm Venereol,1991. 71(4):p.349-51.
    29. Betz, R.C., Y.A. Lee, A. Bygum, et al., A gene for hypotrichosis simplex of the scalp maps to chromosome 6p21.3. Am J Hum Genet,2000.66(6):p.1979-83.
    30. Levy-Nissenbaum, E., R.C. Betz, M. Frydman, et al., Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nat Genet,2003.34(2):p.151-3.
    31. Davalos, N.O., A. Garcia-Vargas, J. Pforr, et al., A non-sense mutation in the corneodesmosin gene in a Mexican family with hypotrichosis simplex of the scalp. Br J Dermatol,2005.153(6):p.1216-9.
    32. Wasif, N., S.K. Naqvi, S. Basit, et al., Novel mutations in the keratin-74 (KRT74) gene underlie autosomal dominant woolly hair/hypotrichosis in Pakistani families. Hum Genet,2011.129(4):p.419-24.
    33. Baumer, A., S. Belli, R.M. Trueb, et al., An autosomal dominant form of hereditary hypotrichosis simplex maps to 18pll.32-p11.23 in an Italian family. Eur J Hum Genet,2000.8(6):p.443-8.
    34. Shimomura, Y., D. Agalliu, A. Vonica, et al., APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature,2010.464(7291):p.1043-7.
    35. Zhou, C., D. Zang, Y. Jin, et al., Mutation in ribosomal protein L21 underlies hereditary hypotrichosis simplex. Hum Mutat,2011.32(7):p.710-4.
    36. Rafique, M.A., M. Ansar, S.M. Jamal, et al., A locus for hereditary hypotrichosis localized to human chromosome 18q21.1. Eur J Hum Genet,2003.11(8):p.623-8.
    37. Kljuic, A., H. Bazzi, J.P. Sundberg, et al., Desmoglein 4 in hair follicle differentiation and epidermal adhesion:evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell,2003.113(2):p.249-60.
    38. Wajid, M., H. Bazzi, J. Rockey, et al., Localized autosomal recessive hypotrichosis due to a frameshift mutation in the desmoglein 4 gene exhibits extensive phenotypic variability within a Pakistani family. J Invest Dermatol,2007.127(7):p.1779-82.
    39. Rogaev, E.I., R.A. Zinchenko, G. Dvoryachikov, et al., Total hypotrichosis:genetic form of alopecia not linked to hairless gene. Lancet,1999.354(9184):p.1097-8.
    40. Shimomura, Y, M. Ito, and A.M. Christiano, Mutations in the LIPH gene in three Japanese families with autosomal recessive woolly hair/hypotrichosis. J Dermatol Sci,2009.56(3):p.205-7.
    41. Shimomura, Y., M. Wajid, L. Petukhova, et al, Mutations in the lipase H gene underlie autosomal recessive woolly hair/hypotrichosis. J Invest Dermatol,2009. 129(3):p.622-8.
    42. Aslam, M., M.H. Chahrour, A. Razzaq, et al., A novel locus for autosomal recessive form of hypotrichosis maps to chromosome 3q26.33-q27.3. J Med Genet,2004. 41(11):p.849-52.
    43. Kazantseva, A., A. Goltsov, R. Zinchenko, et al., Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science,2006.314(5801): p.982-5.
    44. Petukhova, L., Y. Shimomura, M. Wajid, et al., The effect of inbreeding on the distribution of compound heterozygotes:a lesson from Lipase H mutations in autosomal recessive woolly hair/hypotrichosis. Hum Hered,2009.68(2):p.117-30.
    45. Ali, G., M.S. Chishti, S.I. Raza, et al., A mutation in the lipase H (LIPH) gene underlie autosomal recessive hypotrichosis. Hum Genet,2007.121(3-4):p.319-25.
    46. Jelani, M., N. Wasif, G. Ali, et al., A novel deletion mutation in LIPH gene causes autosomal recessive hypotrichosis (LAH2). Clin Genet.2008.74(2):p.184-8.
    47. Jin, W., U.C. Broedl, H. Monajemi, et al., Lipase H, a new member of the triglyceride lipase family synthesized by the intestine. Genomics,2002.80(3):p. 268-73.
    48. Khan, S., R. Habib, H. Mir, et al., Mutations in the LPAR6 and LIPH genes underlie autosomal recessive hypotrichosis/woolly hair in 17 consanguineous families from Pakistan. Clin Exp Dermatol.36(6):p.652-4.
    49. Sonoda, H., J. Aoki, T. Hiramatsu, et al., A novel phosphatidic acid-selective phospholipase Al that produces lysophosphatidic acid. J Biol Chem,2002.277(37): p.34254-63.
    50. Wali, A., M.S. Chishti, M. Ayub, et al., Localization of a novel autosomal recessive hypotrichosis locus (LAH3) to chromosome 13q14.11-q21.32. Clin Genet,2007. 72(1):p.23-9.
    51. Chapalain, V., H. Winter, L. Langbein. et al., Is the loose anagen hair syndrome a keratin disorder? A clinical and molecular study. Arch Dermatol,2002.138(4):p. 501-6.
    52. Unna, M., Uber hypotrichosis congenita herdetaria. Derm Wschr,1925.82:p. 1167-1178.
    53. Solomon, L.M., N.B. Esterly, and M. Medenica, Hereditary trichodysplasia:Marie Unna's hypotrichosis. J Invest Dermatol,1971.57(6):p.389-400.
    54.刘斌,范雪莉,Marie Unna型遗传性毛发稀少一家系.中华医学遗传学杂志,2006.23(1):p.110.
    55. Roberts, J.L., D.A. Whiting, D. Henry, et al., Marie Unna congenital hypotrichosis: clinical description, histopathology, scanning electron microscopy of a previously unreported large pedigree. J Investig Dermatol Symp Proc,1999.4(3):p.261-7.
    56. Celik, H.H., S.H. Surucu, M.M. Aldur, et al., Light and scanning electron microscopic examination of late changes in hair with hereditary trichodysplasia (Marie Unna hypotrichosis). Saudi Med J.2004.25(11):p.1648-51.
    57. van Steensel, M., F.J. Smith, P.M. Steijlen, et al., The gene for hypotrichosis of Marie Unna maps between D8S258 and D8S298:exclusion of the hr gene by cDNA and genomic sequencing. Am J Hum Genet,1999 65(2):p.413-9.
    58. Sreekumar, G.P., J.L. Roberts, C.Q. Wong, et al., Marie Unna hereditary hypotrichosis gene maps to human chromosome 8p21 near hairless. J Invest Dermatol,2000 114(3):p.595-7.
    59. Cichon, S., R. Kruse, A.M. Hillmer, et al., A distinct gene close to the hairless locus on chromosome 8p underlies hereditary Marie Unna type hypotrichosis in a German family. Br J Dermatol,2000.143(4):p.811-4.
    60. Lefevre, P., A. Rochat, C. Bodemer, et al., Linkage of Marie-Unna hypotrichosis locus to chromosome 8p21 and exclusion of 10 genes including the hairless gene by mutation analysis. Eur J Hum Genet,2000.8(4):p.273-9.
    61. He, P.P., X.J. Zhang, Q. Yang, et al., Refinement of a locus for Marie Unna hereditary hypotrichosis to a 1.1-cM interval at 8p21.3. Br J Dermatol,2004.150(5): p.837-42.
    62. Wen, Y., Y. Liu, Y. Xu, et al., Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet,2009.41(2):p.228-33.
    63. Thompson, C.C., J.M. Sisk, and G.M. Beaudoin,3rd, Hairless and Wnt signaling: allies in epithelial stem cell differentiation. Cell Cycle,2006.5(17):p.1913-7.
    64. Cai, L.Q., P.G. Wang, M. Gao, et al., A novel U2HR non-synonymous mutation in a Chinese patient with Marie Unna Hereditary Hypotrichosis. J Dermatol Sci,2009. 55(2):p.125-7.
    65. Duzenli, S., S. Redler, M. Muller, et al., Identification of a U2HR gene mutation in Turkish families with Marie Unna hereditary hypotrichosis. Clin Exp Dermatol,2009. 34(8):p. e953-6.
    66. Mansur, A.T.. N.H. Elcioglu, S. Redler. et al.. Marie Unna hereditary hypotrichosis: A Turkish family with loss of eyebrows and a U2HR mutation. Am J Med Genet A, 2010.152A(10):p.2628-2633.
    67. Redler, S., R. Kruse, S. Eigelshoven, et al., Marie Unna hereditary hypotrichosis: Identification of a U2HR mutation in the family from the original 1925 report. J Am Acad Dermatol,2010.
    68. Zhou, C, D. Zang, X. Ma, et al., Identification of a novel U2HR mutation c.14C>T in a Chinese patient with Marie Unna hereditary hypotrichosis. Eur J Dermatol,2012. 22(1):p.34-5.
    69. Ramot, Y, L. Horev, I. Smolovich, et al., Marie Unna hereditary hypotrichosis caused by a novel mutation in the human hairless transcript. Exp Dermatol,2010. 19(8):p.e320-2.
    70. Kim, J.K.. E. Kim. I.C. Baek, et al., Overexpression of Hr links excessive induction of Wnt signaling to Marie Unna hereditary hypotrichosis. Hum Mol Genet 2010. 19(3):p.445-53.
    71. Yan, K.L., P.P. He, S. Yang, et al., Marie Unna hereditary hypotrichosis:report of a Chinese family and evidence for genetic heterogeneity. Clin Exp Dermatol,2004. 29(5):p.460-3.
    72. Yang, S., M. Gao, Y. Cui, et al., Identification of a novel locus for Marie Unna hereditary hypotrichosis to a 17.5 cM interval at 1p21.1-1q21.3. J Invest Dermatol, 2005.125(4):p.711-4.
    73. Naz, G., G. Ali, S.K. Naqvi, et al., Mapping of a novel autosomal recessive hypotrichosis locus on chromosome 10q11.23-22.3. Hum Genet,2010.127(4):p. 395-401.
    74. Basit, S., G. Ali, N. Wasif, et al., Genetic mapping of a novel hypotrichosis locus to chromosome 7p21.3-p22.3 in a Pakistani family and screening of the candidate genes. Hum Genet,2010.128(2):p.213-20.
    75. Wagner, H.. Maculaaffektion, vergesellschaftet mit Haarabnormitat von Lanugotypus, beide vielleicht angeboren bei zwei Geschwistern. Graefes Arch. Klin. Exp. Ophthal.,1935.134:p.74-81.
    76. Sprecher, E., R. Bergman, G. Richard, et al., Hypotrichosis with juvenile macular dystrophy is caused by a mutation in CDH3, encoding P-cadherin. Nat Genet,2001. 29(2):p.134-6.
    77. Indelman, M., C.P. Hamel, R. Bergman, et al., Phenotypic diversity and mutation spectrum in hypotrichosis with juvenile macular dystrophy. J Invest Dermatol,2003. 121(5):p.1217-20.
    78. Bergman, R., M. Sapir, and E. Sprecher, Histopathology of hypotrichosis with juvenile macular dystrophy. Am J Dermatopathol,2004.26(3):p.205-9.
    79. Indelman, M., R. Bergman, R. Lurie, et al., A missense mutation in CDH3, encoding P-cadherin, causes hypotrichosis with juvenile macular dystrophy. J Invest Dermatol,2002.119(5):p.1210-3.
    80..Tamora, C., R. DasGupta, P. Kocieniewski, et al., Links between signal transduction, transcription and adhesion in epithelial bud development. Nature,2003.422(6929):p. 317-22.
    81. Brooks, M.H., N.H. Bell, L. Love, et al., Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med,1978. 298(18):p.996-9.
    82. Liberman, U.A., R. Samuel, A. Halabe, et al., End-organ resistance to 1,25-dihydroxycholecalciferol. Lancet,1980.1(8167):p.504-6.
    83. Hughes, M.R., P.J. Malloy, D.G. Kieback, et al., Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science,1988. 242(4886):p.1702-5.
    84. Malloy, P.J., J. Wang, L. Peng, et al., A unique insertion/duplication in the VDR gene that truncates the VDR causing hereditary 1.25-dihydroxyvitamin D-resistant rickets without alopecia. Arch Biochem Biophys.2007.460(2):p.285-92.
    85. Zlotogorski, A., D. Marek, L. Horev, et al., An autosomal recessive form of monilethrix is caused by mutations in DSG4:clinical overlap with localized autosomal recessive hypotrichosis. J Invest Dermatol,2006.126(6):p.1292-6.
    86. Healy, E., S.C. Holmes, C.E. Belgaid, et al., A gene for monilethrix is closely linked to the type Ⅱ keratin gene cluster at 12q13. Hum Mol Genet,1995.4(12):p. 2399-402.
    87. Stevens, H.P., D.P. Kelsell, S.P. Bryant, et al., Linkage of monilethrix to the trichocyte and epithelial keratin gene cluster on 12q11-q13. J Invest Dermatol,1996. 106(4):p.795-7.
    88. Birch-Machin, M.A., E. Healy, R. Turner, et al., Mapping of monilethrix to the type Ⅱ keratin gene cluster at chromosome 12q13 in three new families, including one with variable expressivity. Br J Dermatol,1997.137(3):p.339-43.
    89. Winter, H., M.A. Rogers, L. Langbein, et al., Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix. Nat Genet,1997.16(4):p.372-4.
    90. Korge, B.P., H. Hamm, C.S. Jury, et al., Identification of novel mutations in basic hair keratins hHb1 and hHb6 in monilethrix:implications for protein structure and clinical phenotype. J Invest Dermatol,1999.113(4):p.607-12.
    91. van Steensel, M.A., P.M. Steijlen, R.S. Bladergroen, et al., Amissense mutation in the type Ⅱ hair keratin hHb3 is associated with monilethrix. J Med Genet,2005. 42(3):p. e19.
    92. Vulpe, C., B. Levinson, S. Whitney, et al., Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet,1993. 3(1):p.7-13.
    93. Netherton, E.W., A unique case of trichorrhexis nodosa; bamboo hairs. AMA Arch Derm,1958.78(4):p.483-7.
    94. Chavanas, S., C. Garner, C. Bodemer, et al., Localization of the Netherton syndrome gene to chromosome 5q32, by linkage analysis and homozygosity mapping. Am J Hum Genet,2000.66(3):p.914-21.
    95. Chavanas, S., C. Bodemer, A. Rochat, et al., Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet,2000.25(2):p. 141-2.
    96. Bitoun, E., A. Micheloni, L. Lamant, et al., LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet,2003.12(19):p.2417-30.
    97.赵邑,马志红,杨勇,杨淑霞,武玲慎,丁保玲,林志淼,王爱平, 卜定方,and涂平.,两个Netherton综合征家系SPINK5基因突变及产物活性的检测.中国皮肤性病学杂志,2006.20(6):p.341-344,355.
    98. Alpigiani, M.G., P. Salvati, M.C. Schiaffino, et al., A New SPINK5 Mutation in a Patient with Netherton Syndrome:A Case Report. Pediatr Dermatol,2011.
    99. Capri, Y., P. Vanlieferinghen, B. Boeuf, et al., [A lethal variant of Netherton syndrome in a large inbred family]. Arch Pediatr,2011.18(3):p.294-8.
    100.Fong, K., S. Akdeniz, H. Isi, et al., New homozygous SPINK5 mutation, p.Gln333X, in a Turkish pedigree with Netherton syndrome. Clin Exp Dermatol,2011. 36(4):p.412-5.
    101.Fortugno, P., F. Grosso, G. Zambruno, et al., A synonymous mutation in SPINK5 exon 11 causes Netherton syndrome by altering exonic splicing regulatory elements. J Hum Genet,2012.
    102.Lacroix, M., L. Lacaze-Buzy, L. Furio, et al., Clinical expression and new SPINK5 splicing defects in Netherton syndrome:unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol,2012.132(3 Pt 1):p.575-82.
    103.Macias-Flores, M.A., D. Garcia-Cruz, H. Rivera, et al., A new form of hypertrichosis inherited as an X-linked dominant trait. Hum Genet,1984.66(1):p. 66-70.
    104.Sun, M., N. Li, W. Dong, et al., Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet,2009.84(6):p.807-13.
    105.Figuera, L.E., M. Pandolfo, P.W. Dunne, et al., Mapping of the congenital generalized hypertrichosis locus to chromosome Xq24-q27.1. Nat Genet,1995.10(2): p.202-7.
    106.Tadin-Strapps, M., J.C. Salas-Alanis, L. Moreno, et al., Congenital universal hypertrichosis with deafness and dental anomalies inherited as an X-linked trait. Clin Genet,2003.63(5):p.418-22.
    107.Zhu, H., D. Shang, M. Sun, et al., X-linked congenital hypertrichosis syndrome is associated with interchromosomal insertions mediated by a human-specific palindrome near SOX3. Am J Hum Genet, 2011.88(6):p.819-26.
    108.Beighton. P., Familial hypertrichosis cubiti:hairy elbows syndrome. J Med Genet, 1970.7(2):p.158-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700