直接探测激光二极管雷达的测距特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光二极管器件日益成熟,为新型激光测距仪的研制提供了小型化、高重频的廉价的探测光源,给激光雷达领域的研究注入了新的活力。激光二极管相比于传统的调Q激光器,脉冲峰值功率较低,上升沿缓慢,这使得激光二极管雷达的测距特性与传统的固体激光雷达有较大的差异。为此,本论文给出了一种更具有普适性的激光二极管测距特性的评价体系,并在理论和实验上对激光二极管雷达的测距特性进行了研究。
     在理论上,建立了测距型激光二极管雷达测距过程仿真的随机模型,在MATLAB环境下编制了仿真计算程序,并进行了模型正确性的实验验证。该模型能够考虑鉴别电平和电路带宽等系统参数以目标反射特性、目标距离和大气传输特性等工作条件对激光二极管雷达测距过程的影响。在此基础上,通过仿真测距实验,研究了鉴别电平、系统带宽和目标反射特性等因素对激光二极管雷达测距特性的影响。在实验上,搭建了测距型激光二极管雷达的实验装置,并利用该装置进行了不同条件下的大量定点测距实验。通过实验验证了数值仿真得到的鉴别电平、系统带宽和目标反射特性等因素对激光二极管雷达测距特性影响规律的正确性。研究结果表明:在低信噪比条件下,激光二极管雷达测距数据的离散分布将明显偏离正态分布;同时在保持其它参数不变的情况下,随着鉴别电平的升高和系统带宽的增加,测距密集度参数均表现出了先增加后减小的规律,存在最佳的鉴别电平和系统带宽值。在本文的系统参数下,最佳鉴别电平和为系统带宽值为500mV和25MHz。
     综上可见,该研究工作和结果对于测距型激光二极管雷达的优化设计和后续三维数据重建及分析有着重要的参考价值。
Laser diode devices is becoming more sophisticated. provide a compact, low-cost and high-repetition detection light source for the development of new laser range finder, which pour new energy into the field of laser radar research. Compared to the traditional Q-laser, laser diode has lower pulse peak power, slowler rising time, which makes the characteristics of laser diode radar ranging are quite different from traditional solid laser radar. So,this paper presents a more universal characteristics of the laser diode ranging evaluation system, and studies on laser diode characteristics of radar ranging in theory and experiment.
     In In theory, we establish simulation of the stochastic model,which depend on a distance-based laser diode radar ranging process. The simulation is developed in the MATLAB environment and verify the correctness of the model from experiment. The model can consider the influence of system parameters such as theshold level and bandwidth, and working conditions such as atmospheric transmission characteristics reflection characteristics of the target, target distance to radar ranging. On this basis, through ranging simulation experiments, we identify the influence of threshold level, the system bandwidth and target reflection characteristics characteristics of laser diode radar range. In the experiment, we build the laser diode radar ranging system, and use of the devices under different conditions of a large number of fixed-point ranging experiments. Experimental results show influence law of the threshold level, the system bandwidth and target reflection properties and so on to characteristics of laser diode radar ranging in the numerical simulation results is correct. The results show that:in the low SNR conditions, the discrete distribution of the laser diode radar ranging data will significantly deviate from the normal distribution; while keeping other parameters unchanged, with increase of threshold level and system bandwidth and keep ranging parameters steadly.the parameters of characteristics of laser diode showed decreases and increases in law, there is an optimal threshold level and system bandwidth. In this paper, the best threshold level and system bandwidth is 500mV and25MHz.
     In summary, the results of the research shows important reference value for optimum design of ranging laser diodes radar and follow-up three-dimensional reconstruction and analysis of target data.
引文
[1]王德,李学千.激光二极管的最新进展及其应用现状.光学精密工程,2001,9(3):279-283
    [2]张承诠.国内外军用激光仪器手册.北京:兵器工业出版社.1989.
    [3]胡以华,魏庆农,刘建国,章立民.机载激光波束扫描回波脉冲特征分析.应用激光,1997,17(3):109-112.
    [4]胡以华,王建宇,薛永祺.地面目标激光回波特征实验研究.红外与激光工程.2002,31(2):105-108.
    [5]Z. Bielecki. Maximisation of signal-to-noise ratio in infrared radiation receiver. Opto-Electronics Review.2002,10(3):209-216.
    [6]Larry C. Andrews. Field Guide to Atmospheric Optics. USA:SPIE Press.2004.
    [7]王春晖,成向阳等CO2激光成像雷达距离分辨率测距精度的分析与实验研究光子学报32(10):1212-1215.
    [8]Steven Johnson, et al. Range Precision of Direct Detection Laser. Proceeding of SPIE 5412:72-86.
    [9]Amann M.C. Laser ranging:a critical review of usual techniques for distance measurement. Optical Engineer 40(1):10-19.
    [10]Sandor Der Simulation of error in optical radar range measurements. Applied Optics, 1997.36(27):6869-6874.
    [11]Steinvall, O., Effects of Target Shape and Reflection on Laser Radar Cross Sections. Applied Optics.,2000.39(24):4381-4391.
    [12]Steinvall, O., Tomas Chevalier, Range accuracy and resolution for laser radars. Proceeding of SPIE 5998:598808-1-598808-16.
    [13]Gronwall, C.,et al., Influence of laser radar sensor parameters on range-measurement and shape-fitting uncertainties. Optical Engineering,2007.46(10):106201-1-106201-11.
    [14]潘继飞,姜秋喜,毕大平.模拟内插法及其测量误差分析.电光与控制.2007,14(1),:147-150.
    [15]J. Kalisz. Single-chip interpolating time counter with 200-ps resolution and 43-s range. IEEE Trans.Instr. and Meas.,1997,46(4):851-856.
    [16]T. Otsuji, A picosecond-accuracy 700-MHz range Si-polar time intervalcounter LSI. IEEE Solid-State Circuits,1993,28:941-947.
    [17]文暄,邓甲昊,李月琴.脉冲激光高精度测距的数据处理方法研究.红外与激光工程.2007,36:150-153.
    [18]Steven Johnson, Stephen Cain. Bound on range precision for shot-noise limited ladar systems. Applied Optics.2008,47(28):5147-5154.
    [19]Gronwall, C. Ground Object Recognition using Laser Radar Data:Geometric Fitting, Performance Analysis, and Applications.1 st ed. Sweden:LiU-Tryck,2006.
    [20]霍玉晶,陈干颂,潘志文.脉冲激光雷达的时间间隔测量综述.激光与红外,2001,31(3):53-56.
    [21]Araki Tsutomu. Optical Distance Meter Using a Short Pulse Width Laser Diode and a Fast Avalanche Photodiode. Review of Scientific Instruments,1995,66(1):43-47.
    [22]陈千颂,杨成伟,潘志文,霍玉晶.激光飞行时间测距关键技术进展.激光与红外,2002,2:32(1)
    [23]L.C. Andrews, R.L. Phillips, and C.Y. Hopen, Laser Beam Scintillation with Applications. Bellingham:SPIE Optical Engineering Press.2001.
    [24]J.W. Goodman. Some effects of target-induced scintillation on optical radar Performance. Proc. IEEE (53):1688-1700,1965.
    [25]ASTM E456-02. Standard Terminology Relating to Quality and Statistics. ASTM International.
    [26]International Vocabulary of Basic and General Terms in Metrology. International Organization for Standardization.1993.
    [27]A.V. Jelalian. Laser Radar Ssystems. Chicago:Artech House.1992.
    [28]王春晖,成向阳,王骐,田兆硕, 李琦.CO2激光成像雷达距离分辨率测距精度的分析与实验研究.光子学报.2003,10(32):1212-1215.
    [29]来建成,王春勇,姜海娇,李振华.激光测距雷达探测能力的理论评价方.弹箭与制导学报.2008,28(6):279-282.
    [30]胡以华等.机载激光扫描测距接收机中信号处理研究.量子电子学报.1997,14(3):284-288.
    [31]戴永江.激光雷达原理.北京:国防工业出版社.2002
    [32]米阳.大气传输特性对激光测距系统测距精度的影响.激光杂志,2008,29(4):59-61.
    [33]Nagib Z. Hakim, Bahaa E.A.Saleh, Malvin C.Teich. Signal-to-Noise Ratio for Lightwave Systems Using Avalanche Photodiodes. Journal of Lightwave Technology, 1991,9(3):318-320.
    [34]胡春生.脉冲半导体激光器高速三维成像激光雷达研究.国防科学技术大学.2005.
    [35]Hamamatsu Photonics. Characteristics and use of Si APD. Hamamatsu Photonics,2001..
    [36]V.Rajamani, P.Chakrabarti. Noise performance of an InP/InGaAs superlattice avalanche photodiode. Optical and Quantum Electronics,1999,31:69-76.
    [37]R. J. Mcintyre. Multiplication noise in uniform avalanche diodes. IEEE Transaction on Electron. Devices.1966,ED-13(1):164-168.
    [38]许光明,汤建勋,王飞.光电转换前置放大器的噪声分析.电子测量技术,2007,30(5):178-179.
    [39]高晋占.微弱信号检测.北京:清华大学出版社,2004.
    [40]孙再龙译.红外光电系统手册(第6卷).北京:航天工业总公司第三研究院8358所,1993.
    [41]陈光余译.红外与光电系统手册(第1卷).北京:航天工业总公司第三研究院8358所, 2001.
    [42]胡以华,薛永祺,何永清.机载扫描激光测距精度的研究.量子电子学报.1999,16:193-197.
    [43]王春勇,谢俊,卞保民,李振华.提高激光雷达测距精度的最佳信号门限比.激光技术.2007,31(4):408-411.
    [44]李番,吴淦华,韩春生,谢亚峰.提高激光雷达测距能力的方法.红外与激光工程,2008,37:112-114
    [45]刘晓波,李丽,基于盖革模式APD阵列的激光雷达性能分析.航空兵器2009,6:35-38
    [46]Robert N. McDonough, Anthony D. Whalen.噪声中的信号检测.北京:电子工业出版社.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700