基于Geiger探测器的激光成像性能及测距精度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无扫描激光主动三维成像技术解决了扫描激光三维成像技术成像速度慢的缺陷,具有成像速度快,重量轻,体积小等优势,因此成为激光主动成像技术的主要发展方向。然而在采用面阵探测器时,不可避免的会减小单个探测器单元所获得的能量,使得系统的作用距离大大降低。Geiger模式的雪崩光电二极管具有单光子级的探测灵敏度,同时输出信号为数字信息,利于大规模集成。以Geiger模式探测器为基础的脉冲飞行时间测距成像系统具有灵敏度高、成像速度快、测距精度高、探测器集成度高、对激光器能量要求低、系统体积小、功耗低等多方面的优势,近年来受到极大关注。目前针对Geiger模式无扫描成像的研究多集中在探测器的制造以及探测器性能改进上,而对整个系统的性能研究开展较少。在分析了基于Geiger模式探测器阵列的激光三维成像系统目前存在的问题后,对基于Geiger模式探测器的激光成像性能及测距精度进行了深入研究。
     首先根据Geiger模式探测器测距与传统的阈值测距方法的差异,利用传统激光雷达方程和光子统计学理论,研究激光目标回波信号以及系统中存在的各种噪声的统计规律,研究获得了系统的探测性能与系统器件间的量化关系;包括系统的探测概率,虚警概率,最大作用距离,以及探测景深等参数与系统器件参数的关系,为系统设计以及系统性能分析及测距精度分析提供理论基础。
     在此基础上,进一步研究获得了系统测距精度与激光脉冲宽度,距离门信号以及探测噪声等参数的关系的计算方法。分别对无噪声方波信号以及含噪声的一般脉冲激光信号进行理论分析,得到系统的测距精度与误差随系统器件的变化规律,包括激光回波强度,激光脉冲宽度,目标位置,探测噪声等。分析结果表明目标回波强度和激光脉冲宽度对系统的测距精度具有极大的影响,目标回波强度越强,激光脉冲宽度越窄,所能获得的测距精度越高。利用MonteCarlo方法对误差模型进行了验证,结果与理论分析结果一致。
     针对Geiger模式探测器的脉冲飞行时间测距方法无法直接获取目标强度信息的缺陷,提出一种利用多脉冲统计获取目标强度信息的方法。理论分析得到了其探测精度以及探测动态范围随统计的探测次数间的关系,结果表明统计探测次数越多,测量精度越高,测量动态范围越大。利用MonteCarlo方法进行了实验验证,获得了与理论相一致的实验结果。
     针对Geiger模式探测器高灵敏度条件下易受噪声影响的缺点,提出了一种通过多脉冲统计方法提高系统探测概率以及降低系统虚警概率的算法,分析了多脉冲探测时的探测概率以及虚警概率随多脉冲统计的脉冲次数间的联系,结果表明随着统计的脉冲次数的增加,此算法的探测概率与虚警概率均会提高。在统计次数为5次时,在同样的虚警概率条件下,探测概率可以提高一倍以上。利用MonteCarlo方法对理论进行了实验验证,获得了与理论相一致的实验结果。
     最后改进了PIN阵列探测系统的信号处理电路,建立了模拟Geiger模式激光无扫描三维成像的实验系统,对基于Geiger模式探测器阵列的脉冲三维成像系统的工作原理进行原理性验证,证明了采用Geiger模式探测器阵列的激光三维成像系统的可行性。采用5ns脉冲宽度的激光脉冲和5ns计时精度的计时电路,获得的测距误差小于1.5m。
Scannerless active laser three dimensional imaging systems overcome the slowimaging speed of scanning imaging technique, and have the advantages of fast imag-ing speed, low weight, small volume. When using area detectors, it is inevitable to getless energy for a single pixel comparing to single detector, which results in shorter detec-tion range. Geiger mode detectors have single photon sensitivity, and use digital outputwhich can be easily integrated to form larger detector arrays. Geiger array detector basedimaging system has drawn many attentions from the researchers due to the advantagesof fast imaging speed, high ranging precision, easy integration, less laser energy require-ment, small system volume and less energy consumption. At present much attention ispaid to the development of detector arrays and the performance improvement of detectorperformance, but little to the performance of the whole system. The problems existed incurrent imaging system based on Geiger mode detectors are discussed, then researches onperformance and range accuracy are carried out.
     Based on the difference between Geiger mode ranging and threshold ranging, thestatistical properties of laser echo and noise signal are analyzed using lidar equation andphoton statistical theory. The relations between system performance and system param-eters are acquired, including the detection probability, the false alarm probability, themaximum detectable range, and depth of field are discussed, which are used as basis forsystem performance and range accuracy analysis.
     Based on the above analysis, a precision theory is proposed for Geiger mode laserrange systems. The range accuracy and precision are calculated for the system. Thenthe accuracy and precision of rect shape laser pulse without noise and general shape laserpulse with noise are calculated and discussed. The in?uence on range accuracy and pre-cision of pulse echo strength, pulse width, target position, detection noise are discussed.Results show that the pulse echo strength and pulse width have dominant in?uence onrange accuracy and precision, higher echo strength and narrower pulse width result inbetter accuracy. The theory is testified with Monte Carlo simulation which produces sameresults as theoretical analysis.
     Geiger detectors can not get the signal intensity directly. Therefore an algorithm to get the signal intensity using multi-pulse statistics is introduced. The detection accuracyand detection range of this method are discussed which shows that the accuracy and de-tection range increase with the number of detections. This method is testified with MonteCarlo simulation which produces same results as theoretical analysis.
     Geiger mode detector suffers from the noise photons due to high sensitivity. A falsealarm reduction method based on multi-pulse statistic is introduced and discussed. Therelations between the detection probability, false alarm probability and number of detec-tions are discussed, which shows that the detection probability and false alarm probabilityincrease with the number of detections. With a detection number of 5, detection proba-bility can double the detection probability of single detection with the same false alarmprobability. Monte Carlo simulation is carried out to testify the method, which producessame results as theoretical analysis.
     To testify the availability of 3D imaging system based on Geiger mode detectors, apulse ?ight-of-time 3D imaging system based on modified PIN array detectors is intro-duced. Experiment result shows that 3D imaging systems based on Geiger mode detec-tors are practical and with a 5n pulse width laser and 5ns time accuracy counting circuit,a range precision of about 1.5m is obtained.
引文
1 H. Saito, M. Doshida, Y. Mine, et al. Helicopter-born Obstacle Warning Lidar(OWL) System Using an LD Pumped Nd:YAG Laser[C]. Proceedings of the 1994Conference on Lasers and Electro-Optics Europe, 1994. Amsterdam, Neth: IEEE,1994:286–286.
    2 X. Zhu, P. Church, M. Labrie. LIDAR for Obstacle Detection During HelicopterLanding[C]. Laser Radar Technology and Applications XIII, 2008. Orlando, FL,United states: SPIE, 2008, 6950:69500T–1–8.
    3 D. M. He, G. G. L. Seet. Underwater Lidar Imaging Scaled by 22.5 Cm/ns withSerial Targets[J]. Optical Engineering, 2004, 43(3):754–766.
    4 N. Cadalli, D. C. Munson, A. C. Singer. Bistatic Receiver Model for AirborneLidar Returns Incident on an Imaging Array from Underwater Objects[J]. AppliedOptics, 2002, 41(18):3638–3649.
    5 A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, et al. Airborne Polarized Lidar Detectionof Scattering Layers in the Ocean[J]. Applied Optics, 2001, 40(24):4353–4364.
    6 E. A. McLean, J. Burris, H. R., M. P. Strand. Short-pulse Range-gated OpticalImaging in Turbid Water[J]. Applied Optics, 1995, 34:4343–4351.
    7 V. Mitra, C. H. Wang, S. Banerjee. Lidar Detection of Underwater Objects Using aNeuro-SVM-based Architecture[J]. IEEE Transactions on Neural Networks, 2006,17(3):717–731.
    8 F. Pellen, P. Olivard, Y. Guern, et al. Radio Frequency Modulation on an OpticalCarrier for Target Detection Enhancement in Sea-water[J]. Journal of Physics D-Applied Physics, 2001, 34(7):1122–1130.
    9 C. Tan, G. Seet, A. Sluzek, et al. A Novel Application of Range-gated UnderwaterLaser Imaging System (ULIS) in Near-target Turbid Medium[J]. Optics and Lasersin Engineering, 2005, 43(9):995–1009.
    10 J. Bosenberg, H. Danzeisen, D. Engelbart, et al. Ground-based Remote Sensing ofWind Vector and Visibility - Latest Results from Guideline Development[J]. Sen-sors, Systems and Next-Generation Satellites V, 2001, 4540:620–629.
    11 J. Yue, C. Y. She, H. L. Liu. Large Wind Shears and Stabilities in the MesopauseRegion Observed by Na Wind-temperature Lidar at Midlatitude[J]. Journal of Geo-physical Research-Space Physics, 2010, 115.
    12 S. D. Mayor, E. W. Eloranta. Two-dimensional Vector Wind Fields from VolumeImaging Lidar Data[J]. Journal of Applied Meteorology, 2001, 40(8):1331–1346.
    13 O. Reitebuch. Airborne Doppler Lidar Wind Measurements[J]. Conference Digest.2000 Conference on Lasers and Electro-Optics Europe, 2000:101109.
    14 N. Tsunematsu, T. Nagai, T. Murayama, et al. Volcanic Ash Transport from MountAsama to the Tokyo Metropolitan Area In?uenced by Large-scale Local Wind Cir-culation[J]. Journal of Applied Meteorology and Climatology, 2008, 47(4):1248–1265.
    15 G. Pearson, F. Davies, C. Collier. Remote Sensing of the Tropical Rain For-est Boundary Layer Using Pulsed Doppler Lidar[J]. Atmospheric Chemistry andPhysics, 2010, 10(13):5891–5901.
    16 I. Colbeck, M. Lazaridis. Aerosols and Environmental Pollution[J]. Naturwis-senschaften, 2010, 97(2):117–131.
    17 G. M. Krekov, M. M. Krekova, A. A. Lisenko, et al. Potential of Pulsed Excilampsfor Remote Sounding of Polluted Atmosphere[J]. Optics and Spectroscopy, 2009,107(5):696–704.
    18 C. R. Philbrick. Overview of Raman Lidar Techniques for Air Pollution Mea-surements[C]. Lidar Remote Sensing for Industry and Environment Monitoring II,2001. San Diego, CA, United states: SPIE, 2002, 4484:136–150.
    19 K. J. Lee, Y. Park, A. Bunkin, et al. Helicopter-based Lidar System for Monitoringthe Upper Ocean and Terrain Surface[J]. Applied Optics, 2002, 41(3):401–406.
    20 A. F. Bunkin, M. A. Davydov, A. V. Rezov, et al. Helicopter-based Lidar Com-plex for Emission and Fluorescence Remote-sensing of Terrain Surfaces[J]. LaserPhysics, 1994, 4(6):1198–1201.
    21 C. S. Tan, A. Sluzek, G. Seet. Model of Gated Imaging in Turbid Media[J]. OpticalEngineering, 2005, 44(11).
    22 E. Repasi, P. Lutzmann, O. Steinvall, et al. Advanced Short-wavelength InfraredRange-gated Imaging for Ground Applications in Monostatic and Bistatic Config-urations[J]. Applied Optics, 2009, 48(31):5956–5969.
    23 R. J. Grasso, J. C. Wikman, D. P. Drouin, et al. A High-resolution 2d ImagingLaser Radar for Occluded Hard Target Viewing and Identification[J]. InternationalJournal of High Speed Electronics and Systems, 2008, 18(2):393–400.
    24 O. K. Steinvall, H. Olsson, G. Bolander, et al. Gated Viewing for Target Detectionand Target Recognition[C]. G. W. Kamerman, C. Werner. Proceedings of SPIE.Orlando, FL, USA: SPIE, 1999, 3707:432–448.
    25 L. Bartolini, L. De Dominicis, M. F. De Collibus, et al. Underwater Three-dimensional Imaging with an Amplitude-modulated Laser Radar at a 405 nm Wave-length[J]. Applied Optics, 2005, 44(33):7130–7135.
    26 J. Busck. Underwater 3-d Optical Imaging with a Gated Viewing Laser Radar[J].Optical Engineering, 2005, 44(11):116011–116017.
    27 J. F. Andersen, J. Busck, H. Heiselberg. Pulsed Raman Fiber Laser and Multispec-tral Imaging in Three Dimensions[J]. Applied Optics, 2006, 45(24):6198–6204.
    28 Y. Hu, M. Vaughan, Z. Liu, et al. Retrieving Optical Depths and Lidar Ratiosfor Transparent Layers Above Opaque Water Clouds from Calipso Lidar Measure-ments[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):523–526.
    29 D. M. He, G. G. L. Seet. Underwater Lidar Imaging Scaled by 22.5 cm/ns withSerial Targets[J]. Optical Engineering, 2004, 43(3):754–766.
    30 H. M. Tulldahl, P. Andersson, A. Olsson, et al. Experimental Evaluation of Un-derwater Range-gated Viewing in Natural Waters[C]. Proceedings of SPIE. 2006,6395:639506–1–8.
    31 T. E. McDonald Jr, G. J. Yates, F. H. Cverna, et al. Range Gated Imaging Experi-ments Using Gated Intensifiers[J]. Proceedings of SPIE, 1999, 3642:142–148.
    32 C. Gronwall, O. Steinvall, F. Gustafsson, et al. In?uence of Laser Radar SensorParameters on Range-measurement and Shape-fitting Uncertainties[J]. Optical En-gineering, 2007, 46(10).
    33 O. Steinvall. Laser System Range Calculations and the Lambert W Function[J].Applied Optics, 2009, 48(4):B1–B7.
    34 L. Klasen, O. Steinvall, G. Bolander, et al. Gated Viewing in the Atmosphere - aStudy of Performance Limits[C]. Laser Radar Technology and Applications VII,2002. Orlando, FL, United states: SPIE, 2002, 4723:57–68.
    35 O. Steinvall, H. Larsson, F. Gustafsson, et al. Performance of 3-d Laser RadarThrough Vegetation and Camou?age[C]. Proceedings of SPIE. Bellingham WA,United States: SPIE, 2005, 5792:129–142.
    36 J. Busck, H. Heiselberg. Gated Viewing and High-accuracy Three-dimensionalLaser Radar[J]. Applied Optics, 2004, 43(24):4705–4710.
    37 J. Busck, H. Heiselberg. High Accuracy 3-d Laser Radar[C]. Laser Radar Technol-ogy and Applications IX, 2004. Orlando, FL, United states: SPIE, 2004, 5412:257–263.
    38 J. Beck, M. Woodall, R. Scritchfield, et al. Gated IR Imaging with 128×128HgCdTe Electron Avalanche Photodiode FPA[C]. 26th United States Workshop onPhysics and Chemistry of II-VI Materials. Baltimore, MD: Springer, 2007:1334–1343.
    39 J. Beck, M. Woodall, R. Scritchfield, et al. Gated Ir Imaging with 128×128 HgcdteElectron Avalanche Photodiode FPA[J]. Journal of Electronic Materials, 2008,37(Compendex):1334–1343.
    40李思宁,刘妍,张繁辉,等.距离选通激光三维成像系统的仿真研究[J].中国激光,2009,36(s2):331–334.
    41 Y. Zhang, Y. Zhao, L. Liu, et al. Improvement of Range Accuracy of Range-gatingLaser Radar Using the Centroid Method[J]. Applied Optics, 2010, 49(2):267–271.
    42 C. Jin, X. Sun, Y. Zhao, et al. Gain-modulated Three-dimensional Active Imagingwith Depth-independent Depth Accuracy[J]. Optics Letters, 2009, 34(22):3550–3552.
    43 X. D. Zhang, H. M. Yan, Y. B. Jiang. Pulse-shape-free Method for Long-rangeThree-dimensional Active Imaging with High Linear Accuracy[J]. Optics Letters,2008, 33(11):1219–1221.
    44 X. Zhang, H. Yan, M. Zheng. A New Three Dimension PLMR Imaging System[C].Proceedings of SPIE. Changchun, China: SPIE, 2005, 6024:60241A–1–7.
    45 C. Jin, Y. Zhao, Y. Zhang, et al. Scannerless Three-dimensional Imaging Using aPulsed Laser and an Intensified Charge-coupled Device with Linearly ModulatedGain[J]. Applied Optics, 2009, 48(19):3823–3829.
    46靳辰飞,赵远,张勇,等.一种无扫描三维成像激光雷达的实验研究[J].中国激光,2009,36(3):1383–1387.
    47 A. D. Gleckler. Multiple-slit Streak Tube Imaging Lidar (MS-STIL) Applica-tions[C]. Proceedings of SPIE. Bellingham, WA, USA: SPIE, 2000, 4035:266–278.
    48 A. Gelbart, B. C. Redman, R. S. Light, et al. Flash Lidar Based on Multiple-slit Streak Tube Imaging Lidar[C]. Laser Radar Technology and Applications VII,2002. Orlando, FL, United states: SPIE, 2002, 4723:9–18.
    49 J. S. Wei, Q. Wang, J. F. Sun, et al. High-resolution Imaging of a Long-distanceTarget with a Single-slit Streak-tube Lidar[J]. Journal of Russian Laser Research,2010, 31(4):307–312.
    50李思宁,广宇昊,王骐,等.条纹管紫外激光成像技术方案及性能分析[J].红外与激光工程,2007,(06):827–829+856.
    51刘金波,李思宁,王骐.多狭缝条纹管激光雷达系统设计及实验研究[J].中国激光,2009,(08):1991–1994.
    52魏靖松,程元丽,徐强,等.单狭缝条纹管激光雷达的成像[J].中国激光, 2008,35(4):496–500.
    53魏靖松,王骐,孙剑峰,等.单狭缝条纹管激光雷达四维成像实验[J].中国激光,2010,37(05):1231–1235.
    54赵宝升,陈敏.采用多狭缝条纹管实现激光三维成像[J].光子学报, 2004,33(12):1425–1427.
    55 P. Adany, C. Allen, R. Q. Hui. Chirped Lidar Using Simplified Homodyne Detec-tion[J]. Journal of Lightwave Technology, 2009, 27(16):3351–3357.
    56 W. Ruff, K. Aliberti, M. Giza, et al. Translational Doppler Detection Using Direct-detect Chirped Amplitude-modulated Laser Radar[J]. Microwave and Optical Tech-nology Letters, 2004, 43(4):358–363.
    57 G. N. Pearson, K. D. Ridley, D. V. Willetts. Chirp-pulse-compression Three-dimensional Lidar Imager with Fiber Optics[J]. Applied Optics, 2005, 44(2):257–265.
    58 B. C. Redman, B. Stann, W. Lawler, et al. Chirped AM Ladar for Anti-ship Mis-sile Tracking and Force Protection 3D Imaging: Update[C]. Laser Radar Tech-nologty and Applications XI, 2006. Kissimmee, FL, United states: SPIE, 2006,6214:62140O–1–15.
    59 B. Stann, B. C. Redman, W. Lawler, et al. Chirped Amplitude Modulation Ladar forRange and Doppler Measurements and 3-D Imaging[J]. Laser Radar Technologyand Applications XII, 2007, 6550:65005–1–12.
    60 B. L. Stann, W. C. Ruff, Z. G. Sztankay. Intensity-modulated Diode Laser RadarUsing Frequency-modulation/continuous-wave Ranging Techniques[J]. OpticalEngineering, 1996, 35(11):3270–3278.
    61 K. Aliberti, B. Stann, S. Svensson, et al. Analysis of the Mixing Effect in In-alas/ingaas Metal-semiconductor-metal Photodetectors[J]. Microwave and OpticalTechnology Letters, 2003, 39(2):108–112.
    62 H. Shen, K. Aliberti, B. Stann, et al. Mixing Characteristics of Ingaas Metal-semiconductor-metal Photodetectors with Schottky Enhancement Layers[J]. Ap-plied Physics Letters, 2003, 82(22):3814–3816.
    63 W. C. Ruff, K. Aliberti, M. Giza, et al. Characterization of a L 32 Element Metal-semiconductor-metal Optoelectronic Mixer Array for FM/cw Ladar[J]. IEEE Sen-sors Journal, 2005, 5(3):439–444.
    64 B. L. Stann, K. Aliberti, D. Carothers, et al. A 32x32 Pixel Focal Plane Array LadarSystem Using Chirped Amplitude Modulation[C]. Proceedings of SPIE. Orlando,FL, United states: SPIE, 2004, 5412:264–272.
    65 B. Redman, B. Stann, W. Lawler, et al. Chirped AM Ladar for 3D Imaging andRange-doppler Tracking at 1550 nm Wavelength: Update[C]. Long Beach, CA,United States: Institute of Electrical and Electronics Engineers Computer Society,Piscataway, NJ 08855-1331, United States, 2006:4628838.
    66 M. A. Albota, B. F. Aull, D. G. Fouche, et al. Three-dimensional Imaging LaserRadars with Geiger-mode Avalanche Photodiode Arrays[J]. Lincoln LaboratoryJournal, 2002, 13(2):351–70.
    67 B. F. Aull, A. H. Loomis, D. J. Young, et al. Geiger-mode Avalanche Photodiodesfor Three-dimensional Imaging[J]. Lincoln Laboratory Journal, 2002, 13(2):335–350.
    68 R. M. Heinrichs, B. F. Aull, R. M. Marino, et al. Three-dimensional Laser Radarwith APD Arrays[C]. Proceedings of SPIE. SPIE, 2001, 4377:106–117.
    69 J. B. Glettler, P. I. Hopman, S. Verghese, et al. InP-based Single-photon DetectorArrays with Asynchronous Readout Integrated Circuits[J]. Optical Engineering,2008, 47(10).
    70 M. G. Liu, C. Hu, X. G. Bai, et al. High-performance InGaAs/InP Single-photonAvalanche Photodiode[J]. IEEE Journal of Selected Topics in Quantum Electronics,2007, 13(4):887–894.
    71 K. A. McIntosh, J. P. Donnelly, D. C. Oakley, et al. Development of Geiger-modeAPD Arrays for 1.06??m[C]. 2002 IEEE/LEOS Annual Meeting Conference Pro-ceedings: 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society,2002. Glasgow, United kingdom: IEEE, 2002, 2:760–761.
    72 A. Tosi, A. Dalla Mora, F. Zappa. All-Silicon 1.55??m High-Resolution Pho-ton Counting and Timing[J]. IEEE Photonics Technology Letters, 2008, 20(21-24):1956–1958.
    73 P. Yuan, J. Boisvert, R. Sudharsanan, et al. High Efficiency 1.55??m Geiger-modeSingle Photon Counting Avalanche Photodiodes Operating Near 0°C[C]. Proceed-ings of SPIE. SPIE, 2008, 6900:69001B–1–9.
    74 Y. J. Li, J. R. Yang, L. He, et al. Long-wave Infrared 2048-elements Linear HgCdTeFocal Plane Array[J]. Journal of Infrared and Millimeter Waves, 2009, 28(2):90–92.
    75 O. Gravrand, P. Ballet, J. Baylet, et al. HgCdTe P-on-n Focal-plane Array Fabri-cation Using Arsenic Incorporation During Mbe Growth[J]. Journal of ElectronicMaterials, 2009, 38(8):1684–1689.
    76 J. Rothman, G. Perrais, P. Ballet, et al. Latest Developments of HgCdTe E-apds atCea Leti-minatec[J]. Journal of Electronic Materials, 2008, 37(9):1303–1310.
    77 J. R. Lindle, W. W. Bewley, I. Vurgaftman, et al. A 5 Mm X 5 Mm Mid-wavelengthInfrared HgCdTe Photodiode Array with Negative Luminescence Efficiency Equiv-alent to 95Journal of Electronic Materials, 2004, 33(6):600–603.
    78 J. Vallerga, J. McPhate, L. Dawson, et al. Mid-IR Photon Counting Array UsingHgCdTe Apds and the Medipix2 ROIC[C]. Infrared Systems and PhotoelectronicTechnology II, 2007. San Diego, CA, United states: SPIE, 2007, 6660:66600O–1–10.
    79 C. Niclass, C. Favi, T. Kluter, et al. A 128×128 Single-photon Image Sensor withColumn-level 10-bit Time-to-digital Converter Array[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12):2977–2989.
    80 S. Verghese, K. A. McIntosh, Z. L. Liau, et al. Arrays of 128×32 InP-based Geiger-mode Avalanche Photodiodes[C]. Advanced Photon Counting Techniques III, 2009.Orlando, FL, United states: SPIE, 2009, 7320:73200M–1–8.
    81 G. M. Smith, J. P. Donnelly, K. A. McIntosh, et al. Reliable Large Format Arraysof Geiger-mode Avalanche Photodiodes[C]. International Conference on IndiumPhosphide and Related Materials. Versailles, France: IEEE, 2008:1–3.
    82 R. D. Younger, K. A. McIntosh, J. W. Chludzinski, et al. Crosstalk Analysis ofIntegrated Geiger-mode Avalanche Photodiode Focal Plane Arrays[C]. AdvancedPhoton Counting Techniques III, 2009. Orlando, FL, United states: SPIE, 2009,7320.
    83 M. A. Albota, R. M. Heinrichs, D. G. Kocher, et al. Three-dimensional ImagingLaser Radar with a Photon-counting Avalanche Photodiode Array and MicrochipLaser[J]. Applied Optics, 2002, 41(36):7671–7678.
    84 B. Aull. 3d Imaging with Geiger-mode Avalanche Photodiodes[J]. Optics & Pho-tonics News, 2005, 16(5):42–46.
    85 B. F. Aull, A. H. Loomis, D. J. Young, et al. Three-dimensional Imaging withArrays of Geiger-mode Avalanche Photodiodes[J]. Semiconductor Photodetectors,2004, 5353:105–116.
    86 B. F. Aull, R. M. Marino. Three-dimensional Imaging with Arrays of Geiger-modeAvalanche Photodiodes[C]. Proceedings of SPIE. 2005, 6014:60140D–1–12.
    87 B. F. Aull, A. H. Loomis, D. J. Young, et al. Three-dimensional Imaging withArrays of Geiger-mode Avalanche Photodiodes[C]. OSA Trends in Optics andPhotonics Series. Washington, DC 20036-1023, United States: Optical Society ofAmerica, 2003, 88:470–471.
    88 R. M. Marino, J. Davis, W. R. Jigsaw: A Foliage-penetrating 3d Imaging LaserRadar System[J]. Lincoln Laboratory Journal, 2005, 15(1):23–36.
    89 M. Vaidyanathan, S. Blask, T. Higgins, et al. Jigsaw Phase III: A MiniaturizedAirborne 3-d Imaging Laser Radar with Photon-counting Sensitivity for FoliagePenetration[C]. Laser Radar Technology and Applications XII. 2007, 6550:6550N–1–12.
    90 R. M. Marino, T. Stephens, R. E. Hatch, et al. A Compact 3d Imaging Laser RadarSystem Using Geiger-mode Apd Arrays: System and Measurements[C]. LaserRadar Technology and Applications VIII. Orlando, FL, USA, 2003, 5086:1–15.
    91 J. C. Dries, T. Martin, W. Huang, et al. InGaAs/InP Avalanche Photodiodes Arraysfor Eye Safe Three-dimensional Imaging[C]. Proceedings of SPIE. SPIE, 2003,5074:11–17.
    92 J. C. Dries, B. Miles, R. Stettner. A 32x32 Pixel Flash Laser Radar System Incor-porating InGaAs Pin and Apd Detectors[C]. Laser Radar Technology and Applica-tions IX, 2004. Orlando, FL, United states: SPIE, 2004, 5412:250–256.
    93 R. Sudharsanan, P. Yuan, J. Boisvert, et al. Single Photon Counting Geiger ModeInGaAs(P)/InP Avalanche Photodiode Arrays for 3d Imaging[C]. Proceedings ofSPIE. Orlando, FL, United States: SPIE, 2008, 6950:69500N–1–9.
    94 Y. Guo, G. Huang, R. Shu. 3d Imaging Laser Radar Using Geiger-mode Apds:Analysis and Experiments[C]. Proceedings of SPIE. Orlando, FL, United states:SPIE, 2010, 7684:7684021–7684028.
    95 S. Johnson, P. Gatt, T. Nichols. Analysis of Geiger-mode APD Laser Radars[C].Proceedings of SPIE. Orlando, FL, United states: SPIE, 2003, 5086:359–368.
    96 D. G. Fouche. Detection and False-alarm Probabilities for Laser Radars That UseGeiger-mode Detectors[J]. Applied Optics, 2003, 42(27):5388–5398.
    97 P. Gatt, S. Johnson, T. Nichols. Geiger-mode Avalanche Photodiode Ladar Re-ceiver Performance Characteristics and Detection Statistics[J]. Applied Optics,2009, 48(17):3261–3276.
    98 G. M. Williams, A. S. Huntington. Probabilistic Analysis of Linear Mode vs GeigerMode APD Fpas for Advanced LADAR Enabled Interceptors[C]. Proceedings ofSPIE. Kissimmee, FL, United States: International Society for Optical Engineering,Bellingham WA, WA 98227-0010, United States, 2006, 6220:622008–1–14.
    99 P. Gatt, S. Johnson, T. Nichols. Dead-time Effects on Geiger-mode Apd Per-formance[C]. Proceedings of SPIE. Orlando, FL, United states: SPIE, 2007,6550:65500I–1–12.
    100 E. Sciacca, G. Condorelli, S. Aurite, et al. Crosstalk Characterization in Geiger-mode Avalanche Photodiode Arrays[J]. IEEE Electron Device Letters, 2008,29(3):218–220.
    101寇松峰,陈钱,顾国华,等.基于4元APD阵列的激光测距技术研究[J].激光与红外,2008,38(6):537–540.
    102 J. W. Goodman. Statistical Optics[M]. New York: Wiley, 1985.
    103 L. Mandel, E. C. G. Sudarshanand, E. Wolf. Theory of Photoelectric Detection ofLight Fluctuations[J]. Proceedings of the Physical Society, 1964, 84(3):435–444.
    104 L. Mandel. Fluctuations of Photon Beams: The Distribution of the Photo-Electrons[J]. Proceedings of the Physical Society, 1959, 74(3):233–243.
    105 J. W. Goodman. Some Effects of Target-induced Scintillation on Optical RadarPerformance[J]. Proceedings of the IEEE, 1965, 53(11):1688–1700.
    106 M. O’Brien, D.G.Fouche. Simulation of 3d Laser Radar Systems[J]. Lincoln Lab-oratory Journal, 2005, 15(1):37–60.
    107 M. S. Oh, H. J. Kong, T. H. Kim, et al. Time-of-?ight Analysis of Three-dimensional Imaging Laser Radar Using a Geiger-mode Avalanche Photodiode[J].Japanese Journal of Applied Physics, 2010, 49(2):026601–026606.
    108 M. S. Oh, H. J. Kong, T. H. Kim. Systematic Experiments for Proof of PoissonStatistics on Direct-detection Laser Radar Using Geiger Mode Avalanche Photodi-ode[J]. Current Applied Physics, 2010, 10(4):1041–1045.
    109 D. R. Gerwe, P. S. Idell, J. Vaughn. Cramer-rao Bound Analysis of TargetCharacterization Accuracy Limits for Imaging Systems[C]. Multifrequency Elec-tronic/Photonic Devices and Systems for Dual-Use Applications. San Diego, CA,USA: SPIE, 2001, 4490:245–255.
    110 O. Steinvall. Effects of Target Shape and Re?ection on Laser Radar Cross Sec-tions[J]. Applied Optics, 2000, 39(24):4381–4391.
    111 S. Johnson, S. Cain. Bound on Range Precision for Shot-noise Limited Ladar Sys-tems[J]. Applied Optics, 2008, 47(28):5147–5154.
    112 O. Steinvall, T. Chevalier. Range Accuracy and Resolution for Laser Radars[C].Electro-Optical Remote Sensing. Bruges, Belgium: SPIE, 2005, 5988:598808–1–16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700