纳米材料相变的尺寸和界面效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着低维纳米材料尺寸的减小,表面/体积比急剧增加,表面和界面对材料的热稳定性和相稳定性等性能的影响显著增加。本文中,通过扩展Lindemann熔化准则到玻璃化转变,推导出尺寸和界面依赖性的玻璃转变温度模型,该模型简单且无任何可调参数,能预测不同维数的低维纳米尺寸的聚合物,小分子有机物和无机物,等等。既描述了玻璃转变中的过冷现象,又解释了由于薄膜与基底强的相互作用所引起的过热现象。在此基础上,还系统讨论了纳米禁闭的过冷液体的热力学和动力学对凝固温度的影响。与此同时,基于以前的模型,也建立了铁磁体、铁电体的居里温度、反铁磁体的尼耳温度,超导临界转变温度的尺寸和界面依赖性的模型。这些具有简单性而又无自由参数的解析函数描述了金属、合金和化合物的纳米尺寸的铁磁体、反铁磁体、铁电体和超导体的临界转变温度的过冷和过热现象,从而进一步讨论了铁磁体/反铁磁体双层的热稳定性的尺寸效应。模型预测与大量的实验结果相符合一致。
It is well known that the related properties (electronic, magnetic, optic, catalytic, thermodynamic and kinetic properties) of low-dimensional nanomaterials (nanoparticles, nanorods or nanowires, and thin films) are dramatically different from that of bulk due to high surface/volume ratio. These fascinating physicochemical properties of nanomaterials and their wide possibilities of using these properties in practice have attracted great interest. The current progress in nanotechnology has made the fabrication of individual nanocrystals possible, which in turn provides an opportunity to study the basic properties of nanomaterials. In the past years, following the pioneering work of Takagi in 1954, which experimentally demonstrated that ultrafine metallic nanocrystals melt below their corresponding bulk melting temperature, the thermal and phase stabilities of nanomaterials have been intensively studied experimentally and theoretically due to the industrial and scientific importance, such as the melting transition of nanocrystals, the glass transition of low-dimensional polymers and organic molecules, the Curie transition of ferromagnetic, ferrelectric nanocrystals, the Néel transition of antiferromagnetic nanocrystals and the critical transition of superconductive nanocrystals, etc.. These properties of thermal and phase stabilities are of concern for designing and governing materials for applications in practice. Thus, how to improve the thermal and phase stabilities is the significant project.
     Since many important physical and chemical processes of materials firstly happen at surfaces and interfaces, where the atoms or molecules are of different energetic states in comparison with that within the bulk materials, the interface situation should be the primary object to be considered. However, this effect has been ignored in the previous theoretical models, which results in the superficial understanding for the size dependence of the related properties of nanomaterials.
     To understand the above problems, there are two essential methods: Top-down and bottom-up methods. In this thesis, as one of top-down method, thermodynamics is introduced to study the region between macroscopic and microscopic ones. The application of thermodynamics to nanomaterials reveals a new branch of thermodynamics, i.e., nanothermodynamics.
     Recently, we have established simple and unified models for size and interface effects on thermal and phase stabilities of nanomaterials. In comparison with previously theoretical models, the characteristics of our model are: (1) Free of adjustable parameters; (2) full size range, especially the low size limit of several monolayers; (3) parameters within the model having clear physical meaning; (4) in a unified form for different substances. In addition, the interface and dimension effects on the related properties are introduced by the material- and interface situation-dependent parameterαand dimension-dependent critical size D0. The concrete contents are listed as following,
     (1). In chapter 2, extending Lindemann′s criterion for melting to vitrification transition, we establish a simple and unified thermodynamic model, without any adjustable parameter, for size and interface effects on glass transition temperature of nanoscaled glass with size D [Tg(D)]. According to this model, Tg(D) of free nanoscaled glass decreases with dropping D; while Tg(D) of thin films supported by substrates may decrease or increase with dropping D, which is determined by free surface and film/substrate interaction strength. When the film/substrate interaction is weak, such as van de Waals force, Tg(D) decreases as D is reduced; while it is contrary as the film/substrate interaction is strong, such as hydrogen bonding. Based on this model, the size- and interface-dependent thermodynamic and kinetic properties (viscosity, surface tension and thermal expansion coefficient, configuration entropy) of nanoconfined polymers has been deduced. Associated with above results, the roles of thermodynamics and kinetics in the glass transition of nanoconfined organic molecules are discussed detailedly. In addition, under the external pressure, the size and interface dependent glass transition temperature function has also been studied. The validity of model is confirmed by a large number of experimental results of nanoconfined polymers, organic molecules, and inorganic molecules.
     (2). In chapter 3, combining the thermal vibration instability model with the energy-equilibrium criterion between the spin-spin exchange interactions and the thermal vibration energy of atoms at Tc, a model for Tc(D) and TN(D) of FM and AFM nanocrystals has been developed. Not only the undercooling of Tc(D) and TN(D) but also the superheating phenomena induced by strong magnetic interaction at film/substrate interfaces have been interpreted. The model predictions are consistent with a number of availably experimental measurements of nanocrystals of Fe, Co, Ni, Gd, Ho, Co1Ni1, Co1Ni3, Co1Ni9, Fe3O4, MnFe2O4, CoO, NiO and CuO. Furthermore, on the basis of this model, we have deduced AFM thickness dependent blocking temperature function in exchange-biased FM/AFM bilayers (Fe3O4/CoO, NiO/NiFe, CoNiO/NiFe, IrMn/NiFe, Py/IrMn, IrMn/CoFe, FeMn/NiFe, MnPt/CoFe and FeF2/Fe bilayers) to discuss the thermal stability of exchange-biased systems. The agreements between the model predictions and available experimental results confirm the validity of this model.
     (3). In chapter 4, we established a simple and unified thermodynamic model, without any adjustable parameter, for size and interface effects on the spontaneous polarization [Ps2(D)] and the Curie temperature [Tc(D)] of low-dimensional ferroelectrics (thin films, nanowires and nanoparticles). In terms of this model, Ps2(D) and Tc(D) functions of perovskite ferroelectric nanosolids decrease or increase as D drops. This is determined by the mechanical interaction at ferroelectric film/substrate interfaces. It is shown that the tensile strain decreases the polarization and the Curie temperature while the compressive strain increases the polarization and the Curie temperature. The predicted results are consistent with the availably experimental evidences of BaTiO3 and PbTiO3 nanosolids.
     (4). In chapter 5, the finite size effect on the critical transition temperature of superconductive nanocrystals Tc(D) has also been obtained by incorporating the model of lattice vibration instability of nanocrystals into the simplified McMillan formula. According to this model, the Tc(D) of superconductive nanocrystals is predicted to decrease or increase with the dropping size of nanocrystals. This is dependent on the bond strength of interfacial atoms and the surface/volume ratio of nanocrystals. The predicated results are consistent with the available experimental results for superconductors MgBB2 and Nb thin films, Bi and Pb granular thin films and nanoparticles, Al thin films and nanoparticles.
引文
[1] R. P. Feynmann, There’s plenty of room at the bottom, Eng. Sci. 23 (1960) 22-36, and www.zyvex.com/nanotech/feynman.html (1959).
    [2] H. Gleiter, N. Hansen, A. Horsewell, T. Leffers and H. Lihold (Eds.), in Proceedings of the second Risφ international symposium on metallurgy and materials science, Risφ Nat. Laboratory Roskilde, Denmark, 1981, p. 15.
    [3] H. Gleiter, Nanostructured materials, Basic concept and microstructure, Acta Mater. 2000, 48, 1.
    [4] R. E. Cavicchi, R. H. Silsbee, Coulomb suppression of tunneling rate from small metal particles, Phys. Rew. Lett. 1984, 52, 1453.
    [5] A. I. Gusev, A. A. Rempel, Nanocrystalline Materials, Camb. Internat. Sci. Pub. 2004, p189.
    [6] M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Japan 1954, 9, 359.
    [7] P. Ball, L. Garwin, Science at the atomic scale, Nature 1992, 355, 761.
    [8] C. Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications, Prog. Mater. Sci. 48 (2003) 521.
    [9] J. G. Dash, History of the search for continuous melting, Rev. Mod. Phys. 1999, 71, 1737.
    [10] See, for example, J. W. Christian, The Theory of Transformations in Metals and Alloy, 2nd edition, Part I, Equilibrium and General Kinetic Theory, Oxford, Pergamon Press, 1975, pp. 418-475.
    [11] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 1989, 33, 223.
    [12] L. Lu, M. L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 2000, 287, 1463.
    [13] F. A. Lindemann, üder die berechnung molekularer eigenfrequenzen, Phys. Z. 1910, 11, 609.
    [14] M. Born, Thermodynamics of crystals and melting, J. Chem. Phys. 1939, 7, 591.
    [15] T. Gorecki, Vacancies for solid krypton bubble copper, nickel and gold particles, Z. Metall. 1974, 65, 426.
    [16] A. Rubcic, J. B. Rubcic, Fizika 1978, 10 (Suppl. 2), 294.
    [17] L. Graback, J. Bohr, Superheating and supercooling of lead precipitates in aluminum, Phys. Rev. Lett. 1990, 64, 934.
    [18] K. Lu, Y. Li, Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystals, Phys. Rev. Lett. 1998, 80, 4474.
    [19] C. J. Rossouw, S. E. Donnelly, Superheating of small solid–argon bubbles in aluminum, Phys. Rev. Lett. 1985, 55, 2960.
    [20] P. A. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 1976, 13, 2287.
    [21] G. L. Allen, R. A. Bayles, W. W. Giles, W. A. Jesser, Small particle melting of pure metals, Thin Solid Films 1986, 144, 297.
    [22] C. J. Coombes, The melting of small particles of lead and indium, J. Phys. F 1972, 2, 441.
    [23] V. P. Skripov, V. P. Koverda, V. N. Skokov, Size effect on melting of small particles, Phys. Status Solidi A 1981, 66, 109.
    [24] J. Peppiatt, J. R. Sambles, The melting of small particles. II. Bismuth, Proc. R. Soc. London Ser. A 1975, 345, 387.
    [25] R. Kofman, P. Cheyssac, R. Garrigos, From the bulk to clusters: solid-liquid phasetransitions and precursor effects, Phase Transit. 1990, 24, 283.
    [26] T. Castro, R. Reifenberger, E. Choi, R. P. Andres, Size-dependent melting temperature of individual nanometer-sized metallic clusters, Phys. Rev. B 1990, 42, 8548.
    [27] J. P. Borel, Thermodynamical size effect and the structure of metallic clusters, Surf. Sci. 1981, 106, 1.
    [28] C. Solliard, Debye-Waller factor and melting temperature in small gold particles realted size effect, Solid State Commun. 1984, 51, 947.
    [29] J. H. Evens, D. J. Mazey, Evidence for solid krypton bubbles in copper, nickel and gold at 293K, J. Phys. F 1985, 15, L1.
    [30] T. L. Beck, J. Jellinek, R. S. Berry, Rare gas clusters: solids, liquids, slush, and magic numbers, J. Chem. Phys. 1987, 87, 545.
    [31] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Melting in semiconductor nanocrystals, Science 1992, 256, 1452.
    [32] A. N. Goldstein, The melting of silicon nanocrystals submicro thin–film structuters derived from nanocrystal precursors, Appl. Phys. A 1996, 62, 33.
    [33] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, L. H. Allen, Size dependent melting properties of small Tin particles: nanocalorimetric measurements, Phys. Rev. Lett. 1996, 77, 99.
    [34] D. L. Zhang, B. Cantor, Melting behaviour of In and Pb particles embedded in an Al matrix, Acta Mater. 1991, 39, 1595.
    [35] R. Goswami, K. Chattopadhyay, The superheating and the crystallography of embedded Pb particles in fcc Al, Cu and Ni matrices, Acta Metall Mater. 1995, 41, 2837.
    [36] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, K. Lu, Superheating and melting-point depression of Pb nanoparticles embedded in Al matrixes, Phil. Mag. Lett. 1996, 73, 179.
    [37] R. Goswami, K. Chattopadhyay, The superheating of Pb embedded in a Zn matrix: therole of interface melting, Phil. Mag. Lett. 1993, 68, 215.
    [38] H. H. Andersen, E. Johnson, Structure, morphology and melting hysteresis of ion-implanted nanocrystals, Nucl. Inst. Methods in Phys. Res. B 1995, 106, 480.
    [39] V. K. Semenchenko, Surface Phenomena in Metals and Alloys, Oxford, Pergamon, 1961, p. 281.
    [40] J. R. Sambles, The extrusion of liquid between highly elastic solid, Proc. R. Soc. A 1971, 324, 339.
    [41] P. R. Couchman, W. A. Jesser, Thermodynamic theory of size dependence of melting temperature in metals, Nature 1977, 269, 481.
    [42] G. L. Allen, W. W. Gile, W. A. Jesser, The melting temperature of microcrystals embedded in a matrix, Acta Metall. 1980, 28, 1695.
    [43] J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, W. L. Johnson, Melting behavior of nanocrystalline aluminum powders, Nanostr. Mater 1993, 2, 407.
    [44] F. G. Shi, Size dependent thermal vibrations and melting in nanocrystals, J. Mater. Res. 1994, 9, 1307.
    [45] T. B. David, Y. Lereah, G. Deutscher, R. Kofmans, P. Cheyssac, Solid-liquid transition in ultra-fine lead particles, Phil. Mag. A 1995, 71, 1135.
    [46] G. P. Johari, Thermodynamic contributions from pre-melting or pre-transformation of finely dispersed crystals, Phil. Mag. A 1998, 77, 1367.
    [47] K. F. Peters, J. B. Cohen, Y. W. Chung, Melting of Pb nanocrystals, Phys. Rev. B 1998, 57, 13430.
    [48] K. Morishige, K. Kawano, Freezing and melting of methyl chloride in a single cylindrical pore: anomalous pore-size dependence of phase-transition temperature, J. Phys. Chem. B 1999, 103, 7906.
    [49] Q. Jiang, H. X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals, J. Chem.Phys. 1999, 111, 2176.
    [50] Z. Zhang, J. C. Li, Q. Jiang, Modeling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D: Appl. Phys. 2000, 33, 2653.
    [51] Z. Wen, M. Zhao, Q. Jiang, The melting temperature of molecular nanocrystals at the lower bound of mesoscopic size range, J. Phys.: Condens. Mat. 2000, 12, 8819.
    [52] Z. Zhang, M. Zhao, Q. Jiang, Melting temperature of semiconductor nanocrystals in the mesoscopic size range, Semicond. Sci. Technol. 2001, 16, L33.
    [53] P. Pawlow, über die abn?ngikeit des schmelzpunktes von der oberfl?chenenergie eines festen k?rpers, Z. Phys. Chem. 1909, 65, 545.
    [54] K. J. Hanszen, Z. Phys. 1960, 157, 523.
    [55] D. R. H. Jones, Review: The free energies of solid-liquid interfaces, J. Mater. Sci. 1974, 9, 1.
    [56] H. Saka, Y. Nishikawa, T. Imura, Melting temperature of In particles embedded in an Al matrix, Phil. Mag. A 1988, 57, 895.
    [57] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, K. Lu, Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling, J. Mater. Res. 1996, 11, 2841.
    [58] K. Chattopadhyay, R. Goswami, Melting and superheating of metals and alloys, Prog. Mater. Sci. 1997, 42, 287.
    [59] L. Zhang, Z. H. Jin, L. H. Zhang, M. L. Sui, K. Lu, Superheating of confined Pb thin films, Phys. Rev. Lett. 2000, 85, 1484.
    [60] Q. Jiang, Z. Zhang, J. C. Li, Size-dependent superheating of nanocrystals embedded in matrix, Chem. Phys. Lett. 2000, 322, 549.
    [61] Q. Jiang, Z. Zhang, J. C. Li, Melting thermodynamics of nanocrystals embedded in matrix, Acta. Mater. 2000, 48, 4791.
    [62] Q. Jiang, L. H. Liang, J. C. Li, Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals, J. Phys.: Condens. Mat. 2001, 13, 565.
    [63] H. Reiss, I. B.Wilson, The effects of size on melting point, J. Colloid. Sci. 1948, 3, 551.
    [64] Q. Jiang, H. X. Shi, M. Zhao, Free energy of crystal-liquid interface, Acta. Mater. 1999, 47, 2109.
    [65] Z. Wen, M. Zhao, Q. Jiang, Size range of solid-liquid interface free energy of organic crystals, J. Phy. Chem. B 2002, 106, 4266.
    [66] H. Jones, The solid-lquid interfacial energy of metals: calculation versus measurements, Mater. Lett. 2002, 53, 364.
    [67] N. F. Mott, The resistance of liquid metals, Proc. R. Soc. A 1934, 146, 465.
    [68] A. R. Regel, V. M. Glazov, Entropy of melting of semiconductors, Semiconductors 1995, 29, 405.
    [69] Q. Jiang, L. H. Liang, M. Zhao, Modelling of the melting temperature of nano-ice in MCM-41 pores, J. Phys.: Condens. Mat. 2001, 13, L397.
    [70] R. Zallen, The Physics of Amorphous Solids, John Wiley & Sons, New York 1983, p.16.
    [71] J. H. Gibbs, E. A. DiMarzio, Nature of the glass transition and the glassy state, J. Chem. Phys. 1958, 28, 373.
    [72] G. Adam, J. H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 1965, 43, 139.
    [73] D. Turnbull, M. H. Cohen, Free-volume model of the amorphous phase: Glass transition, J. Chem. Phys. 1961, 34, 120.
    [74] D. Turnbull, M. H. Cohen, On the free-volume model of the liquid-glass transition, J. Chem. Phys. 1970, 52, 3038.
    [75] W. G?tze, L. Sj?gren, Relaxation processes in supercooled liquids, Rep. Prog. Phys. 1992, 55, 241.
    [76] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, S. C. Glotzer, Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid, Phys. Rev. Lett. 1997, 79, 2827.
    [77] C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, S. J. Plimpton, Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid, Phys. Rev. E 1999, 60, 3107.
    [78] K. F. Mansfield, D. N. Theodorou, Molecular dynamics simulation of a glassy polymer surface, Macromolecules 1991, 24, 6283.
    [79] J. A. Forrest, K. Dalnoki-Veress, The glass transition in thin polymer films, Adv. Colloid Interf. Sc. 2001, 94, 167.
    [80] M. Alcoutlabi, G. B. McKenna, Effect of confinement on material behavior at the nanometer size scale, J. Phys. Condens. Matter 2005, 17, R461.
    [81] J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, J. R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films, Phys. Rev. Lett. 1996, 77, 2002.
    [82] Q. Jiang, H. X. Shi, J. C. Li, Finite size effect on glass transition temperatures, Thin Solid Films 1999, 354 283.
    [83] J. Mattsson, J. A. Forrest, L. B?rjesson, Quantifying glass transition behavior in ultrathin free-standing polymer films, Phys. Rev. E 2000, 62, 5187.
    [84] J. L. Keddie, R. A. L. Johns, R. A. Cory, Size-dependent depression of the glass transition temperature in polymer films, Europhys. Lett. 1994, 27, 59.
    [85] J. A. Forrest, K. Dalnoki-Veress, J. R. Dutcher, Interface and chain confinement effects on the glass transition temperature of thin polymer films, Phys. Rev. E 1997, 56, 5705.
    [86] D. S. Fryer, P. F. Nealey, J. J. de Pablo, Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness, Macromolecules 2000, 33, 6439.
    [87] K. Fukao, Y. Miyamoto, Glass transitions and dynamics in thin polymer films: Dielectricrelaxation of thin films of polystyrene, Phys. Rev. E 2000, 61, 1743.
    [88] J. H. Zhao, M. Kiene, C. Hu, P. S. Ho, Thermal stress and glass transition of ultrathin polystyrene films, Appl. Phys. Lett. 2000, 77, 2843.
    [89] R. S. Tate, D. S. Fryer, S. Pasqualini, M. F. Montague, J. J. de Pablo, P. F. Nealey, Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates, J. Chem. Phys. 2001, 115, 9982.
    [90] O. Prucker, S. Christian, H. Bock, J. Ruhe, C.W. Frank, W. Knoll, On the glass transition in ultrathin polymer films of different molecular architecture, Macromol. Chem. Phys. 199 (1998) 1435.
    [91] D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C. C. White, W. L. Wu, Dependence of glass transition temperature of polymer films on interfacial energy and thickness, Macromolecules, 34 (2001) 5627.
    [92] L. Hartmann, W. Gorbatschow, J. Hauwede, F. Kremer, Molecular dynamics in thin films of isotactic poly(methyl methacrylate), Eur. Phys. J., E 8 (2002) 145.
    [93] X. Zheng, M. H. Rafailovich, J. Sokolov, Y. Strzhemechny, S. A. Schwarz, B. B. Sauer, M. Rubinstein, Long-range effects on polymer diffusion induced by a bounding interface, Phys. Rev. Lett. 1997, 79, 241.
    [94] J. L. Keddie, R. A. L. Jones, Glass transition behavior in ultra-thin polystyrene films, Isr. J. Chem. 1995, 35, 21.
    [95] S. Kawana, R. A. L. Jones, Character of the glass transition in thin supported polymer films, Phys. Rev. E 2001, 63, 021501.
    [96] L. Sun, J. R. Dutcher, L. Giovannin, F. Nizzoli, J. R. Stevens, J. L. Ord, Elastic and elasto-optic properties of thin-films of poly(styrene) spin-coated onto Si(001), J. Appl. Phys. 1994, 75, 7482.
    [97] G. B. DeMaggio, W. E. Frieze, D. W. Gidley, M. Zhu, H. A. Hristov, A. F. Yee, Interfaceand surface effects on the glass transition in thin polystyrene films, Phys. Rev. Lett. 1997, 78, 1524.
    [98] J. A. Forrest, J. Mattsson, Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics, Phys. Rev. E 2000, 61, R53.
    [99] E.L. Lee, P.E. Bolduc, C.E. Violet, Magnetic ordering and critical thickness of ultrathin iron films, Phys. Rev. Lett. 1964, 13, 800.
    [100] M. Stampanoni, A. Vaterlaus, M. Aeschlimann, F. Meier, Magnetism of epitaxial bcc iron on Ag(001) observed by spin-polarized photoemission, Phys. Rev. Lett. 1987, 59, 2483.
    [101] W. Dürr, M. Taborelli, O. Paul, R. Germar, W. Gudat, D. Pescia, M. Landolt, Magnetic phase transition in two-dimensional ultrathin Fe films on Au(100), Phys. Rev. Lett. 1989, 62, 206.
    [102] C. Liu, S.D. Bader, Two-dimensional magnetic phase transition of ultrathin iron films on Pb(100), J. Appl. Phys. 1990, 67, 5758.
    [103] Z.Q. Qiu, J. Pearson, S.D. Bader, Magnetic phase transition of ultrathin Fe films on Ag(111), Phys. Rev. Lett. 1991, 67, 1646.
    [104] Z.Q. Qiu, J. Pearson, S.D. Bader, Asymmetry of spin reorientation transition in ultrathin Fe films and wedges grown on Ag(100), Phys. Rev. Lett. 1993, 70, 1006.
    [105] C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, Curie temperature of ultrathin films of fcc cobalt epitaxially grown on atomically flat Cu(100) surface, Phys. Rev. Lett. 1990, 64, 1059.
    [106] F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis, Finite-size scaling behavior of ferromagnetic thin films, J. Appl. Phys. 1993 73, 6760.
    [107] F. Huang, M.T. Kief, G.J. Mankey, R.F. Willis, Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films ofCo, Ni, and Co-Ni alloys on Cu(100) and Cu(111), Phys. Rev. B 1994, 49, 3962.
    [108] F. May, P. Srivastava, M. Farle, U. Bovensiepen, H. Wende, R. Chauvistré, K. Baberschke, Element-specific Curie temperatures of Ni/Cu/Co trilayers, J. Magn. Magn. Mater. 1998, 177-181, 1220.
    [109] C.A. Ballentine, R.L. Fink, J. Araya-Pochet, J.L. Erskine, Magnetic phase transition in a two-dimensional system: p(1×1)-Ni on Cu(111), Phys. Rev. B 1990, 41, 2631.
    [110] Y. Li, K. Baberschke, Dimensional crossover in ultrathin Ni(111) films on W(110), Phys. Rev. Lett. 1992, 68, 1208.
    [111] L. Sun, P.C. Searon, C.L. Chien, Finite-size effects in nickel nanowires arrays, Phys. Rev. B 2000, 61, R6463.
    [112] X.F. Cui, M. Zhao, Q. Jiang, Curie transition temperature of ferromagnetic low-dimensional metals, Thin Solid Films, 2005, 472, 328.
    [113] Y.W. Du, M.X. Xu, J. Wu, Y.B. Shi, H.X. Lu, R.H. Xue, Magnetic properties of ultrafine nickel particles, J. Appl. Phys. 1991, 70, 5903.
    [114] C.Q. Sun, W.H. Zhong, S. Li, B.K. Tay, H.L. Bi, E.Y. Jiang, Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nanosolids, J. Phys. Chem. B 2004, 108, 1080.
    [115] M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, F. Gerhardter, Thickness-dependent Curie temperature of Gd(0001)/W(110) and its dependence on the growth conditions, Phys. Rev. B 1993, 47, 11571.
    [116] J.S. Jiang, C.L. Chien, Magnetization and finite-size effects in Gd/W multilayers, J. Appl. Phys. 1996, 79, 5615.
    [117] J.S. Jiang, D. Davidovi?, D.H. Reich, C.L. Chien, Oscillatory superconducting transition temperature in Nb/Gd multilayers, Phys. Rev. Lett. 1995, 74, 314.
    [118] M. Gajdzik, T. Trappmann, C. S?rgers, H.V. L?hneysen, Morphology and magneticproperties of submonolyaer Gd films, Phys. Rev. B 1998, 57, 3525.
    [119] D. Michels, C.E. Krill III, R. Birringer, Grain-size-dependent Curie transition in nanocrystalline Gd: the influence of interface stress, J. Magn. Magn. Mater. 2002, 250, 203.
    [120] Z.X. Tang, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Size-dependent Curie temperature in nanoscale MnFe2O4 particles, Phys. Rev. Lett. 1991, 67, 3602.
    [121] E. Weschke, H. Ott, E. Schierle, C. Sch??ler-Langeheine, D.V. Vyalikh, G. Kaindl, V. Leiner, M. Ay, T. Schmitte, H. Zabel, Finite-size effect on magnetic ordering temperatures in long-period antiferromagnets: Holmium thin films, Phys. Rev. Lett. 2004 93, 157204.
    [122] E.N. Abarra, K. Takano, F. Hellman, A.E. Berkowitz, Thermodynamic measurements of magnetic ordering in antiferromagnetic superlattices, Phys. Rev. Lett. 1996, 77, 3451.
    [123] D. Alders, L.H. Tjeng, F.C. Voogt, T. Hibma, G.A. Sawatzky, C.T. Chen, J. Vogel, M. Sacchi, S. Iacobucci, Temperature and thickness dependence of magnetic moments in NiO epitaxial films, Phys. Rev. B 1998, 57. 11623.
    [124] A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles, Phys. Rev. B 2001, 64, 174420.
    [125] A. Punnoose, M.S. Seehra, Hysteresis anomalies and exchange bias in 6.6 nm CuO nanoparticles, J. Appl. Phys. 2002, 91, 7766.
    [126] S.J. Stewart, M. Multigner, J.F. Marco, F.J. Berry, A. Hemando, J.M. Gonzalez, Thermal dependence of the magnetization of antiferromagnetic copper(II) oxide nanoparticles, Solid State Commun. 2004 130, 247.
    [127] X.G. Zheng, C.N. Xu, K. Nishikubo, K. Nishiyama, W. Higemoto, W.J. Moon, E. Tanaka, E.S. Otabe, Finite-size effect on Néel temperature in antiferromagnetic nanoparticles, Phys. Rev. B 2005, 72, 014464.
    [128] T. Ambrose, C.L. Chien, Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers, Phys. Rev. Lett. 1996, 76, 1743.
    [129] Y.J. Tang, D.J. Smith, B.L. Zink, F. Hellman, A.E. Berkowitz, Finite size effects on the moment and ordering temperature in antiferromagnetic CoO layers, Phys. Rev. B 2003, 67, 054408.
    [130] P.J. van der Zaag, Y. Ijiri, J.A. Borchers, L.F. Feiner, R.M. Wolf, J.M. Gaines, R.W. Erwin, M.A. Verheijen, Different between blocking and Néel temperatures in the exchange biased Fe3O4/CoO system, Phys. Rev. Lett. 2000, 84, 6102.
    [131] M.T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, Z. Zhao, M. Nygren, Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics, Nanotechnology 2004, 15, 1113.
    [132] Q. Jiang, X. F. Cui, M. Zhao, Size effects on Curie temperature of ferroelectric particles, Appl. Phys. A 2004, 78, 703.
    [133] Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics, Phys. Rev. B 2004, 70, 024107.
    [134] Y. Yano, K. Lijima, Y. Daitoh, T. Terashima, Y. Bando, Y. Watanabe, H. Kasatani, H. Terauchi, Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation, J. Appl. Phys. 1994, 76, 7833.
    [135] B.A. Strukov, S.T. Davitadze, S.N. Kravchun. S.A. Taraskin, M. Goltzman, V.V. Lemanov, S.G. Shulman, Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20-1100 nm, J. Phys.: Condens. Matter 2003, 15, 4331.
    [136] K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrathin particles, Phys. Rev. B 1988, 37, 5852.
    [137] W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, Phasetransition in PbTiO3 ultrafine particles of different sizes, J. Phys.: Condens. Matter 1993, 5, 2619.
    [138] S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani, Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3, Phys. Rev. B 1995, 52, 13177.
    [139] S.K.Streiffer, J.A. Eastman, D.D. Fong, G. Thompson, A. Munkholm, M.V. Ramana Murty, O. Auciello, G.R. Bai, G.B. Stephenson, Observation of nanoscale 180? stripe domains in ferroelectric PbTiO3 thin films, Phys. Rev. Lett. 2002, 89, 67601.
    [140] D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, G. Thompson, Ferroelectricity in ultrathin perovskite films, Science 2004, 304, 1650.
    [141] C. Lichtensteiger, J.M. Triscone, J. Junquera, P. Ghosez, Ferroelectricity and tetragonality in ultrathin PbTiO3 films, Phys. Rev. Lett. 2005, 94, 047603.
    [142] K. Ueda, M. Naito, In situ growth of superconducting MgBB2 thin films by molecular-beam epitaxy, J. Appl. Phys. 2003, 93, 2113.
    [143] A.V. Pogrebnyakov, J.M. Redwing, J.E. Jones, X.X. Xi, S.Y. Xu, Q. Li, V. Vaithyanathan, D.G. Schlom, Thickness dependence of the properties of epitaxial MgB2 thin films grown by hybrid physical-chemical vapor deposition, Appl. Phys. Lett. 2003, 82, 4319.
    [144] R. Banerjee, P. Vasa, G.B Thompson, H.L. Fraser, P. Ayyub, Proximity effect in Nb/Zr multilayers with variable Nb/Zr ratio, Solid State Commun. 2003, 127, 349.
    [145] M. Strongin, R.S. Thompson, O.F. Kammerer, J.E. Crow, Destruction of superconductivity in disordered near-monolayer films, Phys. Rev. B 1970, 1, 1078.
    [146] K.L. Ekinci, J.M. Valler Jr, Morphology of quench condensed Pb films near the insulator to metal transition, Phys. Rev. Lett. 1999, 82, 1518.
    [147] A.P. Tsai, N. Chandrasekhar, K. Chattopadhyay, Size effect on the superconducting transition of embedded lead particles in an Al-Cu-V amorphous matrix, Appl. Phys. Lett. 1999, 75, 1527.
    [148] W.H. Li, C.C. Yang, F.C. Tsao, K.C. Lee, Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles, Phys. Rev. B 2003, 68, 184507.
    [149] M. Ido: J. Phys. Soc. Jpn. 1976, 41, 412.
    [150] M.E. Fisher, M.N. Barber, Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett. 1972, 28, 1516.
    [151] P.J. Jensen, K. H. Bennemann, Magnetic structure of films: Dependence on anisotropy and atomic morphology, Surf. Sci. Rep. 2006, 61, 129.
    [152] J.A. Torres, P.F. Nealey, J.J. de Pablo, Molecular simulation of ultrathin polymeric films near the glass transition, Phys. Rev. Lett. 2000, 85, 3221.
    [153] C.L. Soles, J.F. Douglas, W.L. Wu, Dynamics of thin polymer films: Recent insights from incoherent neutron scattering, J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 3218.
    [154] R. Inoue, T. Kanaya, K. Nishida, I. Tsukushi, K. Shibata, Inelastic neutron scattering study of low energy excitations in polymer thin films, Phys. Rev. Lett. 2005, 95, 056102.
    [155] W.E. Wallace, D.A. Fischer, K. Efimenko, W.L. Wu, J. Genzer, Macromolecules 2001, 34, 5081.
    [156] J.L. Masson, P.F. Green, Viscosity of entangled polystyrene thin film melts: Film thickness dependence, Phys. Rev. E 2002, 65, 031806.
    [157] G. Luengo, F.J. Schmitt, R. Hill, J. Israelachvili, Thin film rheology and tribology of confined polymer melts: Contracts with bulk properties, Macromolecules 1997, 30, 2482.
    [158] K. Shin, Y. Pu, M.H. Rafailovich, J. Sokolov, O.H. Seeck, S.K. Sinha, M. Tolan, R. Kolb, Correlated surfaces of free-standing polystyrene thin films, Macromolecules 2001, 34, 5620.
    [159] K.M. Ashley, D. Raghavan, J.F. Douglas, A. Karim, Wetting-dewetting transition line in thin polymer films, Langmuir 2005, 21, 9518.
    [160] W.E. Wallace, J.H. van Zanten, W.L. Wu, Influence of an impenetrable interface on a polymer glass-transition temperature, Phys. Rev. E 1995, 52, R3329.
    [161] R.C. Tolman, The Effect of Droplet Size on Surface Tension, J. Chem. Phys. 1949, 17, 333.
    [162] H.M. Lu, Q. Jiang, Size-dependent surface tension and Tolman′s length of droplets, Langmuir 2005,21, 779.
    [163] X.Y. Xia, P.G. Wolynes, Fragilities of liquids predicted from the random first order transition theory of glass, Proc. Nat. Acad. Sci. USA 2000, 97, 2990.
    [164] V. Lubchenko, P.G. Wolynes, Barrier softening near the onset of nonactivated transport in supercooled liquids: Implications for establishing detailed connection between thermodynamic and kinetic anormalies in supercooled liquids, J. Chem. Phys. 2003, 119, 9088.
    [165] X.Y. Xia, P.G. Wolynes, Diffusion and mesoscopic hydrodynamics of supercooled liquids, J. Phys. Chem. B 2001, 105, 6570.
    [166] V. Lubchenko, A universal criterion of melting, J. Phys. Chem. B 2006, 110, 18779.
    [167] V.K. Malinovsky, V.N. Novikov, The nature of the glass transition and the excess low-energy density of vibrational states in glasses, J. Phys.: Condens. Matter 1992, 4, L139.
    [168] H.M. Kagaya, K. Imazawa, M. Sato, T. Soma, Lindmann’s melting law and solidus curve under pressure of Al-Si and Al-Ge solid solutions, J. Mater. Sci. 1998, 33, 2595.
    [169] Q. Jiang, H.Y. Tong, D.T. Hsu, K. Okuyama, F.G. Shi, Thermal stability of crystalline thin films, Thin Solid Films 1998, 312, 357.
    [170] Q. Jiang, H.X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals, J. Chem. Phys. 1999,111, 2176.
    [171] Z. Zhang, M. Zhao, Q. Jiang, Glass transition thermodynamics of organic nanoparticles,Physica B 2001, 293, 232.
    [172] Z. M. Ao, Q. Jiang, Size effects on miscibility and glass transition temperature of binary polymer blend films, Langmuir 2006, 22, 1241.
    [173] Q. Jiang, N. Aya, F.G. Shi, Nanotube size-dependent melting of single crystals in carbon nanotubes, Appl. Phys. A 1997, 64, 627.
    [174] W.H. Ming, J. Zhao, X. L. Lu, C. C. Wang, S. K. Fu, Novel characteristics of polystyrene microspheres prepared by microemulsion polymerization, Macromolecules 1996, 29, 7678.
    [175] T. Sasaki, A. Shimizu, T. H. Mourey, C. T. Thurau, M. D. Ediger, Glass transition of small polystyrene spheres in aqueous suspensions, J. Chem. Phys. 2003, 119, 8730.
    [176] S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R. M. Overney, Shear Modulation Force Microscopy Study of Near Surface Glass Transition Temperatures, Phys. Rev. Lett. 2000, 85, 2340.
    [177] K. Schneider, A. Sch?nhals, E. Donth, The extent of cooperatively rearranging regions at thermal glass transition of amorphous polymers, Acta Polymerica 1981, 32, 471.
    [178] F.W. Starr, S. Sastry, J.F. Douglas, S.C. Glotzer, What do we learn from the local geometry of glass-forming liquids?, Phys. Rev. Lett. 2002, 89, 125501.
    [179] Y.H. Zhao, K. Lu, Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by X-ray diffraction, Phys. Rev. B 1997, 56, 14330.
    [180] J.C. Dyre, N.B. Olsen, T. Christensen, Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids, Phys. Rev. B 1996, 53, 2171.
    [181] R.W. Hall, P.G. Wolynes, The aperiodic crystal picture and free energy barriers in glasses, J. Chem. Phys. 1987, 86, 2943.
    [182] T. Kanaya, T. Tsukushi, K. Kaji, J. Bartos, J. Kristiak, Microcopic basis of free-volume concept as studied by quasielastic neutron scattering and positron annihilation lifetimespectroscopy, Phys. Rev. E 1999, 60, 1906.
    [183] G.T. Dee, B.B. Sauer, The surface tension of polymer liquids, Adv. Phys. 1998, 47, 161.
    [184] S.J. Tao, Positronium annihilation in molecular substances, J. Chem. Phys. 1972, 56, 5499.
    [185] C.M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure Rep. Prog. Phys. 2005, 68, 1405.
    [186] M.H. Cohen, D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 1959, 31, 1164.
    [187] C.G. Robertson, X.R. Wang, Nanoscale cooperative length of local segmental motion in polybutadiene, Macromolecules 2004, 37, 4266.
    [188] C.A. Angell, Formation of Glasses from liquids and biopolymers, Science 1995, 267, 1924.
    [189] B. Wunderlich, Study of the change in specific heat of monomeric and polymeric glasses during the glass transition, J. Phys. Chem. 1960, 64, 1052.
    [190] C. L.Jackson, G. B. McKenna, Vitrification and crystallization of organic liquids confined to nanoscale pores, Chem. Mater. 1996, 8, 2128.
    [191] A. Hallbrucker, E. Mayer, G.P. Johari, Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water. A comparion with hyperquenched glass water, J. Phys. Chem. 1989, 93, 4986.
    [192] J. Klein, E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 1995, 269, 816.
    [193] J. Klein, E. Kumacheva, Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions, J. Chem. Phys. 1998, 108, 6996.
    [194] E. Kumacheva, J. Klein, Simple liquids confined to molecularly thin layers. II. Shear andfrictional behavior of solidified films, J. Chem. Phys. 1998, 108, 7010.
    [195] J. Dubochet, M. Adrian, J. Teixeira, C.M. Alba, R.K. Kadiyala, D.R. MacFarlane, C.A. Angell, Glass-forming micromulsions: Vitrification of simple liquids and electron microscope probing of droplet-packing modes, J. Phys. Chem. 1984, 88, 6727.
    [196] J.Schüller, Y.B. Melnichenko, R. Richert, E. W. Fischer, Dielectric studies of the glass transition in porous media, Phys. Rev. Lett. 1994, 73, 2224.
    [197] O. Trofymluk, A.A. Levchenko, A. Navrotsky, Interfacial effects on vitrification of confined glass-forming liquids, J. Chem. Phys. 2005, 123, 194509.
    [198] G.Barut, P. Pissis, R. Pelster, G. Nimtz, Glass transition in liquids: Two versus three-dimensional confinement, Phys. Rev. Lett. 1998, 80, 3543.
    [199] D. Akporiaye, E. W. Hansen, R. Schmidt, M. St?cker, Water-saturated mesoporous MCM-41systems characterized by 1H NMR, J. Phys. Chem. 1994, 98, 1926.
    [200] E. W. Hansen, R. Schmidt, M. St?cker, D. Akporiaye, Water-saturated mesoporous MCM-41 systems characterized by 1H NMR spin-lattice relaxation times, J. Phys. Chem. 1995, 99, 4148.
    [201] K.Morishige, K. Nobuoka, X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41) J. Chem. Phys. 1997, 107, 6965.
    [202] K. Morishige, K. Kawano, Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior, J. Chem. Phys. 1999, 110 4867.
    [203] Y.X. Zhu, S. Granick, Reassessment of solidification in fluids confined between mica sheets, Langmuir 2003, 19, 8148.
    [204] U. Raviv, P. Laurat, J. Klein, Fluidity of water confined to subnanometer films, Nature 2001, 413, 51.
    [205] S. Patil, G. Matei, A. Oral, P.M. Hoffmann, Solid or liquid? Solidification of ananoconfined liquid under nonequilibrium conditions, Langmuir 2006, 22, 6485.
    [206] F.H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 1995, 267, 1935.
    [207] A.L.Demirel, S. Granick, Glasslike transition of a confined simple fluid, Phys. Rev. Lett. 1996, 77, 2261.
    [208] R. Casalini, S. Capaccioli, M. Lucchesi, P.A. Rolla, Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model, Phys. Rev., E 2001, 63, 031207.
    [209] O. Olabisi, R. Simha, Pressure-volume-temperature studies of amorphous and crystallizable polymers. I. Experimental, Macromolecules 1975, 8, 206.
    [210] S. Theobald, W. Pechhold, B. Stoll, The pressure and temperature dependence of the relaxtion processes in poly (methylmethacrylate), Polymer 2001, 42, 289.
    [211] P.D. Condo, I.C. Sanchez, C.G. Panayiotou, K.P. Johnston, Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents, Macromolecules 1992, 25, 6119.
    [212] J.Q. Pham, S.M. Sirard, K.P. Johnston, P.F. Green, Pressure, temperature, and thickness dependence of CO2-induced devitrification of polymer films, Phys. Rev. Lett. 2003, 91, 175503.
    [213] J.Q. Pham, K.P. Johnston, P.F. Green, Retrograde vitrification in CO2/polystyrene thin films, J. Phys. Chem., B 2004, 108, 3457.
    [214] R.J. Zhang, R.F. Willis, Thickness-dependent Curie temperature of ultrathin magnetic films: Effect of the range of spin-spin interactions, Phys. Rev. Lett. 2001, 86, 2665.
    [215] V.I. Nikolaev, A.M. Shipilin, The influence of breaking of exchange bonds on the Curie temperature, Phys. Solid State 2003, 45, 1079.
    [216] C.C. Yang, Q. Jiang, Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals, Acta Mater. 2005, 53, 3305.
    [217] F. Aguilera-Granja, J.L. Morán-López, Ising model of phase transitions in ultrathini films, Solid State Commun. 1990, 74, 155.
    [218] G. P. Tiwari, J. M. Juneja, Y. Iijima, Role of entropy of fusion in phase transformation and self-diffusion, J. Mater. Sci. 2004, 39, 1535.
    [219] http://www.webelements.com/.
    [220] J.H. van Vleck, A survey of the theory of ferromagnetism, Rev. Mod. Phys. 1945, 17, 27.
    [221] E.E. Fullerton, K.T. Riggs, C.H. Sowers, S.D. Bader, Suppression of biquadratic coupling in Fe/Cr(001) superlattices below the Néel transition of Cr, Phys. Rev. Lett. 1995, 75, 330.
    [222] W.H. Zhong, C.Q. Sun, B.K. Tay, S. Li, H.L. Bai, E.Y. Jiang, Curie temperature suppression of ferromagnetic Nanosolids, J. Phys.: Condens. Matter 2002, 14, L399.
    [223] W.H. Zhong, C.Q. Sun, S. Li, H.L. Bai, and E.Y. Jiang, Impact of bond-order loss on surface and nanosolid magnetism, Acta Mater. 2005, 53, 3207.
    [224] A. Hernando, Magnetic properties and spin disorder in nanocrystalline materials, J. Phys.: Condens. Matter 1999,11, 9455.
    [225] W. H. Meiklejohn, C. P. Bean, New magnetic anisotropy, Phys. Rev. 1956, 102, 1413.
    [226] J. Nogués, I. S. Schuller, Exchange bias, J. Magn. Magn. Mater. 1999, 192, 203.
    [227] A. E. Berkowitz, K. Takano, Exchange anisotropy-a review, J. Magn. Magn. Mater. 1999, 200, 552.
    [228] M. Kiwi, Exchange bias theory, J. Magn. Magn. Mater. 2001, 234, 584.
    [229] P. J. van der Zaag, A. R. Ball, L. F. Feiner, R. M. Wolf, P. A. A. van der Heijden, Exchange biasing in MBE grown Fe3O4/CoO bilayers: The antiferromagnetic layer thickness dependence, J. Appl. Phys. 1996, 79, 5103.
    [230] Y. Ijiri, J. A. Borchers, R. W. Erwin, S. H. Lee, P. J. van der Zaag, R. M. Wolf, Perpendicular coupling in exchange-biased Fe3O4/CoO superlattices, Phys. Rev. Lett.1998, 80, 608.
    [231] A.J. Devasahayam, M.H. Kryder, The dependence of the antiferromagnet/ferromagnet blocking temperature on antiferromagnet thickness and deposition conditions, J. Appl. Phys. 1999, 85, 5519.
    [232] V. Baltz, J. Sort, S. Landis, B. Rodmacq, B. Dieny, Tailoring size effects on the exchange bias in ferromagnetic-antiferromagnetic <100 nm nanostructures, Phys. Rev. Lett. 2005, 94, 117201.
    [233] H.W. Xi, R.M. White, Z. Gao, S.N. Mao, Antiferromagnetic thickness dependence of blocking temperature in exchang coupled polycrystalline ferromagnet/antiferromagnet bilayers, J. Appl. Phys. 2002, 92, 4828.
    [234] H.N. Fuke, K. Saito, M. Yoshikawa, H. Iwasaki, M. Sahashi, Influence of crystal structure and oxygen content on exchange-coupling properties of IrMn/CoFe spin-valve films, Appl. Phys. Lett. 1999, 75, 3680.
    [235] J. van Driel, F.R. de Boer, K.M.H. Lenssen, R. Coehoorn, Exchange biasing by Ir19Mn81: Dependence on temperature, microstructure and antiferromagnetic layer thickness, J. Appl. Phys. 2000, 88, 975.
    [236] H. Sang, Y.W. Du, C.L. Chien, Exchange coupling in Fe50Mn50/Ni81Fe19 bilayer: Dependence on antiferromagnetic layer thickness, J. Appl. Phys. 1999, 85, 4931.
    [237] M. Rickart, A. Guedes, J. Ventura, J.B. Sousa, P.P. Freitas, Blocking temperature in exchange coupled MnPt CoFe bilayers and synthetic antiferromagnets, J. Appl. Phys. 2005, 97, 10K110.
    [238] M.S. Lund, W.A.A. Macedo, K. Liu, J. Nogués, I. K. Schuller, C. Leighton, Effect of anisotropy on the critical antiferromagnet thickness in exchange-biased bilayers, Phys. Rev. B 2002, 66, 054422.
    [239] E. Fulcomer, S.H. Charap, Thermal fluctuation aftereffect model for some systems withferromagnetic-antiferromagnetic coupling, J. Appl. Phys. 1972, 43, 4190.
    [240] H.W. Xi, R.M. White, Theory of the blocking temperature in polycrystalline exchange biased bilayers based on a thermal fluctuation model, J. Appl. Phys. 2003, 94, 5850.
    [241] T. Ambrose, C.L. Chien, Finite-size scaling in thin antiferromagnetic CoO layers, J. Appl. Phys. 1996, 79, 5920.
    [242] D. Mauri, H.C. Siegmann, P.S. Bagus, E. Kay, Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate, J. Appl. Phys. 1987, 62, 3047.
    [243] C. Kittel, Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys. 1949, 21, 541.
    [244] A. P. Malozemoff, Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Phys. Rev. B 1987, 35, 3679.
    [245] M. Ali, C.H. Marrows, M. Al-Jawad, B.J. Hickey, A. Misra, U. Nowak, K.D. Usadel, Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system, Phys. Rev. B 2003, 68, 214420.
    [246] P. Poulopoulos, K. Baberschke, Magnetism in thin films, J. Phys.: Condens. Matter 1999, 11, 9495.
    [247] A.J. Devasahayam, P.J. Sides, M.H. Kryder, J. Appl. Phys. 1998, 83, 7216.
    [248] S. Blomeier, D. McGrouther, S. McVitie, J.N. Chapman, M.C. Weber, B. Hillebrands, J. Fassbender, Eur. Phys. J. B 2005, 45, 213.
    [249] E. Krén, G. Kádár, L. Pál, J. Sólyom, P., SzabóT. Tarnóczi, Phys. Rev. 1968, 171, 574.
    [250] J.W. Stout and S.A. Reed, J. Am. Chem. Soc. 1954, 76, 5279.
    [251] R. Jungblut, R. Coehoorn, M.T. Johnson, J. aan de Stegge, A. Reinders, Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20-Fe50Mn50 bilayers, J. Appl. Phys. 1994, 75, 6659.
    [252] A. Hernando, I. Navarro, C. Prados, D. García, M. Vázquez, J. Alonso, Phys. Rev. B 1996, 53, 8223.
    [253] A. Scholl, M. Liberati, E. Arenbolz, H. Ohldag, J. Sth?r, Creation of antierromagnetic exchange spring, Phys. Rev. Lett. 2004, 92 247201.
    [254] J.T. Ou, F.R. Wang, D.L. Lin, Critical behavior of magnetic films in the Ising model, Phys. Rev. E 1997, 56, 2805.
    [255] T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics, (Gordon and Breach, New York) 1976.
    [256] H.X. Fu, L. Bellaiche, Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 2003, 91, 257601.
    [257] Y.G. Wang, W.L. Zhong, P. L. Zhang, Surface effects and size effects on ferroelectrics with a first-order phase transition, Phys. Rev. B 1996, 53, 11439.
    [258] K. Abe, S. Komatsu, Ferroelectric properties in epitaxially grown BaxSr1-xTiO3 thin films, J. Appl. Phys. 1995. 77, 6461.
    [259] C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 2004, 303, 488.
    [260] N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films, Phys. Rev. Lett. 1998, 80, 1988.
    [261] T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre, The properties of ferroelectric films at small dimensions, Annu. Rev. Mater. Sci. 2000, 30, 263.
    [262] B. Wang, C. H. Woo, The order of transition of a ferroelectric thin film on a compliant substrate, Acta Mater. 2004, 52, 5639; Curie temperature and critical thickness of ferroelectric thin films, J. Appl. Phys. 2005, 97, 84109.
    [263] N.A. Pertsev, A.K. Tagantsev, N. Setter, Phase transition and strain-induced ferroelectricity in SrTiO3 epitaxial thin films, Phys. Rev. B 2000, 61, R825.
    [264] J. Zhang, Z. Yin, M.S. Zhang, J.F. Scott, Size-induced phase transition in stress-inducedferroelectric thin films, Solid State Commun. 2001, 118, 241.
    [265] H.K. Sy,. Surface modification in ferroelectric transitions. J. Phys.: Condes. Matter 1993, 5, 1213.
    [266] W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles, Phys. Rev. B 1994, 50, 698.
    [267] C.L. Wang, W.L. Zhong, P.L. Zhang, The Curie temperature of ultra-thin ferroelectric films, J. Phys.: Condens. Matter 1992, 4, 4743.
    [268] A.G. Zembilgotov, N.A. Pertsev, H. Kohlstedt, R. Waser, Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects, J. Appl. Phys. 2002, 91, 2247.
    [269] R. Rarnesh, D.G. Schlom, Orienting Ferroelectric Films, Science 2002, 296, 1975.
    [270] Y.S. Kim, D.H. Kim, J.D. Kim, Y.J. Chang, T.W. Noh, J.H. Kong, K. Char, Y.D. Park, S.D. Bu, J.G. Yoon, J.S. Chung, Critical thickness of ultrathin ferroelectric BaTiO3 films, Appl. Phys. Lett. 2005, 86, 102907.
    [271] J.S. Speck, W. Pompe, Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory, J. Appl. Phys. 1994, 76, 466.
    [272] M.E. Lines, Statistical theory for displacement ferroelectrics. Phys. Rev. 1969, 177, 797; Statistical theory for displacement ferroelectrics. II. Specific-heat and soft-mode-frequency calculations. 177, 812; Statistical theory for displacement ferroelectrics. III. Comparison with experiment for lithium tantalite, Phys. Rev. 1969, 177, 819.
    [273] S.C. Abrahams, S. K. Kurtz, P. B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics, Phys. Rev. 1968, 172, 551.
    [274] J. Kreisel, A.M. Glazer, Estimation of the compressibility of Na0.5Bi0.5TiO3 and relatedperovskite-type titanates, J. Phys.: Condens. Matter 2000, 12, 9689.
    [275] T. Lee, I.A. Aksay, Hierarchical structure-ferroelectricity relationship of barium titanate particles, Cryst. Growth Design 2001, 5, 401.
    [276] G. Liu, C.W. Nan, Thickness dependence of polarization in ferroelectric perovskite thin films. J. Phys. D: Appl. Phys. 2005, 38, 584.
    [277] J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawiey, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 758.
    [278] J.A.A.J. Perenboom, P. Wyder, F. Meier, Electronic properties of small metallic particles, Phys. Rep. 1981, 78, 173.
    [279] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 1957, 108, 1175.
    [280] W.L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 1968, 167, 331.
    [281] B. Mühlschlegel, D.J. Scalapino, R. Denton, Thermodynamic Properties of Small Superconducting Particles, Phys. Rev. B 1972, 6, 1767.
    [282] R.H. Parmenter, Size effect in a granular superconductor, Phys. Rev. 1968, 166, 392.
    [283] M. Strongin, O.F. Kammerer, A. Paskin, Superconducting Transition Temperature of Thin Films, Phys. Rev. Lett. 1965, 7, 949.
    [284] R. Kubo, J. Phys. Soc. Jpn. 1962, 17, 975.
    [285] D.G. Naugle, J.W. Baker, R.E. Allen, Evidence for a surfce-phonon contribution to thin-film superconductivity: Depression of Tc by noble-gas overlayers, Phys. Rev. B 1973, 7, 3028.
    [286] B. Abeles, R.W. Cohen, G.W. Cullen, Enhancement of superconductivity in metal films,Phys. Rev. Lett. 1966, 17, 632.
    [287] M.N. Magomedov, On the superconducting transition temperature for metallic nanocrystals, Phys. Solid State 2003, 45, 1159.
    [288] R.B. Pettit, J. Silcox, Film structure and enhanced superconductivity in evaporated in evaporated aluminum films, Phys. Rev. B 1976, 13, 2865.
    [289] C.T. Black, D.C. Ralph, M. Tinkham, Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles, Phys. Rev. Lett. 1996, 76, 688.
    [290] D.C. Ralph, C.T. Black, M. Tinkham, Gate-Voltage Studies of Discrete Electronic States in Aluminum Nanoparticles, Phys. Rev. Lett. 1997, 78, 4087.
    [291] R. C. Weast, M. J. Astle, W. H. Beyer: CRC Handbook of Chemistry and Physics 69th ed. (Boca Raton: CRC Press) 1988; p. E95, F174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700