小麦光周期基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光周期反应是植物通过感受昼夜长短变化而控制开花的一种生理现象。普通小麦(Triticumaestivum L.)是典型的长日照作物,光周期反应对其生育期、适应性以及产量均具有重要影响。近年来模式植物拟南芥、水稻光周期途径的分子生物学研究已取得很大的进展,但作为主要粮食作物的小麦,其光周期反应研究则相对滞后。本研究主要针对小麦光周期基因多样性变异和与其同家族的生物钟基因TaPRR1展开研究,取得如下主要研究进展:
     1.根据光周期基因Ppd-D1的5个等位变异位点,开发新的分子标记,同时结合已报道的标记检测来源于世界不同地理生态环境的495份普通小麦品种以及25份人工合成种和30份粗山羊草(Ae.tauschii),对Ppd-D1基因单倍型种类、分布特点、表达规律及其功能进行了分析,研究结果发现:(1)Ppd-D1基因共存在6种单倍型,分别命名为单倍型Ⅰ一Ⅵ;(2)单倍型Ⅱ、Ⅴ和Ⅵ存在于合成种和粗山羊草中,是比较原始的类型,并在小麦驯化进程中单倍型Ⅴ和Ⅵ被丢失,只有Ⅱ被保留下来。(3)不同单倍型在短日照条件下具有相似的表达模式,但其最高表达量存在显著差异。单倍型Ⅰ的表达量最高,Ⅲ的表达量最低,其余呈现一系列过渡类型:(4)相关分析发现Ppd-D1单倍型在短日照条件下其表达量与抽穗期呈负相关,单倍型间的千粒重、株高等农艺性状均存在显著差异;(5)不同单倍型的地理分布呈现明显的地域特征,单倍型Ⅰ主要分布在亚洲、大洋洲和北美洲低纬度国家,单倍型Ⅱ主要集中在亚洲,单倍型Ⅲ主要分布在欧洲和北美洲的高纬度国家,单倍型Ⅳ分布较为广泛,几乎每个小麦种植区域都普遍存在。
     2.研究光周期基因Ppd-B1在转录水平上的表达特点,结果发现:(1)Ppd-B1是选择性剪切基因,存在3个可选择剪切位点,分别以外显子增加、5'剪切位点改变和内含子保留形式分布在5'UTR、第5外显子和第6内含子,其中前两者不同剪切方式没有引起蛋白保守结构域的改变,后者不同剪切方式会导致基因移码突变:(2)Ppd-B1选择性剪切可产生8种不同形式的转录本,其中4种含有完整的编码序列,表达丰度较高,能够翻译成功能蛋白;另外4种表达丰度较低,不翻译或翻译时被提前终止;(3)Ppd-B1不同转录本的相对表达量受到材料光周期反应特性和外界光周期环境的影响而变化。
     对Ppd-B1启动子区与编码区进行多样性分析,结果发现:(1)启动子区存在6种序列,编码区存在4种序列类型,包括10个SNP变异位点,这些SNP在基因启动子、外显子、内含子各个区域均有分布;(2)每种材料都含有一种相同的启动子序列类型,此外有的材料还存在另外一种启动子序列类型;(3)序列多样性证明该基因在有些材料中至少存在两个拷贝,而且初步推测认为基因序列类型的多样性与材料的光周期反应存在联系。
     3.对小麦生物钟基因TaPRR1(即拟南芥TOC1同源基因)进行了如下研究:(1)采用同源克隆的方法,克隆了普通小麦的三个同源基因TaPRR1-A1,TaPRR1-B1,TaPRR1-D1;(2)基因表达发现TaPRR1在种子萌发后即能响应短日照光周期迅速表达,并在第六天表达量快速增加:(3)TaPRR1的表达随昼夜节律交替循环而变化,但在长短日照下的表达模式不同。在短日照条件下。其表达模式为单峰,与拟南芥TOC1和水稻OsPRR1的表达很相似;而在长日照条件下TaPRR1的表达则呈现双峰:(4)三个TaPRR1同源基因在长短日照下的表达均有差异,TaPRR1-D1的表达节律最强,TaPRR1-A1的表达节律最弱,TaPRR1-B1介于前两者之间:(5)将TaPRR1定位于小麦染色体第6部分同源群,并将TaPRR-D1定位于小麦6D染色体RFLP标记Xbcd1716和Xcfd76之间,遗传距离分别为4.2 cM和6.3 cM。
Photoperiod response of plant is an important physiological phenomenon which control flowering time by receiveing day length.Wheat(Triticum aestivum L.) is a typical long-day plant and the photoperiod response greatly affects wheat growth period,adaptability and yield.The molecular mechanism of photoperiod pathway has made a great progress in the model species including Arabidopsis and rice in recent years,but it is less clear in wheat,the main food crop in the world.The present study focused on the diversity of Ppd-D1,Ppd-B1,the main photoperiod genes,and the circadian clock gene TaPRRl belonged to the same gene family with Ppds.The progresses were showed as follows:
     1.Three new diagnostic molecular markers combined with previously reported markers identified five polymorphisms in the Ppd-Dl gene in 495 wheat varieties originating from diverse geographic locations,25 synthetic varieties,and 30 Aegilops tauschii accessions.The discovery,distribution, expression and function of Ppd-D1 haplotypes were investigated.The major results showed as follows. (1) There are six haplotypes of Ppd-D1,named for haplotypeⅠtoⅥ.(2) HaplotypeⅡ,ⅤandⅥwere ancient types because they were found in synthetic wheat and Ae.tauschii.Among them,haplotypeⅤandⅥwere lost whereasⅡwas remained in common wheat during the wheat domestication.(3) HaplotypesⅠ-Ⅴhad a similar expression pattern and all the expression peaks were at the same time,but their levels were different from one to another.The values of expression peaks of haplotypeⅠandⅢwere the highest and the lowest,respectively.The others were intermediate.(4) Their expression abundance in the morning under the short day photoperiod condition were negatively correlated with the heading time and the haplotypes were associated with main agronomic traits such as thousand grain weight and plant height.(5) HaplotypeⅠvarieties distributed mainly in lower latitudes regions, especially Asia,Oceania and Mexico;haplotypeⅡvarieties were most frequently found in Asia; haploytpeⅢwere most commonly found in wheat at higher latitudes of Europe and North America. HaplotypeⅣwas widely found in the wheat grown in much larger areas of different continents.
     2.The transcripts of Ppd-B1 were analyzed in present study,and the main results were as follows:(1) Ppd-B1 is an alternative splicing gene.There were three alternative splicing loci in the forms of exon inclusion,alternative 5' splice site and intron retention,which locate in 5'UTR,exon 5 and intron 6, respectively.The formers two did not change the conserved domains of PRR protein,while the last resulted in a frameshift mutation.(2) Ppd-B1 produces eight different transcripts through alternative splicing.Four of them including complete open reading frame could translate to be functional proteins. The others encoded truncated proteins for translation stopped ahead and they expressed at very low levels.(3) The alternative spliced transcripts of Ppd-B1 were differentially expressed,which were affected by photoperiod response of varieties and photoperiod conditions.
     The diversity of Ppd-B1 nucleotide acid sequences were detected in present studies.(1) There were six sequences types found in Ppd-B1 promoter region and four types in the gene coding region that were comprised 10 SNP ploymorphisms located on 5'UTR,exons and introns.(2) Each variety has a same promoter sequence and there were also another one sequences in some varieties.(3) There were at least two copies of Ppd-B1 sequences found in some varieties.The preliminary results implied that the diversity of Ppd-B1 sequences probably associated with the gene function for photoperiod response.
     3.The study on the circadian clock gene TaPRR1(the homolog to TOC1 from Arabidopsis) was carried out.The results were showed.(1) The orthologous gene TaPRR1-A1,TaPRR1-B1,TaPRR1-D1 from A,B and D genomes of hexaploid wheat(Triticum aestivum L.),respectively,were isolated by using homologous cloning combined with cDNA library screening methods.(2) TaPRR1 expressed quickly in the leaves of wheat seedling after germination in short day photoperiod condition,and their expression values increased quickly in the 6th day.(3) The expression of TaPRR1 varied with the cycles of circadian rhythms,but the expression patterns between long day and short day photoperiod conditions were different.TaPRR1 showed a single expression peak in short day period,which was similar to the.expression of TOC1 and OsPRR1 in Arabidopsis and rice,respectively.Under a long day period,TaPRR1 showed two peaks expression pattern.(4) The expressions of TaPRR1-A1,TaPRR1-B1 and TaPRR1-D1 showed some differences under both long day and short day photoperiod.Among them, TaPRR1-D1 expressed with the well circadian rhythm,the poor rhythm for TaPRR1-A1 and intermediate for TaPRR1-B1.(5) The TaPRR1 were located on wheat homoeologous chromosome 6 and TaPRR1-D1 was mapped between RFLP marker Xbcd1716 and Xcfd76 of wheat chromosome 6D with the genetic distances of 4.2 cM and 6.3 cM,respectively.
引文
[1]Lang A.Physiology of flower initiation.In:Encyclopedia of Plant Physiology,Vol.ⅩⅤ,Part 1(Ruhland,W.,ed.),Berlin:Springer Verlag.,1965,pp.1380-1536
    [2]Bernier G,Kinet J M,Sachs R M.The Physiology of Flowering,Vol.Ⅰ.Boca Raton,FL:CRC Press.1981
    [3]Thomas B,Vince-Prue D.Photoperiodism in plants.2nd edn.London:Academic Press,1997:249
    [4]Tournois J.Influence de la lumiere sur la floraison du houblon japonais et du chanvre determinees par des semis haitifs.C.R.Hebd.Seanc.Acad.Sci.Paris,1912,155:179-300
    [5]Tournois J.etudes sur la sexualite du houblon.Annis.Sci.Nat.(Bot.),1914,19:49-191
    [6]Klebs G.(U|¨)bet das Verh(a|¨)ltnis der Aussenwelt zur Entwicklung der Pflanze.Sber.Akad.Wiss.Heidelberg,1913,5:1-47
    [7]Garner W W,Allard H A.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants.J.Agric.Res.,1920,18:553-606
    [8]Knott J E.Effect of a localized photoperiod on spinach.Proc.Am.Soc.Hort.Sci.,1934,31:152-154
    [9]Zeevaart J A D.Perilla.In Handbook of Flowering(ed.A.H.Halevy).Boca Raton,FL,USA,RC Press,1985,pp.239-252
    [10]Lang A.Physiology of flowering.Annu.Rev.Plant Physiol.,1952,3:265-306
    [11]Evans L T.Flower induction and the florigen concept.Annu.Rev.Plant Physiol.Plant Mol.Biol.,1971,22:365-394
    [12]Sachs R,Hackett W.Source-sink relationships and flowering.In Strategies of Plant Reproduction.Beltsville Symposium Agric.Res.(Meudt,W.J.,ed.).Totowa:Allanheld,Osmun,1983,pp.263-272
    [13]Bernier G The control of floral evocation and morphogenesis.Annu.Rev.Plant Physiol.Plant Mol.Biol.,1988,39:175-219
    [14]Bernier G,Havelange A,Houssa C,et.al.Physiological signals that induce flowering.Plant Cell,1993,5:1147-1155
    [15]Kinet J M.Environmental,chemical and genetic control of flowering.Horticultural Reviews,1993,15:279-334
    [16]Koornneef M,Alonso-Blanco C,Peeters A J,et.al.Genetic Control of Flowering Time in Arabidopsis.Annu Rev Plant Physiol Plant Mol Biol,1998,49:345-370
    [17]Mouradov A,Cremer F,Coupland G.Control of flowering time:Interacting pathways as a basis for diversity.Plant Cell 14(suppl.),2002,S111-S130
    [18]Rateliffe O J,Riechmann J L.Arabidopsis transcription factors and the regulation of flowering time:A genomic perspective.Curr Issues Mol Biol.,2002,4(3):77-91
    [19]Simpson G G,Dean C.Arobidopsis,the Rosetta stone of flowering time?.Science,2002,296 (5566):285-289
    [20]Yanovsky M J,Kay S A.Living by the calendar:How plants know when to flower.Nat.Rev.Mol.Cell Biol.,2003,4:265-275
    [21]Boss P K,Bastow R M,Mylne J S,et.al.Multiple pathways in the decision to flower:enabling,promoting,and resetting.Plant Cell,16 Suppl,2004,S18-31
    [22]MeClung C R.Plant circadian rhythms.Plant Cell,2006,18(4):792-803
    [23]Imaizumi T,Kay S A.Photoperiodic control of flowering:not only by coincidence.Trends in Plant Science,2006,11:550-558
    [24]Jackson S D.Plant responses to photoperiod.New Phytol,2009,181(3):517-531
    [25]徐张红,赵晓刚,何奕昆.拟南芥生物钟分子机制研究进展.植物学通报,2005,22(3):341-349
    [26]张素芝,左建儒.拟南芥开花时间调控的研究进展.生物化学与生物物理进展,2006,33(4):301-309
    [27]曾群,赵仲华,赵淑清.植物开花时间调控的信号途径.遗传,2006,28(8):1031-1036
    [28]Quail P H.Phytochrome photosensory signaling networks.Nat.Rev.Mol.Cell Biol.,2002,3:85-93
    [29]Lin C.Photoreceptors and regulation of flowering time.Plant Physiol.,2000,123:39-50
    [30]Furuya M,Sehafer E.Photo perception and signaling of induction reactions by different phytochromes.Trends Plant Sci.,1996,1:301-307
    [31]Halliday K J,Salter M G,Thingnaes E,et.al.Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT.Plant J.,2003,33:875-885
    [32]Valverde F,Mouradov A,Soppe W,etal.Photoreeeptor regulation of CONSTANS protein in photoperiodic flowering.Science,2004,303:1003-1006
    [33]Muramoto T,Kohchi T,Yokota A,et.al.The Arabidopsis photornorphogenic mutant byl is deficient in phytochrome ehromophore biosynthesis as a result of a mutation in a plastid heme oxygenase.Plant Cell,1999,11:335-348
    [34]Kevei E,Nagy F.Phytoehrome controlled signaling cascades in higher plant.Physiologia Plantarum,2003,117(3):305-313
    [35]Ni M,Tepperman J M.Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light.Nature,1999,400(6746):781-784
    [36]Deng X W,Matsiei M,Wei N.COP1,an Arabidopsis regulatory gene,encodes a protein with both a zinc-binding motify and a G beta homologous domain.Cell,1992,71(5):791-801
    [37]Schfer E,Bowler H.Phytochrome-mediated photoperception and signal transduction in higher plants.EMBO Reports,2002,3(11):1042-1048
    [38]Fanchauser C,Yet K C,Lagarias J C.PKSI,a substrate phospharylated by phytochrome that modulates light signaling in Arabidopsis.Science,1999,284(5419):1539-1541
    [39]Huq E,Quail PH.PIF4,a phytochrome-interacting bHLH factor,functions as a negative regulator of phytoehrome B signaling in A rabidopsis.EMBO J.,2002,21:2441-2450
    [40]Batschauer A.Light perception in higher plants.Cell Mol.Life Sci,1999,55:153-166
    [41]Cashmore A R,Jarillo J A,Wu Y J.Cryptochromes:blue light receptors for plants and animals.Science,1999,284:760-765
    [42]Lin C.Plant blue-light receptors.Trends Plant Sci,2000,5:337-342
    [43]Neff M M,Chory J.Genetic interactions between phytochrome A,phytochrome B,and cryptochrome 1 during Arabidopsis development.Plant Physiol,1998,118:27-35
    [44]Martinez-Garcia J F,Huq E,Quail P H.Direct targeting of light signals to a promoter element-bound transcription factor.Science,2000,288:859-863
    [45]Briggs W R,Christie J M.Phototropins 1 and 2,versatile plant bluelight receptors.Trends in Plant Science,2002,7:204-210
    [46]Millar A J,Carre I A,Strayer C A,et.al.Circadian clock mutants in Arabidopsis identified by lueiferase imaging.Science,1995,267:1161-1163
    [47]Somers D E,Schultz T F,Milnamow M,et.al.ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.Cell,2000,101:319-329
    [48]Sehultz T F,Kiyosue T,Yanovsky M,et.al.A role for LKP2 in the circadian clock of Arabidopsis.Plant Cell,2001,13:2659-2670
    [49]Nelson D C,Lasswell J,Rogg L E,et.al.FKF1,a clock-controlled gene that regulates the transition to flowering in Arabidopsis.Cell,2000,101:331-340
    [50]Jarillo J A,Capel L Tang R H,et.al.An Arabidopsis circadian clock component interacts with both CRY1 and phyB.Nature,2001,410:487-490
    [51]Kim J Y,Song H R,Taylor B L,et.al.Light-regulated translation mediates gated induction of the Arabidopsis clock protein LILY.EMBO J.2003,22:935-944
    [52]Imaizumi T,Tran H G,Swartz T E,et.al.FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.Nature,2003,426:302-306
    [53]Huq E,Tepperman J M,Quail P H.GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis.Proc.Natl.Acad.Sei.USA,2000,97:9789-9794
    [54]Staiger D,Allenbaeh L,Salathia N,et.al.The Arabidopsis SRRI gene mediates phyB signaling and is required for normal circadian clock function.Genes Dev.,2003,17:256-268
    [55]Covington M F,Panda S,Liu X L,et.al.ELF3 modulates resetting of the circadian clock in Arabidopsis.Plant Cell,2001,13:1305-1315
    [56]Liu X L,Covington M F,Fankhauser C,et.al.ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway.Plant Cell,2001,13:1293-1304
    [57]McWatters H G,Bastow R M,Hall A,et.al.The ELF3zeitnehmer regulates light signalling to the circadian clock.Nature,2000,408:716-720
    [58]Fowler S,Lee K,Onouchi H,et.al.GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.EMBO J.,1999,18:4679-4688
    [59]Roenneberg T,Merrow M.Circadian clocks:Onmes viae Romam ducunt.Curr.Biol.,2000,10: R742-R745
    [60]McClung C R.Circadian rhythms in plants.Annu.Rev.Plant Physiol.Plant Mol.Biol.,2001,52:139-162
    [61]Schaffer R,Ramsay N,Samach A,et.al.The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.Cell,1998,93:1219-1229
    [62]Wang Z Y,Tobin E M.Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1(CCA1) gene disrupts circadian rhythms and suppresses its own expression.Cell,1998,93:1207-1217
    [63]Green R M,Tobin E M.Loss of the circadian clock associated protein 1 in Arabidopsis results in altered clock-regulated gene expression.Proc.Natl.Acad.Sci.USA,1999,96:4176-4179
    [64]Mizoguehi T,Wheatley K,Hanzawa Y,et.al.LHY and CCAI are partially redundant genes required to maintain circadian rhythms in Arabidopsis.Dev.Cell,2002,2:629-641
    [65]Makino S,Kiba T,Imamura A,et.al.Genes encoding pseudo-response regulators:Insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana.Plant Cell Physiol.,2000,41:791-803
    [66]Strayer C,Oyama T,Schultz T F,et.al.Cloning of the Arabidopsis clock gene TOCI,an autoregulatory response regulator homolog.Science,2000,289:768-771
    [67]Kreps J A,Simon A E.Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis.Plant Cell,1997,9:297-304
    [68]Somers D E,Webb A A R,Pearson M,et.al.The short-period mutant,tocl-1,alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana.Development,1998,125:485-494
    [69]Mas P,Alabadi D,Yanovsky M J,et.al.Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis.Plant Cell,2003,15:223-236
    [70]Harmer S L,Hogenesch J B,Straume M,et.al.Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.Science,2000,290:2110-2113
    [71]Alabadi D,Oyama T,Yanovsky M J,et.al.Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.Science,2001,293:880-883.
    [72]Locke J C,Southern M M,Kozma-Bognar L,et.al.Extension of a genetic network model by iterative experimentation and mathematical analysis.Mol.Syst.Biol.,2005,1:2005.0013
    [73]Ito S,Kawamura H,Niwa Y,et.al.A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1(TOC1) gene.Plant Cell Physiol.2009,50:290-303
    [74]Farre E M,Harmer S L,Harmon FG,et.al.Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.Curr.Biol,2005,15:47-54
    [75]Nakamiehi N,Kita M,Ito S,et.al.PSEUDO-RESPONSE REGULATORS,PRR9,PRR7 and PRR5,together play essential roles close to the circadian clock of Arabidopsis thaliana.Plant Cell Physiol,2005,46(5):686-698
    [76]Harmer S L,Kay S A.Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis.Plant Cell,2005,17:1926-1940
    [77]Mizuno T,Nakamichi N.Pseudo-response regulators(PRRs) or true oscillator components (TOCs).Plant Cell Physiol,2005,46:677-685
    [78]Matsushika A,Makino S,Kojima M,et.al.Circadian waves of expression of the APRR1/TOC1family of pseudo-response regulators in Arabidopsis thaliana:Insight into the plant circadian clock.Plant Cell Physiol,2000,41:1002-1012
    [79]Kaczorowski K A,Quail P H.Arabidopsis PSEUDORESPONSE REGULATOR7 is a signaling intermediate in phytochrome regulated seedling deetiolation and phasing of the circadian clock.Plant Cell,2003,15:2654-2665
    [80]Michael T P,Salome P A,Yu H J,et.al.Enhanced fitness conferred by naturally occurring variation m the circadian clock.Science,2003,302:1049-1053
    [81]Nakarnichi N,Kita M,Ito S,et.al.The Arabidopsis pseudo-response regulators,PRR5 and PRRT,coordinately play essential roles for circadian clock function.Plant Cell Physiol,2005,46(6):609-619
    [82]Salome PA,McClung C R.PRR7 and PRR9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock.Plant Cell,2005,17:791-803
    [83]Matsushika A,Imamura A,Yarnashino T,et.al.Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana.Plant Cell Physiol,2002,43:833-843
    [84]Sato E,Naka.michi N,Yamashino T,et.al.Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis.Plant Cell Physiol,2002,43:1374-1385
    [85]Murakami M,Yamashino T,Mizuno T.Characterization of circadian associated APRR3Pseudo-Response Regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana.Plant Cell Physiol,2004,45:645-650
    [86]Makino S,Matsushika A,Kojima M,et.al.The APRK1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana:I.Characterization with APRR1-overexpressing plants.Plant Cell Physiol,2002,43:58-69
    [87]Para A,Farre E M,Imaizumi T,et.al.PRR3 is a vascular regulator of TOC1 stability in the arabidopsis circadian clock.Plant Cell,2007,19:3462-3473
    [88]Banning E.Die endogene tagesrhythmik als grundage tier photoperiodischen reaktion.Ber Dtseh Bot Ges,1936,54:590-607
    [89]Samaeh A,Coupland G Time measurement and the control of flowering in plants.Bioessays,2000,22:38-47
    [90]Samach A,Gover A.Photoperiodism:The eunsistent use of CONSTANS.Curt.Biol.,2001,11:R651-R654
    [91]Suarez-Lopez P,Wheatley K,Robson F,et.al.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410:1116-1120
    
    [92] Blazquez M A, Trenor M, Weigel D. Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol, 2002,130: 1770-1775
    
    [93] Roden L C, Song H R, Jackson S, et.al. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2002, 99:13313-13318
    
    [94] Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002,419:308-312
    
    [95] Putterill J, Robson F, Lee K, et.al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80:847-857
    
    [96] Robson F, Costa M M R, Hepworth S, et.al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J., 2001,28: 619-631
    
    [97] Onouchi H, Igeno M I, Perilleaux C, et.al. Mutagenesis of plants overexpression CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell, 2000, 12: 885-900
    
    [98] Samach A, Onouchi H, Gold S E, et.al. Distinct roles of CONSTANS target genes in . reproductive development of Arabidopsis. Science, 2000,288: 1613-1616
    
    [99] Kardailsky I, Shukla V K, Ahn J H, et.al. Activation tagging of the floral inducer FT. Science, 1999,286: 1962-1965
    
    [100] Kobayashi Y, Kaya H, Goto K, et.al. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999,286:1960-1962
    
    [101] An H, Roussot C, Suarez-Lopez P, et.al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 2004, 131: 3615-3626
    
    [102] Ayre B, Turgeon R. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol., 2004,135: 1-8
    
    [103] Takada S, Goto K. TERMINAL FLOWER 2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell, 2003, 15: 2856-2865
    
    [104] Jaeger K E, Wigge P A. FT protein acts as a long-range signal in Arabidopsis. Curr Biol, 2007, 17: 1050-1054
    
    [105] Sawa M, Nusinow D A, Kay S A, et.al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007,318: 261-265
    
    [106] Kim W Y, Fujiwara S, Suh S S, et.al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007,449: 356-360
    
    [107] Rubio V, Deng X W. Plant science. Standing on the shoulders of GIGANTEA. Science, 2007, 318:206-207
    [108] Yano M, Harushima Y, Nagamura Y, et.al. Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map. Theor Appl Genet, 1997,95: 1025-1032
    
    [109] Yano M, Kojima S, Takahashi Y, et.al. Genetic control of flowering time in rice, a short-day plant. Plant Physiol, 2001,127:1425-1429
    
    [110] Yano M, Katayose Y, Ashikari M, et.al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484
    
    [111] Kojima S, Takahashi Y, Kobayashi Y, et.al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol, 2002,43: 1096-1105
    
    [112] Murakami M, Ashikari M, Miura K, et.al. The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol, 2003, 44: 1229- 1236
    
    [113] Murakami M, Tago Y, Yamashino T, et.al. Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2007, 71: 1107-1110
    
    [114] Murakami M, Matsushika A, Ashikari M, et.al. Circadian-associated rice pseudo response regulators (OsPRRs): insight into control of flowering time. Biosci Biotechnol Biochem, 2005, 69: 410-414
    
    [115] Takahashi Y, Shomura A, Sasaki T, etal. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927
    
    [116] Daniel X, Sugano S, Tobin E M. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA, 2004,101: 3292-3297
    
    [117] Yamamoto T, Lin H, Sasaki T, etal. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with using advanced backcross progeny. Genetics, 2000, 154:885-891
    
    [118] Izawa T, Oikawa T, Sugiyama N, et.al. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 2002, 16, 2006-2020
    
    [119] Takano M, Inagaki N, Xie X, et.al. Distinct and cooperative functions of phytochromes A, B, and C in the control of detiolation and flowering in rice. Plant Cell, 2005, 17: 3311-3325
    
    [120] Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol, 2002,43: 494-504
    
    [121] Hayama R, Yokoi S, Tamaki S, etal. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003,422: 719-722
    
    [122] Doi K, Izawa T, Fuse T, et.al. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev, 2004,18:926-936
    
    [123] Kim S L, Lee S, Kim H J, et.al. OsMADS51 is a short-day flowering promoter that functions upstream of Ehdl,OsMADS14,and Hd3a.Plant Physiol,2007,145:1484-1494
    [124]Peng L T,Shi Z Y,Li L,et.al.Ectopic expression of OsLFLI in rice represses Ehdl by binding on its promoter.Biochem Biophys Res Commun,2007,360:251-256
    [125]Dunford R P,Griffiths S,Christodoulou V,et.al.Characterization of a barley(Hordeum vulgate L.) homologue of the Arabidopsis flowering time regulator GIGANTEA.Theor Appl Genet,2005,110:925-931
    [126]Griffiths S,Dunford R P,Coupland G,et.al.The evolution of CONSTANS-like gene families in barley(Hordeura vulgare),rice(Oryza sativa) and Arabidopsis thaliana.Plant Physiol,2003,131:1855-1867
    [127]Moore G,Devos K M,Wang Z,et.al.Grasses,line up and form a circle.Curr.Biol,1995,5:737-739
    [128]Kikuchi R,Kawahigashi H,Ando T,ct.al.Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering.Plant Physiol,2009,149:1341-1353
    [129]Laurie D A,Pratehett N,Bezant J H,et.al.RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winterxspring barley(Hordeum vulgate L.)cross.Genome,1995,38:575-585
    [130]Turner A,Be,ales J,Faure S,et.al.Thepseudo-response regulator Ppd-H1 provides adaptation to photopcriod in barley.Science,2005,310:1031-1034
    [131]Martinic-J Z.Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod.Zeitschrift f(u|¨)r Pflarmenz(u|¨)chtung,1975,75:23 7-251
    [132]Hunt LA.Photoperiodic responses of winter wheats from different climatic regions.Zeitschrift f(u|¨)r Pflanzenz(u|¨)chtung,1979,82:70-80
    [133]Welsh J R,Keim D L,Pirasteh B,et.al.Genetic control of photoperiod response in wheat.Proceeding of the 4~(th) Imemational Wheat Genetics Symposium.University of Missouri,Columbia,Mo,USA.1973.897-884
    [134]Law C N,Sutka J,Worland AJ.A genetic study of day-length response in wheat.Heredity,1978,41:185-191
    [135]Worland A J,B(o|¨)rner A,Korzun V,et.al.The influence of photoperiod genes to the adaptability of European winter wheats.Euphytiea,1998,100:385-394
    [136]Scarth R,Law C N.The control of the day-length response in wheat by the group 2chromosomes.Z Pflanzenzuehtung,1984,92:140-150
    [137]Laurie DA.Comparative genetics of flowering time.Plant Mol Biol,1997,35:167-177
    [138]B(o|¨)rner A,Korzun V,Worland A J.Comparative genetic mapping of loci affecting plant height and development in cereals.Euphytiea,1998,100:245-248
    [139]Beales J,Turner A,Griffiths S,et.al.A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat(Triticum aestivurn L.).Theor Appl Genet,2007,115:721-733
    [140]Wilhelm E P,Turner A S,Laurie D A.Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet, 2009, 118: 285-294
    
    [141] Zhao X Y, Liu M S, Li J R, et.al. The wheat TaGI 1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol, 2005, 58(1): 53-64
    
    [142] Nemoto Y, Kisaka M, Fuse T, et.al. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J, 2003, 36: 82-93
    
    [143] Yan L, Fu D, Li C, et.al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A,2006, 103: 19581-19586
    
    [144] Cockram J, Jones H, Leigh F J, et.al. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot, 2007, 58(6): 1231-44
    
    [145] Maes T, De Keukeleire P, Gerats T, Plant tagnology. Trends Plant Sci, 1999,4: 90-96
    
    [146] Peng J, Carol P, Richards D E, et.al. The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellinresponses. Genes Dev., 1997,11: 3194-3205
    
    [147] Peng J R, Richards D E, Hartley N M, et.al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400: 256-261
    
    [148] Yan L, Loukoianov A, Tranquilli G, et.al. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U.S.A., 2003,100: 6263-6268.
    
    [149] Yan L, Loukoianov A, Blechl A, etal. The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science, 2004, 303: 1640-1644.
    
    [150] Tarchini R, Biddle P, Wineland R, etal. The complete sequence of 340 kb of DNA around the rice Adhl-Ald2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell, 2000,12: 381-391
    
    [151] Ambrose B A, Lerner D R, Ciceri P, etal. Molecular and genetic analyses of the silkyl gene reveal conservation in floral organ specification between eudicots and monocots. Mol.Cell, 2000, 5: 569-579
    
    [152] Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol, 2002,43: 130-135
    
    [153] Nagasawa N, Miyoshi M, Sano Y, et.al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003,130: 705-718
    
    [154] Whipple C J, Ciceri P, Padilla C M, et.al. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 2004,131: 6083-6091
    
    [155] Malcomber S T, Kellogg E A. Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 2004, 16: 1692-1706
    
    [156] Sharp P J, Chao S, Desai S, et.al. The isolation, characterization and application in Triticae of a set of wheat RFLP probes identifying each homoecologous chromosome arm. Theor Appl Genet, 1989,78:342-348
    
    [157] Devos K M, Gale M D. The use of random amplified polymorphic DNA marker in wheat. Theor Appl Genet, 1992,84: 567-572
    [158]Livak K J,Schmittgen T D.Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the2~(-ΔΔ) CT Method.METHODS,2001,25:402-408
    [159]Yang F P,Zhang X K,Xia X C,et.al.Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars.Euphytica,2008,10.1007/s 10681-008-9745-y
    [160]董玉琛,郑殿生.中国小麦遗传资源.北京,中国农业出版社,2000,74-96
    [161]庄巧生主编.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003
    [162]Strampelli N.Early ripening wheats and the advance of Italian wheat production.Tipografia Failli,Rome,1932,5-7
    [163]Borojevie K,Borojevic K.Historic role ofth e wheat variety Akakomugi in southern and central European wheat breeding programs.Breeding science,2005,55:253-256
    [164]Worland A J.The influence of flowering time genes on environmental adaptability in European wheats.Euphytica,1996,89:49-57
    [165]Dyek J A,Matus-C(a|¨)diz M A,Hucl P,et.al.Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod.Crop Sci,2004,44:1976-1981
    [166]刘玉平,李杏普,赵风梧.光周期迟钝基因对冬小麦生育期的影响.河北农业科学,2001,5(1):36-40
    [167]Martinic Z F.Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod.Z Pflanzenzuchtung,1975,75:237-251
    [168]金善宝.中国小麦品种志.北京,中国农业出版社,1961
    [169]Liu J,He Y,Amasino R,et.al,siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis.Genes Dev,2004,18:2873-2878
    [170]Fu D,Szues P,Yan L,et.al.Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat.Mol Genet Genom,2005,273:54-65
    [171]Tanio M,Kato K.Development of near-isogenic lines for photoperiod-insensitive gene,Ppd-B1and Ppd-D1,carried by the Japanese wheat eultivars and their effect on apical development.Breeding science,2007,57:65-72
    [172]Stature S,Ben-Ari S,Rafalska I,et.al.Function of alternative splicing.Gene,2005,344:1-20
    [173]Lareau L F,Green R E,Bhatnagar R S,et.al.The evolving roles of alternative splicing.Curr Opin Struet Biol,2004,14:273-282
    [174]Mironov A A,Fickett J W,Gelfand M S.Frequent alternative splicing of human genes.Genome Res,1999,9:1288-1293
    [175]Brett D,Hanke J,Lehmarm G,et.al.EST comparison indicates 38%of human mRNAs contain possible alternative splice forms.FEBS Lett,2000,474:83-86
    [176]Croft L,Schandorff S,Clark F,et.al.ISIS,the intron information system,reveals the high frequency of alternative splicing in the human genome.Nat Genet,2000,24:340-341
    [177]International Human Genome Sequencing Consortium.Initial sequencing and analysis of the human genome.Nature,2001,409:860-921
    [178] Kan Z, Rouchka E C, Gish W R, et.al. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res, 2001,11: 889-900
    
    [179] Modrek B, Resch A, Grasso C, et.al. Genome-wide analysis of alternative splicing using human expressed sequence data. Nucleic Acids Res, 2001,29: 2850-2859
    
    [180] Soleymanlou N, Wu Y, Wang J X, et.al. A novel Mtd splice isoform is responsible for trophoblast cell death in pre-eclampsia. Cell Death Differ, 2005,12: 441-452
    
    [181] Tan E K, Shen H, Tan J M, et.al. Differential expression of splice variant and wild-type parkin in sporadic Parkinson's disease. Neurogenetics, 2005,6: 179-184
    
    [182] Ule J, Ule A, Spencer J, et.al. Nova regulates brain-specific splicing to shape the synapse. Nat Genet, 2005, 37: 844-852
    
    [183] Agrawal S, Eng C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet,2006,15: 777-787
    
    [184] Speek M, Njunkova O, Pata I, et.al. A potential role of alternative splicing in the regulation of the transcriptional activity of human GLI2 in gonadal tissues. BMC Mol Biol, 2006,7: 1-13
    
    [185] Venables J P. Unbalanced alternative splicing and its significance in cancer. Bioessays, 2006, 28: 378-386
    
    [186] Zhong X, Liu J R, Kyle J W, et.al. A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet, 2006,15: 1497-1512
    
    [187] Golovkin M, Reddy A S. Structure and expression of a plant U1 snRNP 70K gene: Alternative splicing of Ul snRNP 70K pre-mRNAs produces two different transcripts. Plant Cell, 1996, 8: 1421-1435
    
    [188] Lazar G, Goodman H M. The Arabidopsis splicing factor SRI is regulated by alternative splicing. Plant Mol Biol, 2000,42: 571-581
    
    [189] Montag K, Salamini F, Thompson R D. ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm. Nucleic Acids Res, 1995,23: 2168-2177
    
    [190] Macknight R, Bancroft I, Page T, et.al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell, 1997, 89: 737-745
    
    [191] Macknight R, Duroux M, Laurie R, et.al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell, 2002,14: 877-888
    
    [192] Dinesh-Kumar S P, Baker B J. Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA, 2000, 97: 1908-1913
    
    [193] Egawa C, Kobayashi F, Ishibashi M, et.al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst, 2006, 81: 77-91
    
    [194] Werneke J M, Chatfield J M, Ogren W L. Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell, 1989.1:815-825
    [195]Baga M,Glaze S,Mallard C S,et.al.A starch-branching enzyme gene in wheat produces alternatively spliced transcripts.Plant Mol Biol,1999,40:1019-1030
    [196]Reddy A S.Alternative splicing of pre-messenger RNAs in plants in the genomic era.Annu Rev Plant Biol,2007,58:267-294
    [197]赵光耀.基于大规模全长cDNA序列的小麦功能基因组学研究[学位论文].北京.中国农业科学院.2006
    [198]Wang B B,Brendel V.Genoroewide comparative analysis of alternative splicing in plants.Proc Natl Acad Sci U S A,2006,103:7175-7180
    [199]Mcintosh R A.Catalogue of gone symbols for wheat.In Proceedings of the 7th International Wheat Genetics Symposiuro,Cambridge,England,1988,1225-1323
    [200]Scarth R,Law C N.The location of the photoperiod gent,Ppd-B1 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat.Heredity,1983,51:607-619
    [201]Tanksley S D,McCouch S.Seed banks and molecular maps:unlocking genetic potential from the wild.Science,1997,277:1063-1066
    [202]Liu A,Burke J M.Patterns of nucleotidc diversity in wild and cultivated sunflower.Genetics,2006,173:321-330
    [203]Lumaret R,Ouazzani N.Ancient wild olives in Mediterranean forests.Nature,2001,413:700
    [204]Eyre-Walker A,Gaut R L,Hilton H,et.al.Investigation of the bottleneck leading to the domestication of maize.Proc Natl Acad Sci USA,1998,95(8):4441-4446
    [205]Wright S I,Gaut B S.Molecular population genetics and the search for adaptive evolution in plants.Mol Biol Evol,2005,22(3):506-519
    [206]Hoogendoom J.A reciprocal F1 monosomic analysis of the genetic control of the time of ear eroergence,number of leaves and number of spikelets in wheat(Triticum aestivum L.).Euphytica,1985,34:545-558
    [207]Pirasteh B,Welsh J R.Monosomic analysis of photopcriod response in wheat.Crop science,1975,15:503-505.
    [208]Shindo C,Tsujimoto H,Sasakuma T.Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines.Heredity,2003,90(1):56-63
    [209]Hanocq E,Niarquin M,Heumcz E,et.al.Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population.Theor Appl Genet,2004,110:106-115
    [210]Campbell M A,Haas B J,Hamilton J P,et.al.Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis.BMC Genomics,2006,7:327
    [211]Barbazuk W B,Fu Y,McGinnis K M.Genome-wide analyses of alternative splicing in plants:opportunities and challenges.Genome Res,2008,18:1381-1392
    [212]Marrs K A,Walbot V.Expression and RNA splicing of the maize glutathione S-transferase Bronze 2 gene is regulated by cadmium and other stresses.Plant Physiol,1997,113:93-102
    [213]Palusa S G,Ali G S,Reddy A S.Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins:Regulation by hormones and stresses.Plant J,2007,49:1091-1107
    [214] Tanabe N, Yoshimura K, Kimura A, et.al. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol, 2007,48: 1036-1049
    
    [215] Iida K, Seki M, Sakurai T, et.al. Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res, 2004, 32: 5096-5103
    
    [216] Attallah C V, Welchen E, Pujol C, et.al. Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. Plant Mol Biol, 2007,65: 343-355
    
    [217] Zhang X C, Gassmann W. Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol, 2007, 145: 1577-1587
    
    [218] Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction. Annu. Rev. Biochem, 2000,69: 183-215
    
    [219] Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol, 2004,134: 1718-1732
    
    [220] Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABB with proteins identified from developing Arabidopsis seeds. Plant J, 2000,21: 143-155
    
    [221] Wenkel S, Turck F, Singer K, et.al. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell, 2006,18:2971-2984
    
    [222] Pugsley A T. A genetic analysis of the spring-winter habit of growth in wheat. Aust. J. Agric. Res, 1971,22:21-23
    
    [223] Pugsley A T. Additional genes inhibiting winter habit in wheat. Euphytica, 1972,21: 547-552
    
    [224] Nalini E, Jawali N, Bhagwat S G. Analysis of QTLs for earliness components in bread wheat (Triticum aestivum L). BARC Newsletter, Founder's Day Special issue, 2007,285: 183-189
    
    [225] McCartney C A, Somers D J, Humphreys D G, et.al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 x 'AC Domain. Genome, 2003, 48: 870-883
    
    [226] Perretant M R, Cadalen T, Charmet G, et.al. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet, 2000,100: 1167-1175
    
    [227] Gervais L, Dedryver F, Morlais J Y, et.al. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet, 2003, 106: 961-970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700