大骨节病与骨性关节炎软骨细胞凋亡信号转导、差异基因及补硒干预的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     大骨节病(Kachin Beck disease,KBD)是一种以软骨坏死为主要改变的地方性变形性骨关节病,流行于我国从东北到西南的地带中,患病率和致残率很高。
     自1849年俄罗斯Yurenski报道KBD以来,其发病机制至今仍不清楚。目前,对KBD病因发病机制的研究不仅局限于流行病学、病理学、环境因素(低硒、T 2毒素等)及防治等方面,且已涉及到细胞凋亡及其调控因子、差异基因和差异蛋白表达等。
     骨性关节炎(Osteoarthritis, OA)是以关节软骨退变为主要特征,导致关节疼痛和功能障碍的疾病,好发于膝、髋等负重关节,常见于60岁以上的老年人群,与KBD好发于3 12岁儿童、软骨发育障碍、关节增粗畸形等继发性骨关节炎有着显著的不同。然而,这两类疾病均以关节软骨损伤为特征,严重影响成人的劳动力和生活质量。近年来,随着对OA发病机制的深入研究,证实软骨细胞凋亡、细胞因子信号转导障碍等是造成OA软骨损伤的重要原因之一。是否KBD的软骨损伤也涉及到软骨细胞凋亡及细胞因子信号转导障碍,以及两者之间有何区别,有待进一步阐明。
     目前,KBD病因发病机制中存在问题很多,但急需解决的主要问题有:①发病原因是单一因素还是环境基因相互作用所致?②KBD和OA关节软骨在分子生物学水平上有何不同?③在基因水平KBD究竟发生了怎样的变化,其与OA有何区别和联系?④硒预防和治疗KBD软骨细胞的机制是什么?为此,本论文主要对比研究了KBD与OA软骨细胞凋亡信号转导、差异基因表达及补硒干预,以阐明这两类关节疾病在软骨细胞凋亡、基因表达、以及补硒对凋亡影响等方面的差异,为深入探讨KBD的病因发病机制、KBD与OA发病机制的异同,提高KBD防治效果,提供科学依据。目的:
     1.通过体外培养KBD和OA的关节软骨细胞,比较软骨细胞生长增殖、形态结构特性、细胞凋亡及其信号转导通路的异同;
     2.采用Agilent Human 1A基因表达谱芯片比较KBD和OA关节软骨表达基因,以筛选和确定KBD不同于OA的特征性基因;
     3.通过不同浓度补硒,体外干预软骨细胞,探讨硒对KBD、OA和正常软骨细胞生长和细胞凋亡的影响。
     方法:
     1.将病例分为三组:KBD组,OA组和正常对照组。正常对照组和OA组选自非KBD病区,KBD组的病例选自KBD病区,年龄均在49 65岁之间。根据我国颁布的KBD病临床诊断标准,选择Ⅱ度和Ⅲ度病例;根据WOMAC诊断标准选择OA病例,排除诸如遗传性骨病,类风湿性关节炎等。在患者知情同意的情况下,软骨取材主要来自膝关节部位,并在年龄和性别等方面达到匹配。
     2.在无菌条件下,体外培养KBD、OA和正常软骨细胞,运用MTT法、流式细胞仪、电镜、免疫荧光、激光共聚焦和免疫组化等实验方法,对比KBD、OA和正常软骨细胞生长特性和细胞凋亡途径的不同;对三组软骨细胞进行补硒干预,比较不同浓度硒(0.0125 g/ml~1.0 g /ml)对KBD和OA细胞生长和凋亡的影响。
     3.提取KBD和OA关节软骨细胞RNA,运用Agilent Human 1A基因表达谱芯片技术,用间接标记方法,获得荧光标记的cRNA靶物,进而与基因芯片杂交,通过FeatureExtraction9.3、Spotfire 8.0和Genepix 3.0等软件,选择P<0.05的具有明显表达差异的基因,以筛选KBD不同于OA的特征性基因。
     结果:
     1. KBD和OA凋亡和信号转导通路的对比研究
     1)KBD和OA组软骨细胞的增殖率、平均生长率显著滞后于正常对照组,其中KBD软骨细胞增殖率高于OA组。KBD软骨细胞超微结构以细胞膜形态不规则、细胞核扭曲变形、细胞膜内糖原边集、细胞膜糖原释放、高尔基体和线粒体肿胀为主,而OA组则以细胞肿胀、软骨细胞电子密度增加、细胞膜绒毛减少、胞浆内大量游离脂滴、高尔基体和内质网肿胀为主。
     2)KBD和OA的软骨细胞凋亡显著高于正常组,细胞增殖周期G2/M期比例增高;Fas、Bax、Caspase 3、Caspase 9和P53表达上调;KBD软骨细胞Caspase 8和P53表达低于OA,而Caspase 9表达高于OA。
     3)KBD和OA具有相似的细胞凋亡途径,与OA相比,KBD更倾向于线粒体凋亡途径。
     2. KBD和OA关节软骨差异基因比较及生物通路模型的构建
     在KBD与OA四组病例中筛选出显著差异的基因233个,其中共同上调的基因195个,共同下调的基因38个。根据其生物学功能分类,证实筛选出的基因中CSGALNACT、PIM2、EFNA1、SMAD 9、STK11、AQP、T cell factor/LEF、PTN,APCDD1和CAV等对KBD发生发展具有重要意义,主要涉及软骨代谢、离子通道蛋白、凋亡等多方面的基因,构建出与氧化应激、氨基酸代谢、脂代谢等相关的通路模型。
     3.不同浓度硒含量干预对KBD和OA软骨细胞生长和凋亡的影响
     1)当Se浓度>0.05 g/ml时能显著损害正常软骨细胞的生长,但Se浓度<0.025 g/ml时仍对正常细胞的生长有损伤;尽管Se浓度>0.50 g/ml对KBD软骨细胞生长有一定的毒性作用,但在0.25 0.10 g/ml之间可促进KBD软骨细胞的生长,细胞保持增殖状态;对于OA软骨细胞,Se浓度>0.50 g/ml对细胞增殖有毒性作用,Se浓度<0.25 g/ml细胞能够保持较高增值率,硒也有一定的保护作用。
     2)加硒后对正常软骨细胞生长具有毒性作用,其损害程度随加硒浓度的增高而加重;对于KBD而言,加入0.50 g/ml~1.0 g/ml硒含量对细胞生长有毒性作用,0.10 g/ml~0.25 g/ml之间为促进生长,而加入<0.05 g/ml则细胞增殖能力下降;对于OA,加入0.50 g /ml~1.0 g/ml的硒对细胞生长有毒性作用,而Se<0.25 g/ml对细胞的增殖则有促进作用。
     3)补硒对软骨细胞超微结构影响的结果显示,Se<0.10 g/ml对KBD,Se<0.05 g/ml对OA的软骨细胞损伤不显著,而Se>0.025 g/ml对正常软骨细胞的亚微结构有影响。
     4)加入不同浓度硒时,正常软骨细胞的凋亡率显著高于不加硒的对照组;KBD组除高浓度硒(>0.25 g/ml)产生较高的凋亡率外,补硒可降低软骨细胞的平均凋亡率;在OA组,除引起较高的软骨细胞凋亡率的硒浓度(>0.25 g/ml)外,一定浓度的补硒也可降低软骨细胞凋亡率。
     5)加入一定浓度的硒对KBD和OA软骨细胞凋亡调控蛋白表达(Fas、Bax、Caspase 3、Caspase 9、P53)有抑制作用,其中补硒对KBD软骨细胞的保护作用高于OA,而对正常软骨细胞有程度不同的损伤作用;三组之间保护软骨细胞的适宜硒浓度不一。
     结论:
     1. KBD和OA的关节软骨细胞凋亡率显著高于正常对照组,且Fas、Bax、Caspase 3、Caspase 9、P53表达增高;其中KBD软骨细胞Caspase 8和P53表达低于OA,而Caspase 9表达则高于OA;KBD超微结构变化类似于OA,但其线粒体凋亡途径损伤较OA更明显。
     2. KBD差异表达基因不同于OA,其中显著差异的233个基因中KBD下调的基因38个,上调的基因195个,主要涉及CSGALNACT、PIM2、EFNA1、SMAD 9、STK11、AQP、T cell factor/LEF、PTN、APCDD1和CAV等反映代谢、离子通道蛋白、凋亡等多方面的基因。
     3.保护KBD和OA的适宜硒浓度不同,在相同补硒剂量下,对KBD保护作用高于OA,但对正常软骨细胞有不同程度的损伤作用;超出适宜的补硒浓度,对三组软骨细胞均具有毒性损伤作用。
Background:
     Kashin Beck(KBD)is an endemic disease, with a high prevalence in north China. Thedisease is characterized by cartilage necrosis and local deformation of bone and joint. It wasfirst reported in 1849 by a Russian Yurenski. Since then a lot of work has been done on thisdisease but still its etiology and pathogenesis is unclear. Different aspects of Kashin Beckdisease studied so far include epidemiological as well as experimental studies includingautopsy pathology genetic interactions in the environment and the cultivation of living cells.Studies have shown that the pathogenesis of Kashin Beck disease is related to environmentalfactors (low selenium, T 2 toxin, etc.), cartilage necrosis, as well as abnormal expression ofgene and proteins.
     Osteoarthritis:Osteoarthritis (OA) is characterized by articular cartilage degeneration,causing joint pain and dysfunction. It occurs in knee, hip and other weight bearing joints. Itusually occurs in late years of life, mainly at the age of 60 years or older, while KBD startsin 3 12 year old child. They significantly differ in terms of abnormal thickening of thecartilage in joint’s development disorders. Recent studies on OA show that the disease isrelated to apoptosis, disorder in cytokine and signal transduction mechanism. Tissue sectionexperiments have proved that KBD cartilage damage is also related to abnormal expressionof apoptotic factors. Thus both KBD and OA shares some mechanism of the diseasedevelopment but it needs further clarifications about differences in development of both thediseases.
     At present there are many unanswered questions about the pathogenesis and etiology ofKBD. Some of the questions which need further research include:①The etiology of KBD.Is it a single factor or an interaction between genes and environment?②What is thedifference between the pathological changes of the articular cartilage in KBD and OA?③What is the genetic basis of KBD and OA?④What is the mechanism of the KBD prevention and treatment by selenium .Keeping in view the aim of differentiating these twodiseases the etiology and pathogenesis of KBD and OA was further which provided ascientific basis for KBD prevention and treatment. This aim in this study we focused on thecomparative study of KBD and OA chondrocyte apoptosis signal transduction, genome widescan screening differential gene profiles and selenium intervening on chondrocyte apoptosis;
     Objectives:
     1. To compare the differences between cartilage cells of KBD and OA in terms ofchondrocyte growth and proliferation, morphological structure, apoptosis and signaltransduction pathway by culturing the cartilage cells of KBD and OAin vitro;
     2. To identify the characteristic gene expression of KBD, which is different from the OA byAgilent Human 1AcDNAmicroarray;
     3. To investigate the effect of selenium on cell growth characters and apoptosis among KBD,OAand normal cartilage groups by exposing them to different levels of selenium.
     Method:
     1. The patients were divided into three groups: KBD, OAand the normal group. The patientsof control and OA groups were selected from the non KBD endemic area, while patients ofKBD were selected from KBD endemic area, aged 49 65 years old. The diagnostic criteriafor KBD included assessment on fingers, joints and immunohistochemistry analysis. Patientswith StageⅡandⅢwere included in this study. OA patients were diagnosed according toWOMAC, patients with genetic bone disease and rheumatoid arthritis were excluded fromthe study. All cartilage were taken from the same location in the joint as far as possible toachieve all aspects to be matched.
     2. In aseptic conditions, KBD, OA and normal cartilage cells were cultured in vitro. Wecontrast KBD, OA and normal chondrocytes of different growth characteristics and cellapoptosis pathway by MTT, flow cytometry, electron microscopy, immunofluorescence,laser confocal and immunohistochemistry; Selenium intervention on three groups ofcartilage cells was done to find the impact of different concentrations of selenium on cellgrowth and apoptosis in KBD and OA.
     3. We compared difference in gene expression between KBD and OA articular cartilage bygenome wide scan, and checked them by real time PCR; Microarray were scanned byGene Axon 4000B and data was analyzed by Genepix 3.0 software package. Special KBDgenes which were different to OAwere selected.
     Results:
     I. Comparision of cell apoptosis and signal transduction pathways between KBD and OA
     1) The average cell proliferation of KBD and OA cartilage group were significantly lowerthan the normal group, while OA growth rate was less than KBD cartilage cell. Theultrastructure in KBD cartilage cell were as follows: irregular cell shape, distorted nuclei,glycogen gathered within the cell membrane, glycogen release, Golgi apparatus andsignifican mitochondrial swelling; OAgroup: cell swelling, cartilage cells, increased electrondensity, reduced membrane villus in cytoplasm with a large number of free lipid droplets,Golgi apparatus and endoplasmic reticulum swelling.
     2) The apoptosis in KBD and OA cartilage was significantly higher than normal group, cellcycle G1 / M phase was increased; The expression of Fas, Bax, Caspase 3, Caspase 9 andP53 increased; Caspase 8, P53 expression in KBD cartilage cells is relatively lower than theOA, while the expression of caspase 9 is relatively higher than OA.
     3) The comparision of apoptosis genes in KBD and OA cartilage by gene chips, indicatedthat KBD and OA have similar apoptosis pathway, KBD was prone to mitochondriaapoptosis signal pathway.
     II. The comparative study of genome wide scan and biological modeling in KBD and OAcartilage.
     In the comparative study of KBD and OA cartilage, there were 233 same array of genesexpression, in which 195 genes up regulated and 38 genes down regulated in the four pairgroups. They were divided according to their biological function into categories such ascellular metabolism, ion channels and transport proteins, signal transduction, cytokines, cellreceptors and the cytoskeleton .It was confirmed before gene selction that the genes selectedCSGALNACT, PIM2, EFNA1, SMAD 9, STK11, AQP, T cell factor / LEF, PTN, APCDD1,CAV and others in KBD were of great significance. Based on the results, KBD is mainlyrelated to metabolism, ion channel proteins, apoptosis and other aspects of gene expressionabnormalities. We build oxidative stress, amino acid metabolism, lipid metabolism andrelated pathways model.
     III. The effect of various concentrations of selenium (Se) on growth and apoptosis in KBDand OA.
     1) Selenium in high concentrations i.e Se>0.05 g/ml produced toxic damage to normalcartilage cells while the low concentration of selenium also have an impact on the growthrate and the proliferation rate became negative.Studies on KBD cartilage have shown that acertain concentration of selenium can promote the KBD cartilage cells growth, but the highconcentrations of selenium have some of its toxic effects. The concentration of seleniumbetween 0.25 g/ml~0.10 g/ml significantly promote cell proliferation, but the low environment selenium can reduce the proliferation rate. Studies on OA have showedtolerance to high concentrations of selenium and toxic effects of selenium on cellproliferation, but still the cells will be able to maintain growth and proliferation; inSe<0.25 g/ml cell proliferation and growth rate were also high.
     2) Normal cartilage after exposure to higher concentration of selenium showed toxic effectson the growth with more damage to cell growth; in terms of KBD, 1.0 g/ml~0.50 g/ml ofselenium produces toxic effect on cell growth, and a concentration of 0.25 g/ml~0.10 g/mlpromoted cell growth; while environmental selenium with a concentration of <0.05 g/mlwas the safety range; for OA, 1.0 g/ml~0.50 g/ml of selenium produced toxic effects oncell growth, Se<0.25 g/ml promoted cell proliferation.
     3) The tolerance of KBD and OA to selinum was higher than the normal group, and amongthem KBD had higher tolerance than OA group and the tolerance of OA group is higher thanthe normal group. Microstructure indicated that cartilage cells were tolerant to Se<0.10 g/ml in KBD group and to Se<0.05 g/ml in OA group. While in the normal group thesub structure was by a concentration of Se>0.025 g/ml.
     4) Effect of selenium on apoptosis: In normal cartilage cells the the apoptosis rate was higherwith different concentrations of selenium as compared to apoptosis rates without selenium.In the KBD group, the higher concentrations of selenium produced higher apoptotic rate butthe average apoptotic rate declined with selenium. In the OA group, the higher concentrationof selenium resulted in high apoptosis rate but the certain concentration of selenium mayreduce the apoptosis rate.
     5) Immunohistochemistry of Fas, Bax, Caspase 3, Caspase 9, P53 and other apoptosisindicators also showed that a certain concentration of selenium added to the KBD and OAchondrocyte in culture can inhibit apoptosis protein expression. The tolerance to selenium ofKBD was higher than OA, and OA was higher than normal cartilage cells. Beyond a certainconcentration selenium can induce apoptosis.
     Conclusion:
     1. The rate of apoptosis in KBD and OA articular cartilage was significantly higher than thenormal group, and expression of Fas, Bax, Caspase 3, Caspase 9 and P53 increased. In thecomparison of KBD and OA, Caspase 8 and P53 expression in KBD were relatively lowerthan OA, while the caspase 9 expression is relatively higher than OA. Micro structuralchanges in KBD by electron microscopy confirmed that KBD apoptosis pathway is similarto OA, and may be more prone to mitochondrial apoptosis pathway.
     2. There is significant difference in 233 gene expressions in KBD and OA, out of these 38genes were down regulated and 195 genes were up regulated in KBD. CSGALNACT, PIM2, EFNA1, SMAD 9, STK11, AQP, T cell factor / LEF, PTN, APCDD1, CAV and other geneswere confirmed to be of greater significance in KBD, and that is mainly related tometabolism, ion channel proteins, apoptosis and other abnormal genes expression.
     3. A certain concentration of selenium has protective effect on the KBD and OAchondrocytes. Under the same dose of selenium, the tolerance of KBD is higer than OA andOA tolerance is higher than normal group.Higher concentrations of selenium have damagingand toxic effects on the normal cells and the three groups of chondrocytes have differentconcentrations of selenium tolerance.
引文
[1]中国卫生部统计信息中心.2009年地方病防治情况,2009 http://www.moh.gov.cn/ publicfiles/business/htmlfiles/zwgkzt/pzsdw04/200804/16302.htm.
    [2]莫东旭.关于KBD研究现状和若干问题[J].陕西地方病通讯,1992,2:1.
    [3]莫东旭,丁德修,王治伦,等.硒与KBD关系研究20年[J].中国地方病防治杂志,1997,12(1):18 21.
    [4] Rodrigo M, Car S, Francoise M, et al. Kashin Beck Osteoarthropathy in Rural Tibet in Relation toSelenium and Iodione Status [J]. N Engl J Med, 1998, 339: 1112 1120.
    [5] Centers for Disease Control and Prevention, USA. Gene Environment Interaction.http://www.cdc.gov.2000
    [6] Shakibaei M, Schulze Tanzil G, de Souza P, et al. Inhibition of mitogen activated protein kinaseinduces apoptosis of human chondrocytes [J]. J Biol Chem, 2001, 276: 13289 13294.
    [7]殷培璞,主编.KBD诊治研究[M].陕西科技出版社,1987 :1 4.
    [8]吴求亮,杨玉爱.微量元素与生物健康[M].贵阳贵州科技出版社, 2000: 255 260.
    [9]余善鸣,邓云.王宝军硒对人体健康的影响[J].中国食物与营养, 2001,4:51 52.
    [10]罗海吉,吉雁鸿.硒的生物学作用及意义[J].微量元素与健康研究, 2000, 17(2):70 77.
    [11] Forstrom JWO, Zakowski JJ, Tappel AL. Identification of the catalytic site of the rat liverglutathione peroxidase as selenocysteine [J]. Biochemistry, 1978, 17: 2639 2644.
    [12] Landestein R, Epp O, Bartles K, et al. Structure analysis and molecular model of selenoenzymeglutathione peroxidase at resolution [J]. J Mol Biol, 1979, 134: 199 218.
    [13] Wingler K, Brigelius Flohe′R. Gastrointestinal glutathione peroxidase [J]. Biofactors, 1999, 10:245 247.
    [14]廖鲁兴,李巧云,赖玉熔.硒与体内酶活性及其它元素分布的关系[J].国外医学地理学分册,1995, 16(2):53 56.
    [15] Behne D, Kyriakopoulos A, Meinhold H, et al. Identification of typeⅠiodothyronine deiodinaseas a seleniumenzyme [J]. Biochem Biophys Res Commun, 1990, 173(3): 1143 1149.
    [16] Navarro Alarco′n M, Lo′pes Martinez MC. Essentiality of selenium in the human body:relationship with different diseases [J]. Sci Total Environ, 2000, 249: 347 371.
    [17] Jaskiewicz K, Marasas WFO, Rossouw JE, et al. Selenium and other mineral element inpopulations at risk for esophageal cancer [J]. Cancer, 1988, 62: 2635 2639.
    [18] Knekt P, Aromaa A, Maatela J, et al. Serum selenium and subsequent risk of cancer among Finnishmen and women [J]. J Natl Cancer Inst, 1990, 82: 864 868.
    [19] Keshan Disease Research Group. Epidemiologic studies on the etiologic relationship of seleniumand Keshan disease [J]. Chin Med, 1979, 92: 477 482.
    [20]莫东旭,丁德修,王治伦,等.硒与KBD关系研究二十年[J].中国地方病学杂志,1995;14(4):201 203.
    [21] G F Combs Jr, J E Soallhoz, O A Lecander. Keshan Disease and Keshin Beck disease in china.Selenium in biology and Medicine [M]. New York: Van Nistrand Reihnold Company, 1986, 859876.
    [22] Moreno ReyesR, SuetensC, MathieuF, etal. Kashin Beck osteoarthropathy in rural Tibet in relationto selenium and iodine status [J]. NEngl J Med, 1998, 339: 1112 1120.
    [23] El Bayoumy K. The protective role of selenium on genetic damage and on cancer [J]. MutatRes,2001, 475(4): 123 139.
    [24] GirayB, HincalF. Oxidative DNA base damage, antioxidant enzyme activities and selenium statusin highly iodine deficient children [J]. Free RadicRes, 2002, 36(1):55 62.
    [25]郭雄,张矢远,殷红.真菌及其毒素与KBD关系的研究现状[J].中国地方病防治杂志,1994,9(3):155 159.
    [26] CaoJL, XiongYM, ZhangShY, et al. The experiment on the effects of six myco toxinson thecultural chondrocyte [J]. xianmeduniv, 1998, 10(1): 1 8.
    [27]楚瑞琦,曹峻岭,王咏梅,等.雪腐镰刀菌烯醇对培养软骨细胞DNA影响及硒的保护作用[J].西安医科大学学报,2001,22(3):212 214.
    [28]莫东旭.T 2毒素、MON和硒对中国小香猪患骨软骨病的影响[J].中国地方病学杂志,1996,11(3):130 133.
    [29]郑金平,祝寿芬,窦岩.康强硒、硒多糖对染砷大鼠肝细胞增殖周期的影响[J].中国公共卫生,2000,16(11):997 999.
    [30] Ciappekkaana S, Erba D, Bermano G, et al. Dietary selenium intake and selenium proteins in rat plasma [J].Ann Nutr Me tab, 1996, 40: 296 300.
    [31]陈婉蓉,鲁心安,付中滇,等.硒对大鼠胚胎神经细胞增殖和分化的影响[J].中国公共卫生,2000,16(11):992 993.
    [32]吴建民,陈婉蓉,张伟,等.硒对中脑神经细胞生长影响的研究[J].微量元素与健康研究,2000,17(4):3 4.
    [33]杨克敌,刘世海,王桂珍.硒对氟致大鼠血清、肾和股骨中铜、锌、铁影响的研究[J ].微量元素与健康研究, 2000, 17 (1) : 3 5.
    [34] Ju′lio C. M. Soares, MSc, Vanderlei Folmer, Msc, and Joa?o B. T. Rocha, PhD,Influence ofDietary Selenium Supplementation and Exercise on Thiol Containing Enzymes in Mice. Nutrition2003 (19):7 8.
    [35] Jing hong Chen, Jun ling Cao, Yong lie Chu, et al. T 2 toxin induced apoptosis involving Fas, P53,Bcl xL, Bcl 2, Bax and Caspase 3 signaling pathways in human chondrocytes [J]. J Zhejiang UnivSci B, 2008, 9(6): 455 463.
    [36] Jinghong Chen, Yonglie Chu, Junling Cao, et al. T 2 toxin induces apoptosis, and selenium partlyblocks, T 2 toxin induced apoptosis in chondrocytes through modulation of the Bax/Bcl 2 ratio [J].Food and Chemical Toxicology, 2006, 44: 567 573.
    [37] Si yuan LI, Jun ling CAO, Zhong li SHI, et al. Promotion of the articular cartilage proteoglycandegradation by T 2 toxin and selenium protective effect [J]. Zhejiang Univ Sci B, 2008, 9(1):22 33.
    [38] P. H. Canter, B. Wider and E. Ernst,The antioxidant vitaminsA, C, E and selenium in the treatmentof arthritis: a systematic review of randomized clinical trials [J]. Rheumatology, 2007, 46: 12231233.
    [39]陈婉蓉,鲁心安,傅中镇,等.硒对大鼠胚胎神经细胞增殖和分化的影响[J].中国公共卫生,2000,16(11):992 997.
    [40]钟学宽,于波,张邻杰等.克山病心肌损伤与细胞凋亡[J].中国地方病学杂志,1997,16(2):81 84.
    [41]张军,赵燕,石红军,等.硒对紫外线诱导HLF细胞凋亡的保护作用[J].同济大学学报(医学版),2002,23(2):100 102.
    [42]吴建民,陈婉蓉,傅中稹,等.呀硒酸钠诱导大鼠胚胎中脑神经细胞凋亡的观察[J].卫生毒理学杂志,2001,15(1):11 13.
    [43] Liu P, Fisher MA, Farhood, et al. Beneficial effects of extracellular glutathione against endo toxininduced liver injury during ischemia and reperfusion [J]. Circ Shock, 1994, 43(2): 64 71.
    [44] Celik HA, Aydin HH, DececiR, et al. Biochemical and morphological characteristics ofselenite induced apoptosis in human hepatoma Hep G2 cells [J]. Biol Trace Elem Res, 2004,99(1 3): 27 40.
    [45] Becker K, Gromer S, Schurmer RH, et al. Thioredoxin reductase as a pathophysiological factor anddrug targer [J]. Eur J Biochem, 2000, 267: 6118 6125.
    [46] ChuFF, Esworthy RS, Doroshow JH, et al. Role of Se dependent glutathione peroxidases ingastrointestional inflammation and cancer [J]. Free Radic Biol Med, 2004, 36(12): 1481 1495.
    [47] Mainil Varlet P, Rieser F, et al. Articular cartilage repair using a tissue engineered carilage likeimplant: an animal study [J]. Osteoarthritis Cartilage, 2001, 9: 6 15.
    [48] Cawston TE, Cury VA, Summers CA, et al. the role of onncostain M in animal and connectivetissue collage turnover and its location with in the rueumatiod joint [J]. Arthritis Rheum, 1998, 41:1760 1770.
    [49]郭雄,ThomasA,Pirkko L,等.KBD关节软骨胶原表型表达和软骨细胞异常分化的研究[J].中华病理学杂志,1998,27(1):19 21.
    [50]裴明,曲绵域,于长隆,等.凋亡在骨关节病发病机制中的作用[J].中华骨科杂志,1999,19:167 170.
    [51] Akeson WH, Bugbee W, Chu C, et al. Normal cartilage repair differences in mesenchymal tissuerepair[J]. ClinOrthop Rel Res, 2001, 391(suppl): 124–141.
    [52] Buckwalter JA: Osteoarthritis and articular cartilage use, disuse and abuse: experimental studies. JRheumatol 1995, 43 (suppl):13–15.
    [53] ErlacherL, MaierR, UllrichR, el al .Review article describing and discussing various theories aboutthe etiology of cartilage defects based on experimental studies. Differential expression oftheprotoooncogene bcl 2 in normal and oseroarthritic human articular cartilage [J]. Rheumatol,1995, 22(5):926 931
    [54] Duke.PJ, Daune.EL, Montufor solis.P. Studies of chondrogenesis in rotating system [J]. J CellBiochem, 1994, 15(3): 1 5.
    [55] Va canti CA, Cao YL. Neo cartilage genorated from chondrocyt es isolated from 100 year oldhuman cartilage [J]. Transplant Proc, 1994, 26(4): 1069 1077.
    [56] Seyedin S. M, Thompson A. Y, Rosen D. M, et al. In Vitro induction of cartilage2specificmacromolecules by a bone extract [J]. J Cell Biol, 1983, 97: 1950 1952.
    [57] Bonaventure J, Cohen Solal L, Bourguignon K. H. N, et al. Expression of cartilage specific genesby dedifferentiated human articular chondrocytes cultured in alginate beads [J]. Exp Cell Res, 1994,212: 97 104.
    [58] Copray J. C. V. M, Jansen H. W. B, Duterloo H. S. Growth of the mandibular condylar carlilage ofthe rat in serum free organ culture [J].Archs Oral Biol, 1983, 28: 967 974.
    [59] Buschmann M. D, Hunziker E. B, Kin Y. J, et al. Altered aggrecan synthesis correlates with celland nucleus structure in statically com2 pressed cartilage [J]. J Cell Sci, 1996, 109: 499 452.
    [60]许理忠,王拥军,等.软骨细胞的培养,增殖和分化[J].颈腰痛杂志,2003,24(1):59 61.
    [61] Manning WK, Bonner WM. Isolation and culture of chondrocytes from human articular cartilage[J].Arthritis Rheum, 1967, 10: 235 239.
    [62] Stefanovic Racic M, Stadler J, Georgescu HI, et al. Nitric oxide and energy production in articularchondrocytes [J]. J Cell Physi2ol, 1994, 159(2): 274 280.
    [63] Palmer RMJ, Andrews T, Foxwell NA, et al. Glucocorti coids do not affect the induction of anovel calcium dependent nitricoxide synthesis in rabbit chondrocytes [J]. Biochem Biophys Res,1992, 188(1): 209 215.
    [64] Lavietes B. B. Kinetics of matrix synthesis in cartilage cell cultures [J]. Exp Cell Res, 1971, 68 43.
    [65] Kuettner K. E, Pauli . B. V, Gell G, et al. Synthesis of cartilage matrixby mammalian chondrocytesin Vitro. I. isolation, culture characteristics, and morphology [J]. J Cell Biol, 1982, 743 793.
    [66] Lum Z. p, Hakala B. E, Mort J. S, et al. Modulation of catabolic effects of inerleukinβon humanarticular chondrocytes by transforming growth factorβ[J]. J Cell physiol, 1996;166 (2):351 359.
    [67]陈福林,毛天球,冯雪,等.兔关节软骨细胞的体外分离、纯化及鉴定[J].现代口腔医学杂志,1998,12:263 265.
    [68]宋卫东,刘尚礼.不同方法体外培养软骨细胞的活力,功能及成软骨能力[J].中国临床康复,2002,8:1113 1116.
    [69] Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death [J]. Am J Pathol, 1995,146: 3 15.
    [70] Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death inpatients with sepsis, shock,and multiple organ dysfunctions [J]. Crit CareMed, 1999, 27: 1230 1248.
    [71] Nicholson DW, Thornberry NA. Caspases: killer proteases [J]. Trends BiochemSci, 1997, 22: 299306.
    [72] Roach HI, Aigner T, Erenpeisa J. Ostegenic differentiation of hypertrophic chondrocytes involvesasymmetric celll divisions and apoptosis [J]. J Cell Biol, 1995, 131(3): 483 491.
    [73] Heraud F, Heraud A, Harmand MF. Apoptosis in normal and osteoarthritic human articularcartilage [J].Ann Rheum Dis, 2000, 59(12): 959 966.
    [74] Sanshiro Hashimoto, Robert J Ochs, Martin Lots, et al. Linkage of chondrocyte apoptosis andcartilage degradation in human osteoarthritis [J].Arthritis Rheum, 1998, 41(9): 1632~1637.
    [75] Guo X, Thomas A, Pikko L, et al. A study on abnormal chondrocyte differentiation and abnormalerpression of collagen types in AC from patients with Kashin Beck disease [J]. Chin J PATHOL,1998. 27(1): 19 22.
    [76] Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology [J]. Int Rev Exp Pathol,1991, 32: 223 254.
    [77] Walker NI. Ultrastructure of the rat pancreas after experiment duct ligation.I.The role of apoptosisand intraepithelial macrophages in acinar cell deletion [J].Am J Pathol, 1987, 126: 439 451.
    [78] Colm Power, Noel Fanning, and H. Paul Redmond, Cellular apoptosis and organ injury in sepsis: areview, SHOCK, 2002, 18(3): 197–211.
    [79] Savill J. Recognition and phagocytosis of cells undergoing apoptosis [J]. Br Med Bull, 1997, 53:491–508.
    [80] WyllieAH. What is apoptosis [J].Histopathology, 1986, 10: 995 998.
    [81] Bortner CD, Hughes FM Jr, Cidlowski JA. A primary role for K+ and Na+ efflux in the activationof apoptosis [J]. J Biol Chem, 1997, 272: 32436–32442.
    [82] Beauvais F, Michel L, Dubertret L. Human eosinophils in culture undergo a striking and rapidshrinkage during apoptosis. Role of K+ channels [J]. J Leukocyte Biol, 1995, 57: 851–855.
    [83] Duke RC, Chervenak R, Cohen JJ. Endogenous endonuclease induced DNA fragmentation: anearly event in cell mediated cytolysis [J]. Proc NatlAcad Sci USA, 1983, 80: 6361–6365.
    [84] Reed JC. Double identity for proteins of the Bcl 2 family [J]. Nature, 1997, 387: 773–776.
    [85] Adams JM, Cory S. The Bcl 2 protein family: arbiters of cell survival [J]. Science, 1998, 281:1322–1326.
    [86] Paxkham G, Sewvenson FK, et al.Bidyguards and assassins: Bcl 2 family proteins and apoptosiscontrol in chronic lymphocytic eukaemia. Immunology [J].2005, 114(4):441 449.
    [87] ErlacherL, MaierR, UllrichR, el al. Differetial expression of theprotoooncogene bcl 2 in normaland oseroarthritic human articular cartilage [J]. Rheumatol, 1995, 22(5): 926 931.
    [88] Wang shijie, guo xiong, Chondrocyte apoptosis and expression of Bcl 2,bax,fas,and iNos inarticular cartilage in patients with Kashin Beck disease, J Rheumaol 33(3):615 619
    [89] Kastan MB, Onyekwere O, Sidransky D, et al. Participation of p53 protein in the cellular responseto DNAdamage [J]. Cancer Res, 1991, 51: 6304–6311.
    [90] Hotchkiss RS, Tinsley KW, Hui JJ, et al. P53 dependent and independent pathways of apoptoticcell death in sepsis [J]. J Immunol, 2000, 164: 3675 3680.
    [91] Maruyama T, Yamamoto Y, Sakai N, et al. Protein tyrosine phosphorylation signaling in thedifferentiation of human endometrial stromal cells[J]. Kei J Med, 2002, 51(2): 93 99.
    [92] Kim HA, Lee YJ, Seong SC, et al. Apoptosis chondrocyte death in human osteoarthritis [J]. JRheum, 2000, 27(2): 455 462.
    [93] Kim, SJ, Hwang SG, Shin DY, et al. p38 kinase regulates nitricoxide induced apoptosis of articularchondrocytes by accumulating p53 via NF kappa dependent transcription and stabilization byserine 15 phosphorylation [J]. Biol Chem, 2002, 277(36): 33501 33505.
    [94] Tbara T, Sugmata M, Sekijima M, et al. Apoptotic celluar damage in mice after T 2 toxin inducedapoptosis in the acute toxicosis [J]. Nat Toxin, 1997, 5: 141 145.
    [95] Kim HA, Lee YJ, SeongSC, et al. Apoptotic chondrocyte death in human osteoarthritis [J]. J.Rhuem, 2000, 27(2): 455 462.
    [96] Savaskan E, Ravid R, Meier F, et al. Immunohistochemical Localization of Fas associatedphosphatase 1 in Alzheimer disease hippocampus[J]. Appl Immunohistochem Mol Morphol, 2005,13(2): 190 193.
    [97] Scott FL, Denault JB, Riedl SJ, et al. XIAP inhibits caspase 3 and 7 using two binding sites:evolutionarily conserved mechanism of IAPs [J]. EMBO J, 2005, 24(3): 70 77.
    [98] Mzsuko Hongo K, Sakata M, YuanGH, et al. Expression of Fas associated dezth domain likeinterleukin 1 beta converting enzyme inhibitory protein in human articular chondrocytes: possiblecontribution to the resistance to Fas mediated death of in vitro cultured human articularchondrocytes [J]. Rheumatol int, 2001, 21(3): 112 121.
    [99] Lisignoli G, Grassi F, Zini N, et al. Anti Fas induced apoptosis in chondrocytes reduced byhyaluronan: evidence for CD44 and CD54 invovement [J]. Arthritis Rheum,2001,44(8):1800 1807.
    [100] Chondrocyte apoptosis and expression of Bcl 2, bax, fas and iNos in articular cartilage in patientswith kashin beck disease,J Rheumaol2006 33(3):615 619.
    [101] Wangshijie, Guox. Comparison of apoptosis of articular chondrocyte in the pathogenesis ofKashin beck disease and primary osteoarthritis, 2006, 28(2):267 270.
    [102] Kroemer G, Dallaporta B, Resche Rigon M. The mitochondrial death/life regulator in apoptosisand necrosis [J].Annu Rev Physiol, 1998, 60: 619–642.
    [103] Newmeyer DD, Farschon DM, Reed JC. Cell free apoptosis in Xenopus egg extracts: inhibition byBcl 2 and requirement for an organelle fraction enriched in mitochondria [J]. Cell, 1994, 79:353–364.
    [104] Zhivotovsky B, Orrenius S, Brustugun OT, et al: Injected cytochrome c induces apoptosis [J].Nature, 1998, 391: 449–450.
    [105] Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell free extracts: requirement fordATP and cytochrome c [J]. Cell, 1996, 86: 147–157.
    [106] Zou H, Henzel WJ, Liu X, et al Apaf 1, a human protein homologous to C. elegans CED 4,participates in cytochrome c dependent activation of caspase 3 [J]. Cell, 1997, 90: 405–413.
    [107] Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP dependent formation ofApaf 1/caspase 9 complex initiates an apoptotic protease cascade [j]. Cell 1997, 91, 479–489.
    [108] Pan G, O’Rourke K, Dixit VM: Caspase 9, Bcl XL, and Apaf 1 form a ternary complex [J]. J BiolChem1998; 273: 5841–5845.
    [109] Camilleri Broet S, Vanderwerff H, Cald well E, et al. Distinct aleration in mitochondrial mass andfunction characterize models of apoptosis. Exp Cell Res[J].1998, 239: 277 292
    [110] Green, D.R., Reed, J.C., 1998. Mitochondria and apoptosis. Science 281, 1309–1312.
    [111] Petit, P. X, Zamzami, N, Vayssiere, J.L, et al. Implication of mitochondria in apoptosis [J]. Mol.Cell. Biochem, 1997, 174, 185–188.
    [112] Kim HA, Blanco F, Cell death and apoptosis in osteoarthritic cartilage. Curr Drug Targets 2007,8(20):333 345.
    [113]郭雄,AignerT,LammiP,et al.KBD关节软骨胶原表型表达和软骨细胞异常分化的研究[J].中华病理学杂志,1998,27(1):19 22.
    [114]张宝弟,郭雄,白广禄,等.血清细胞凋亡相关因子与KBD关系的研究[J].中国地方病学杂志,2004,23(2):172 175.
    [115]裴明,曲棉域,于长隆,等.凋亡在骨关节病发病机制中的作用[J].中华骨科杂志,1999,19:167 170.
    [116] Blanco FJ, Guitian R, Vazquez Marud R, et al. Fas lignd expression and induction of apoptosis inchondrocytes [J].Arthritis Rheum, 1997, 40(8): 1749 1755.
    [117] Pease AN, Solas D, sullivan EJ, et al. Light generated oligonucleotide arrays for rapid DNAsequecences analysis [J]. Proc NatlAcad sci USA, 1994, 91(11): 5022 5026.
    [118] Schena M, Heller KA, Theriault TP, et al. Microarrays: biotechnology's discovery platform forfunctional genomics [J]. TIB Tech, 1998, 16(3): 301 306.
    [119] Marshall A, Hodgson J. DNA chips: An array of possibilities [J]. Nat Biotechnol, 1998, 16(1):27 31.
    [120] Cheng J, Sheldom EL, Wu L. Preparation and hybridization analysis of DNA/RNA from E, coli onmicrofabricated bioelectronic chips [J]. Nat Biotechnol, 1998, 16(6): 541 546.
    [121] Kasperkovitz P V, Timmer T C, Smeets T J, et al. Fibroblast like synoviocytes derived frompatients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of alink between an increased myofibroblast like phenotype and high inflammation synovitis [J].Arthritis Rheum, 2005, 52(2): 430 441.
    [122] Tsubaki T, Arita N, Kawakami T, et al. Characterization of histopathology and gene expressionprofiles of synovitis in early rheumatoid arthritis using targeted biopsy specimens [J]. Arthritis ResTher, 2005, 7(4): 825 836.
    [123] Huh S J, Paik D J, Chung H S, et al. Regulation of GRB2 and FLICE2 expression by TNF alphain rheumatoid synovium [J]. Immunol Lett, 2003, 90(2 3): 93 96.
    [124] van der Pouw Kraan TC;van Gaalen FA;Kasperkovitz PV;Verbeet NL;Smeets TJ.Rheumatoidarthritis is a heterogeneous disease: evidence for differences in the activation of the STAT 1pathway between rheumatoid tissues [J].Arthritis Rheum, 2003, 48(8), 2132 2145.
    [125] van der Pouw Kraan T C, van Gaalen F A, Huizinga T W, et al. Discovery of distinctive geneexpression profiles in rheumatoid synovium using cDNA microarray technology: evidence for theexistence of multiple pathways of tissue destruction and repair [J]. Genes Immun, 2003, 4(3): 187196.
    [126] Watanabe N, Ando K, Yoshida S, et al. Gene expression profile analysis of rheumatoid synovialfibroblast cultures revealing the overexpression of genes responsible for tumor like growth ofrheumatoid synovium [J]. Biochem Biophys Res Commun, 2002, 294(5): 1121 1129.
    [127] Neumann E, Kullmann F, Judex M, et al. Identification of differentially expressed genes in RAby acombination of complementary DNA array and RNA arbitrarily primed polymerase chain reaction[J].Arthritis Rheum, 2002, 46(1): 52 63.
    [128] Heller RA, Schena M, Chai A, et al. Discovery and analysis of inflammatory disease related genesusing cDNAmicroarrays [J]. Proc NatlAcad Sci USA, 1997, 94(6): 2150-2155.
    [129]黄烽,牛剑,赵伟,等.cDNA芯片技术在强直性脊柱炎发病因素研究中的应用[J].中华风湿病学杂志,2001,5(增刊):62 63.
    [130] Aigner T, Bartrik E, Zien, et al. Functional genomics of osteoarthritis [J]. Pharmacogenomics, 2002,3(5): 650 635.
    [131] Bramlage CP, Haupl T, Kaps C, et al. Decrease in expression of bone morphogenetic proteins 4 and5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis [J]. Arthritis Res Ther,2006, 8(3): R58.
    [132] Kato H, Masumine A, Wakabayashi T, et al. Large scale gene expression profiles, differentiallyrepresented in osteoarthritic synivium of the knee joint using Cdna microarray technology [J].Biomarkers, 2007, 12(4): 384 402.
    [133] Sato T, Komoni K, Yamasaki S, et al. Comparative analysis of gene expression profiles in intactand damaged region of human osteoarthritic cartilage[J].Arthritis Rheum, 2006, 54(6): 808 817.
    [134] Wang WZ, Guo X, Duan C, et al. Comparative analysis of gene expression profiles between thenormal human cartilage and the one with endemic osteoarthritis [J]. Osteoarthritis Cartilage, 2009,17(1): 83 90.
    [135] Guoxiong. Diagnostic criteria of Kashin Beck disease [J]. Chin J Endemiol, 1994, 13: 24 32.
    [136] Ehrich E, Davies G, Watson D, et al. Minimal perceptible clinical improvement with the WesternOntario and McMaster Universities osteoarthritis index questionnaire and global assessments inpatients with osteoarthritis [J]. J Rheumatol, 2000, 27(11): 2635 2641.
    [137] Statistical Center of Ministry of Health, P.R. China. Statistical Bulletin of the DevelopmentCircumstance of Chinese Health Service in 2006[updated 2007 May 9] Available from: http://www.moh.gov.cn/newshtml/18903.htm.Accessed January7, 2008.
    [138] Lawrence RC, Felson DT, Helmick CG, et al. National Arthritis Data Workgroup. Estimates of theprevalence of arthritis and other rheumatic conditions in the United States [J]. Part II. ArthritisRheum, 2008, 58(1): 26–35.
    [139] Ministry of Public Health, China. Diagnostic criteria of Kashin Beck disease [J]. Chin J Endemiol,1994, 13: 24 32.
    [140] Agner T, McKennaL. Molecular pathology and pathobiology of osteoarthritic cartilage [J]. CellMolife Sci, 2002, 59(1): 5 18.
    [141] Robert Goggs, Stuart D, Carter, el al. Apoptosis and the loss do chondrocyte survival signalscontribute to articular cartilage degradation in osteoarthritis [J]. The Veterinary Journal, 2003, 12:140 158.
    [142] Wangshijie, GuoX. Chondrocyte apoptosis and expression of Bcl 2, bax, fas, and iNos in articularcartilage in patients with kashin beck disease [J]. Rheumaol, 2006, 33(3): 615 619.
    [143] Wang shijie, guoxiong. Mechanmism of chondrocyte apoptosis in Kashin Beck disease and primeosteoarthritis a comparative study [J]. South med university paper, 2006, 26(7).
    [144] Kolettas E, Buluwela L, Bayliss MT, et al. Expression of cartilage specific molecules is retained onlong term culture of human articular chondrocytes [J]. J Cell Sci, 1995, 108: 1991–1999.
    [145] Adams CS, Horton WE. Chondrocyte apoptosis increases with age in the articular of adult animals[J].Anat Rec, 1998, 250: 418 425.
    [146] Heraud F, Heraud A, Harmand MF. Apoptosis in normal and osteoarthritic human articular cartilage[J].Ann Rheum Dis, 2000, 59: 959 965.
    [147] Kin HA, Lee YJ, Seong SC, et al. Apoptotic chondrocyte death in human osteoarthtitis [J].Rheumatol, 2000, 27: 455 462.
    [148] Malemud CJ, Islam N, HAqqi TM. Pathophysiological Mechanism in osteoarthritis lead to noveltherapeutic strategies [J]. Cells Tissues Organs, 2003, 174: 34 48.
    [149] Morel J, Berenbaum F. Signaling transduction pathways: new targets for treating rheumatoidarthritis [J]. Joint Bone Spine, 2004, 71(6): 503 510.
    [150] Baldwin AS. The NF kB and IkB proteins: new discoveries and insights [J]. Annu Rev Immunol,1996, 14: 649 681.
    [151] Johnson GL, Lapadat R: Mitogen activated protein kinase pathways mediated by ERK, JNK, andp38 protein kinases [J]. Science, 2002, 298: 1911–1912.
    [152] Garrington TP, Johnson GL. Organization and regulation of mitogen activated protein kinasesignaling pathways [J]. Curr Opin Cell Biol, 1999, 11: 211–218.
    [153] Debril MB, Renaud JP, Fajas L. The pleiotropic functions of peroxisome proliferator activatedreceptor gamma [J]. J Mol Med, 2001, 79: 30 47.
    [154] Poli V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions[J]. Biol Chem, 1998, 273: 29279 29282
    [155] Nicholson DW, Thornberry NA. Caspases: killer proteases [J]. Trends Biochem Sci, 1997, 22:299– 306.
    [156] Guicciardi ME, Gores GJ. The death receptor family and extrinsic pathway. In: Guicciardi ME,Gores GJ, eds. Essentials of Apoptosis: A Guide for Basic and Clinical Research [J]. Totowa, NJ:Humana Press, 2003: 67–84.
    [157] Hashimoto S, Setareh M, Ochs RL, et al. Fas/Fas ligand expression and induction of apoptosis inchondrocytes [J].Arthritis Rheum, 1997, 40: 1749 1755.
    [158] Earnshaw WC, Martins LM, Kaufmann SH, et al. 1Mammalian caspases: structure, activation,substrates and functions during apoptosis [J].AnnuRev Biochem, 1999, 68: 3832 4241.
    [159] Yin X, Ding WX, Zhao Y. Bcl 2 family proteins. Master regulators of apoptosis. In: Yin X, Dong Z,eds. Essentials of Apoptosis: A Guide for Basic and Clinical Research [J]. Totowa, NJ: HumanaPress, 2003: 13–27.
    [160] Okazaki R, Sakai A, Ootsuyama A, et al. Apoptosis and P53 Expression in Chindrocytes Relate toDegeneration inArticular Cartilage of Immobilized Knee Joints [J]. Rheumatol, 2003, 30: 559 566.
    [161] Hashimoto S, Setareh M, Ochs RL, et al. Fas/Fas ligand expression and induction of apoptosis inchondrocytes [J].Arthritis Rheum, 1997, 40: 1749 1755.
    [162] Zhang q, fans and Fornace A, Jr. Induction of bax by genotoxic stress in human cells correlates withnormal p53 status and apoptosis [J]. Oncongene, 1994, 9: 3743 3751.
    [163] Miyashita, T, Rees, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human baxgene [J].Cell, 1995, 80: 293 299.
    [164] Hynes RO. Integrins: Versatility, modulation and signaling in cell adhesion Cell, 2006, 69: 11 25.
    [165] Yang C, Li SW, Helminen HJ, et al. Apoptosis of chondrocytes in transgenic mice lacking collagenII [J]. Exp Cell Res, 1997, 235: 370–373.
    [166] chuerwegh AJ, Dombrecht EJ, Stevens WJ. Influence of proinflammatory (IL 1 alpha, IL 6,THF alpha, IFN gamma) and anti inflammatory (IL 4) cytokines on chondrocyte function [J].Osteoarthritis Cartilage, 2003, 11: 681 687.
    [167] Guo X. Diagnostic, clinical and radiological characteristics of Kashin Beck disease in ShaanxiProvince, PR China [J]. International Orthopaedics, 2001, 25: 147–150.
    [168] Ehrich E, Davies G, Watson D, et al. Minimal perceptible clinical improvement with the WesternOntario and McMaster Universities osteoarthritis index questionnaire and global assessments inpatients with osteoarthritis [J]. J Rheumatol, 2000, 27: 2635 2641.
    [169] Statistical Center of Ministry of Health, P.R. China. Statistical Bulletin of the DevelopmentCircumstance of Chinese Health Service in 2006. Available from http://www.moh.gov.cn/newshtml/18903.htm, accessed 2008. January 7.
    [170] Aigner T, McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage [J]. CellMol Life Sci, 2002, 59: 5 18.
    [171] Goggs R, Carter SD, Schulze Tanzil G, et al. Apoptosis and the loss of chondrocyte survival signalscontribute to articular cartilage degradation in osteoarthritis [J]. Vet J, 2003, 166: 140 158.
    [172] Connor JR, Kumar S, Sathe G, et al. Clusterin expression in adult human normal and osteoarthriticarticular cartilage[J]. Osteoarthritis Cartilage, 2001, 9: 727 737.
    [173] Stokes DG, Liu G, Coimbra IB, et al. Assessment of the gene expression profile of differentiatedand dedifferentiated human fetal chondrocytes by microarray analysis [J]. Arthritis Rheum, 2002,46: 404 419.
    [174] Wang WZ, Guo X, Duan C, et al. Comparative analysis of gene expression profiles between thenormal human cartilage and the one with endemic osteoarthritis [J]. Osteoarthritis Cartilage, 2009,17: 83 90.
    [175] Aigner T, Zien A, Gehrsitz A, et al. Anabolic and catabolic gene expression pattern analysis innormal versus osteoarthritic cartilage using complementary DNA array technology [J]. ArthritisRheum, 2001, 44: 2777–2789.
    [176] Sakai K, Kimata K, Sato T, et al. Chondroitin sulfate N acetylgalactosaminyltransferase 1 plays acritical role in chondroitin sulfate synthesis in cartilage [J]. J Biol Chem, 2007, 282: 4152 4161.
    [177] Bohensky J, Shapiro IM, Leshinsky S, et al. PIM 2 is an independent regulator of chondrocytesurvival and autophagy in the epiphyseal growth plate [J]. J Cell Physiol, 2007, 213: 246 251.
    [178] Wang SHJ, Guo X, Zuo H, et al. Chondrocyte apoptosis and expression of Bcl 2, bax, fas, andiNos in articular cartilage in patients with Kashin Beck disease[J]. J Rheumal, 2006, 33(3):615 619.
    [179] Zhong D, Liu X, Khuri FR, et al. LKB1 is necessary for Akt mediated phosphorylation ofproapoptotic proteins [J]. Cancer Res, 2008, 68: 7272 7277.
    [180] Yoo JH, Yoo JH, Choi YJ, et al. A novel de novo mutation in the serine threonine kinase STK11gene in Korean patient with Peutz Jeghers syndrome [J]. BMC Med Genet, 2008, 9: 44.
    [181] Sekine Y, Tsuji S, Ikeda O, et al. Signal transducing adaptor protein 2 regulates integrin mediatedT cell adhesion through protein degradation of focal adhesion kinase [J]. J Immunol, 2007, 179:2397 2407.
    [182] Ikeda O, Sekine Y, Muromoto R, et al. Enhanced c Fms/M CSF receptor signaling and woundhealing process in bone marrow derived macrophages of signal tranducing adaptor protein 2(STAP 2) deficient mice [J]. Biol Pharm Bull, 2008, 31: 1790 1793.
    [183] Vaidyanathan G, Cismowski MJ, Wang G, et al. The Ras related protein AGS1/RASD1 suppressescell growth [J]. Oncogene, 2004, 23: 5858 5863.
    [184] Farber CR, van Nas A, Ghazalpour A, et al. An integrative genetics approach to identify candidategenes regulating BMD: combining linkage, gene expression, and association [J]. J Bone Miner Res,2009, 24: 105 116.
    [185] Mathy Hartet M, Hogge L, Sanchez C, et al. Interleukin 1 ? and interleukin6 disturb the antioxidantenzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation [J].Osteoarthritis Cartilage, 2008, 16: 756 763.
    [186] Maneiro E, Martin MA, de Andres MC, et al. Mitochondrial respiratory activity is altered inosteoarthritic human articular chondrocytes [J].Arthritis Rheum, 2003, 48: 700 708.
    [187] Carlo MD Jr, Loeser RF. Increased oxidative stress with aging reduces chondrocytesurvival:correlation with intracellular glutathione levels [J].Arthritis Rheum, 2003, 48: 3419 3430.
    [188] Borgnia M, Nielsen S, Engel A, et al. Cellular and molecular biology of the aquaporin waterchannels [J].Annu Rev Biochem, 1999, 68: 425 458.
    [189] Mobasheri A, Trujillo E, Bell S, et al. Aquaporin water channels AQP1 and AQP3, are expressed inequine articular chondrocytes [J]. Vet J, 2004, 168: 143 150.
    [190] Trujillo E, Gonzales T, Marin R, et al. Human articular chondrocytes, synoviocytes and synovialmicrovessels express aquaporin water channels; upregulation of AQP1 in rheumatoid arthritis[J].Histol Histopathol, 2004, 19: 435 444.
    [191] Geyer M, Gr?ssel S, Straub RH, et al. Differential transcriptome analysis of intraarticular lesionalvs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology [J]. OsteoarthritisCartilage, 2009, 17: 328 335.
    [192] Liang HT, Feng XC, Ma TH. Water channel activity of plasma membrane affects chondrocytemigration and adhesion [J]. Clin Exp Pharmacol Physiol, 2008, 35: 7 10.
    [193] Uawithya P, Pisitkun T, Ruttenberg BE, et al. Transcriptional profiling of native inner medullarycollecting duct cells of rat kidney [J]. Physiol Genomics, 2008, 32: 229 253.
    [194] Tamamura Y, Otani T, Kanatani N, et al. Developmental regulation of Wnt/beta catenin signals isrequired for growth plate assembly, cartilage integrity, and endochondral ossification [J]. J BiolChem, 2005, 280: 19185 19195.
    [195] Corr M. Wnt beta catenin signaling in the pathogenesis of osteoarthritis[J]. Nat Clin PractRheumatol, 2008, 4: 550 556.
    [196] Yun K, choi YD, Nam JH, et al. NF kappaB regulates Lef1 gene expression in chondrocytes[J].Biochem Biophys Res Commun, 2007, 357: 589 595.
    [197] Yun K, Im SH. Transcriptional regulation of MMP13 by Lef1 in chondrocytes[J]. BiochemBiophys Res Commun, 2007, 364: 1009 1014.
    [198] Zirn B, Samans B, Wittmann S, et al. Target genes of the WNT/beta catenin pathway in Wilmstumors [J]. Genes Chromosomes Cancer, 2006, 45: 565 574.
    [199] Neame PJ, Young CN, Brock CW, et al. Pleiotrophin is an abundant protein in dissociative extractsof bovine fetal epihyseal cartilage and nasal cartilage from newborns [J]. J Orthop Res, 1993, 11:479 491.
    [200] Mentlein R. Targeting pleiotropin to treat osteoarthritis [J]. Expert Opi Ther Targets, 2007, 11:861 867.
    [201] Tapp H, Hernandez DJ, Neame PJ, et al. Pleiotrophin inhibits chondrocyte proliferation andstimulates proteoglycan synthesis in mature bovine chondrocytes [J]. Matrix Biol, 2000, 19: 521531.
    [202] Pufe T, Bartscher M, Petersen W, et al. Pleiotrophin, an embryonic differentiation and growthfactor, is expressed in osteoarthritis [J]. Osteoarthritis Cartilage, 2003, 11: 260 264.
    [203] Pufe T, Bartscher M, Petersen W, et al. Expression of pleiotrophin, an embryonic differentiationand growth factor, in rheumatoid arthritis [J].Arthritis Rheum, 2003; 48: 660 667.
    [204] Meng K, Rodriguez Pena A, Dimitrov T, et al. Pleiotrophin signals increased tyrosinephosphorylation of beta catenin through inactivation of the intrinsic catalytic activity of thereceptor type protein tyrosine phosphataseβ[J]. Proc NatlAcad Sci U.S.A, 2000, 97: 2603 2608.
    [205] Wary KK, Mariotti A, Zurzolo C, et al. A requirement for caveolin 1 and associated kinase Fyn inintegrin signaling and anchorage dependent cell growth [J]. Cell, 1998, 94: 625 634.
    [206] Schwab W, Kasper M, Gavlik JM, et al. Characterization of caveolins from knee joint cartilage:expression of caveolin 1, 2, and 3 in chondrocytes and association with integrin [J]. HistochemCell Biol, 2000, 113: 221 225.
    [207] Dai SM, Shan ZZ, Nakamura H, et al. Catabolic stress induces features of chondrocyte senescencethrough overexpression of caveolin 1: possible involvement of caveolin 1 induced down regulationof articular chondrocytes in the pathogenesis of osteoarthritis [J]. Arthritis Rheum, 2006, 54: 818831.
    [208] Fioravanti A, Nerucci F, Annefeld M, et al. Morphological and cytoskeletal aspects of cultivatednormal and osteoarthritic human articular chondrocytes after cyclical pressure: a pilot study [J].Clin Exp Rheumatol, 2003, 21: 739 746.
    [209] Campbell JJ, Blain EJ, Chowdhury TT, et al. Loading alters actin dynamics and up regulatescofilin gene expression in chondrocytes [J]. Biochem Biophys Res Commun, 2007, 361: 329 334.
    [210] Jortikka MO, Parkkinen JJ, Inkinen RI, et al. The role of microtubules in the regulation ofproteoglycan synthesis in chondrocytes under hydrostatic pressure [J]. Arch Biochem Biophys,2000, 374: 172 180.
    [211] Blain EJ. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology[J]. Int J Pathol, 2009; 90: 1 10.
    [212] Lambrecht S, Verbruggen G, Verdonk PC, et al. Differential proteome analysis of normal andosteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis [J].Osteoarthritis Cartilage, 2008, 16: 163 173.
    [213] Davies LC, Blain EJ, Gilbert SJ, et al. The potential of IGF 1 and TGFβ1 for promoting "adult"articular cartilage repair: an in vitro study [J]. Tissue Engineering Part A, 2008, 13: 1251 1261.
    [214] Forstrom JWO, Zakowski JJ, Tappel AL. Identification of the catalytic site of the rat liverglutathione peroxidase as selenocysteine [J]. Biochemistry, 1978, 17: 26 39.
    [215] Landestein R, Epp O, Bartles K, et al. Structure analysis and molecular model of selenoenzymeglutathione peroxidase at 2.8 ? resolution [J]. J Mol Biol, 1979; 134: 199 218.
    [216] Wingler K, Brigelius Flohe′R. Gastrointestinal glutathione peroxidase [J]. Biofactors, 1999, 10:245 248.
    [217] Behne D, Kyriakopoulos A, Meinhold H, et al. Identification of typeⅠiodothyronine deiodinase asa seleniumenzyme [J]. Biochem Biophys Res Commun, 1990, 173(3): 1143 1149.
    [218]莫东旭.大骨节病KBD因学说无机元素研究进展[J],地方病通讯,1984,2:8 10.
    [219] Moreno Reyes R, Suetens C, Mathieu F, et al. Kashin Beck osteoarthropathy in rural Tibet inrelation to selenium and iodine status [J]. NEngl JMed, 1998, 339: 1112 1120.
    [220] P. H. Canter, B. Wider, E. Ernst. The antioxidant vitamins A, C, E and selenium in the treatment ofarthritis: a systematic review of randomized clinical trials [J]. Rheumatology, 2007, 46: 1223 1233.
    [221]张军,赵燕,石红军等.硒对紫外线诱导HLF细胞凋亡的保护作用[J].同济大学学报(医学版),2002,23(2):100 102.
    [222]吴建民,陈婉蓉,傅中稹,等.亚硒酸钠诱导大鼠胚胎中脑神经细胞凋亡的观察[J].卫生毒理学杂志.2001.15(1):11 13.
    [223] Jinghong Chen, Yonglie Chu, Junling Cao, et al. T 2 toxin induces apoptosis, and selenium partlyblocks, T 2 toxin induced apoptosis in chondrocytes through modulation of the Bax/Bcl 2 ratio,Food and Chemical Toxicology, 2006, 44: 567–573.
    [224] Si yuan LI, Jun ling CAO, Zhong li SHI, et al. Promotion of the articular cartilage proteoglycandegradation by T 2 toxin and selenium protective effect [J]. Zhejiang Univ Sci B, 2008, 9(1):22 33.
    [225]陈婉蓉,鲁心安,傅中镇,等.硒对大鼠胚胎神经细胞增殖和分化的影响[J].中国公共卫生,2000,16(11):992 997.
    [226] Liu P, Fisher MA, Farhood, et al. Beneficial effects of extracellular glutathione against endotoxininduced liver injury during ischemia and reperfusion [J]. Circ Shock, 1994, 43(2): 64 71.
    [227] Celik HA, Aydin HH, Dececi R, et al. Biochemical and morphological characteristics ofselenite induced apoptosis in human hepatoma Hep G2 cells [J]. Biol Trace Elem Res, 2004,99(1 3): 27 40.
    [228] Becker K, Gromer S, Schurmer RH, et al. Thioredoxin reductase as a pathophysiological factor anddrug targer [J]. Eur J Biochem, 2000, 267: 6118 6125.
    [229] Chu FF, Esworthy RS, Doroshow JH, et al. Role of Se dependent glutathione peroxidases ingastrointestional inflammation and cancer [J]. Free Radic Biol Med, 2004, 36(12): 1481 1495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700