豆科植物蒺藜苜蓿发育相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆科(Leguminosae)是种子植物第三大科,用途广泛,栽培历史长,是人类和动物食物和营养来源的最重要的科属之一。豆科植物与根瘤菌之间的共生固氮系统是生物圈中氮循环的一个主要氮源。与其他豆科物种相比,蒺藜苜蓿(Medicago truncatula)具有遗传转化效率高、生长周期短、染色体数目少、基因组小、严格自花授粉、固氮等特点,已成为豆科生物学和基因组学研究的新型模式植物。十多年来,已建立了相关的蒺藜苜蓿基因组生物信息学公共数据库,发展了一系列能基因组研究工具和遗传突变体库。越来越多的研究已经证明,小RNA在植物生长发育过程中扮演着重要的角色。目前,小RNA(small RNAs)研究最广泛的是microRNA(miRNA)和small interfering RNA (siRNA)。miRNA主要为生物体内源型小RNA; siRNA分为内源与外源型小RNA,其中内源型siRNA主要调控生物体的机能,而外源型siRNA主要是RNAi实验进行基因抑制的手段。内源型siRNA的形成机制已比较清楚,其中TAS3 ta-siRNA是2005年才发现的一种新型调控途径,在生长发育等各种生物学过程中发挥重要作用。本文从蒺藜苜蓿Tntl突变体库中筛选到了两种发育相关突变体:(1)叶缘深锯齿突变体loll.从中克隆到与植物形态发育密切相关基因LOL1,它是植物内源siRNA的TAS3 ta-siRNA调控途径中的关键基因,对生长发育有直接或间接的影响;
     (2)滞绿突变体sgr。从中克隆到叶绿素降解相关基因SGR,并且利用RNAi技术抑制牧草紫花苜蓿中内源SGR基因的表达,发现转基因株系滞绿并且品质有所改良;主要研究内容和结果如下:
     1. LOL1基因与TAS3 ta-siRNA途径在蒺藜苜蓿发育过程中的作用
     在筛选蒺藜苜蓿Tntl突变体库时,发现了四个具相同表型的发育突变体lobed leafletl(loll),在叶、花和根的发育过程中表现出严重缺陷:成年叶边缘产生严重的缺刻,幼年叶呈现出成年叶的特征;花器官的发育也不正常,其花瓣呈放射状,中央心皮不能融合从而导致胚珠暴露,花粉囊和花粉颗粒大小不均一,花粉内染色质发生降解,在开花后期,花粉囊无法正常打开;主根长度变短,但一级和二级侧根的数量明显增多。进一步分析显示,这四个突变体分别是Tntl和内源逆转录转座子Merel插入到同一个基因外显子的不同位置造成的;我们克隆了该基因,并命名为LOU1。
     LOL1在蒺藜苜蓿野生型的各器官中均有表达,其中花和茎中表达量最高,其次是叶柄、幼叶和成年叶,这表明该基因在叶和花的发育过程中起到重要作用。RNA原位杂交结果证明,营养生长阶段,LOL1基因在叶原基和处于发育阶段的叶近轴端部位表达,而在茎顶端分生组织(shoot apical meristems, SAM)中没有表达;生殖生长阶段,LOL1在花分生组织有表达,其中在发育中的花药、胚珠和心皮等花器官中表达量更高。
     lol1突变体的互补系的发育缺陷被完全恢复,并且能够产生后代。qRT-PCR分析表明外源引入的LOL1基因在互补系中的表达量与野生型相似。过表达LOL1的蒺藜苜蓿转基因株系的表型和野生型没有明显差别。
     系统进化树分析表明LOL1氨基酸序列与拟南芥AGO7(ZIP)、水稻OsAGO7(SHL4)有高的同源性,聚为一组。另外,LOL1含有AGO蛋白的PAZ中心结构域和C-端PIWI结构域,表明是拟南芥AGO7的同源基因,其编码的蛋白是TAS3ta-siRNA途径的关键蛋白。
     通过对蒺藜苜蓿TAS3 ta-siRNA途径的预测和分析,得到了蒺藜苜蓿TAS3ta-siRNA基因,TAS3 ta-siRNA途径中的miRNA-miR390,和三个靶基因ARF。结果表明,这一途径的关键基因序列都与拟南芥、百脉根和水稻中的相关基因同源,且靶位点保守。这些结果表明TAS3 ta-siRNA-ARFs在调控单子叶和双子叶植物发育过程中的功能非常保守。而且,蒺藜苜蓿loll突变体特有的根系统缺陷表明TAS3 ta-siRNA调控途径在蒺藜苜蓿发育中可能发挥更加广泛的作用。另外,HD-ZIPⅢ基因家族在lol1突变体中表达上调,这说明该基因家族被蒺藜苜蓿TAS3 ta-siRNA途径间接调控。由于该基因家族控制植物侧翼器官的发育,因此HD-ZIPⅢ基因家族表达水平的变化可能也是造成loll突变体侧根数目增多的原因之一。
     2.蒺藜苜蓿滞绿基因(STAY-GREEN)拘鉴定
     本实验从蒺藜苜蓿Tntl反转录转座子突变体库中还筛选到了滞绿(stay-green)突变体sgr,在叶片衰老的过程中仍保留叶绿素。研究发现Tntl插入到了蒺藜苜蓿的滞绿(STAY-GREEN)基因MtSGR的第三个外显子第131-132bp之间,导致基因失活。根据蒺藜苜蓿sgr突变体在衰老过程中叶绿素的保留、Fv/Fm指标下降速率和类囊体结构保留的超微结构观察结果,证明该突变体属于C型滞绿突变体。
     系统进化树结果表明蒺藜苜蓿SGR(MtSGR)与紫花苜蓿(MsSGR)亲缘关系最近。而且豌豆、大豆、紫花苜蓿、蒺藜苜蓿等豆科物种的SGR序列高度保守,聚为一个组。蛋白质序列比对显示,SGR家族成员蛋白质有高度保守的中心序列,但N端和C端序列区域有显著差别。蒺藜苜蓿sgr突变体中Tntl插入位点Arg-145在SGR家族内部是一个高度保守的氨基酸残基,说明该氨基酸是蛋白质具有功能的保守氨基酸。
     MtSGR基因表达谱结果显示,其在各器官中均为低水平组成型表达,但在种子成熟与根瘤发育,特别是在根瘤衰老的过程中,MtSGR的转录水平明显升高,表明MtSGR的表达不仅与叶绿素衰老相关,在根瘤发育和衰老途径中也可能发挥功能。
     3.紫花苜蓿内源SGR基因RNAi分析
     根据蒺藜苜蓿与紫花苜蓿间高度同源的进化关系,克隆了紫花苜蓿MsSGR基因,并且利用RNAi技术对紫花苜蓿内源MsSGR基因的表达进行抑制,获得了12个滞绿转基因株系。通过real-time PCR分析,发现5个转基因株系内源SGR基因的抑制水平在60%以上。衰老诱导实验表明,这5个转基因株系表型与蒺藜苜蓿sgr突变体一致,属于C型滞绿突变体。Southern杂交结果表明,这5个转基因株系为独立的转基因事件,转基因稳定地整合到了紫花苜蓿基因组的不同区域。
     紫花苜蓿是一种重要的牧草,收割方式通常是将地上部分采收后捆包,晾干成干草。干草是目前最普遍的贮存草料的方法,能够避免在收后贮藏时候草料质量的损失。对紫花苜蓿转基因株系进行模拟收割和干燥,发现在正常生长环境下转基因株系与野生型、对照株系没有区别,但在干燥处理之后仍保持滞绿的特点,因此在收割与收割后贮存上有明显优势和潜在的应用价值。
     牧草品质分析表明,与野生型相比,转基因株系的牧草品质没有降低,甚至有一定的改进,比如SGRi-39株系的粗蛋白含量和消化度稍有少许提高,而耐酸性去污剂纤维(ADF)和中性去污剂纤维(NDF)含量则明显下降,说明MsSGR的下调表达对紫花苜蓿的牧草改良有正面贡献。
     综上所述,我们首次将滞绿(stay-green)性状应用到了豆科牧草中,证明叶绿素降解途径中的滞绿基因SGR可成功用于牧草紫花苜蓿的遗传改良。
Leguminosae, the third largest family of flowing plants, grows throughout the world, and is of great economic importance for timber, fodder, drugs, and food. As for many legume species, unique advantage is their response to nitrogen limitation-nitrogen fixation from the soil by the formation of nodules, resulting in the symbiosis with rhizobia. It can reduce the fertilizer costs in agriculture. However, the genome evolution of many legume species is closely tied with history of human civilization, which made the genome duplicated and even redundant.
     Currently Medicago truncatula is being used as a model of legume plants since it has a modest diploid genome, self-fertile nature, relatively short generation cycle, close relationships to alfalfa and other forage legumes, and large collections of ecotypes. The genome sequencing work of Medicago truncatula has been largely developed in the past decade. A growing number of genome websites and database as well as excellent mutant populations have already been set up, which accelerates the work of M. truncatula functional genomics. As a result, the supplications of genome and transcriptome information of M. truncatula have stimulated to understand the genetics and development mechanisms in alfalfa and other legume crops.
     Small RNAs have been proved to play important roles in plant development. Until now, micro RNA (miRNA) and small interfering RNA (siRNA) are two kinds of small RNAs which have been well studied. microRNA is a native RNA regulator in plants. The formation of siRNAs can be from endogenous pathway and transfection of exogenous double-strand RNA. A new type of endogenous TAS3 ta-siRNA pathway was reported in Arabidopsis and rice in 2005. Exogenous siRNAs are usually used as a tool to study the target gene function, which is commonly utilized in RNAi technique.
     Here we have identified and characterized two kinds of developmental defect mutants-lobed leaflet1 and stay-green-from the tobacco(Nicotiana tabacum) Tnt1 retrotransposon-tagged mutant population of M. truncatula.This thesis describes the identification and molecular characterization of the genes LOL1 and SGR related with the mutant phenotypes.
     1. Identification of LOL1 gene and its role in M. truncatula TAS3 ta-siRNA pathway during plant development
     In this study, we found four developmental defective mutant lines showing the same phenotypic changes. They were named loll-1 to loll-4(lobed leaflet1) respectively, because all adult leaves are lobed in these mutants. Their juvenile leaves exhibit the characteristics of adult leaves which have trifoliate form. Moreover, further analysis showed abnormal changes in flower and roots. The keel and alae split with each other and unfused central carpels resulted in the exposed ovules. The size of pollen and anther sacs was not even and some pollens were dead. During flower stage, the anthers could not open, failing in the fertilization. Observation of 12-day-old roots showed the increasing number of first and secondary order lateral roots but shorter primary roots in loll mutants compared with wild-type.
     LOL1 complementation and over-expression transgenic lines showed the same phenotype as that of wild-type. This result, combining with the analysis of back-crossing revealed the abnormal phenotypes was tightly linked to the LOL1 which is a single recessive locus.
     Phylogenetic analysis showed that LOL1 was clustered into a subgroup including the AGO7 (ZIP) in Arabidopsis and OsAGO7 (SHL4) in rice with the high similarity. In addition, LOL1 contained a central PAZ domain and a C-terminal PIWI domain which define the PPD class of proteins, also named as AGO proteins. Therefore, LOL1 is an ortholog of Arabidopsis ARGONAUTE7, which is a key gene involved in TAS3 ta-siRNA pathway.
     By prediction and analysis of M. truncatula TAS3 ta-siRNA pathway, we analyzed Mt miR390 cleavage manner, the TAS3 ta-siRNA genes and target genes ARFs. The result revealed that TAS3 ta-siRNA biogenesis mechanism is conserved in Medicago truncatula. These data indicate that the regulation mechanism of TAS3 tasiRNA-ARFs pathway is well conserved in both monocots and dicots and plays a fundamental role in plant development.
     In our study, the severe defects in both primary and lateral roots in lollmutants suggest that the root development is also sensitive to the TAS3 ta-siRNA pathway. Our data indicate that besides three ARF genes directly regulated, HD-ZIP III gene family are also regulated indirectly by TAS3 ta-siRNA pathway in root of M. truncatula. Compared with no root phenotypic changes observed in Arabidopsis ago7 mutant, defective roots of M. truncatula loll mutant showed wider range of regulation in M. truncatula development.
     2. Identification of M. truncatula STAY-GREEN(SGR) gene
     A stay-green(sgr) mutant line NF2089 was obtained by screening the tobacco Tntl-tagged mutant population of M. truncatula. The whole plants remained green during natural and dark-induced senescence. Interestingly, the stay-green phenomenon was evident not only in leaves but also in other organs, such as anther, central carpels, mature pods and seeds. After 10 days of dark-induced senescence, chlorophyll (Ch1) contents were retained much in NF2089,60% of Ch1 a and 58% of Ch1 b retained respectively. Combining with the normal decrease of the maximal fluorescence yield of photosystem II (PSII)-Fv/Fm value and retaining of thylakoid structure in senescent chloroplasts, M. truncatula sgr mutant belongs to type C stay-green mutant.
     SGR was cloned from M. truncatula and M. sativa SGR, the phylogenetic trees based on predicted SGR protein sequences were constructed, showing that MtSGR and MsSGR were most identical to each other, with closely similarity to PsSGR. All the SGRs from Leguminosae species including soybean, pea, M. sativa and M. truncatula were clustered together. The alignment analysis revealed that SGR family members share highly conserved central core with divergent at N and C termini. The amino acid residue Arg-145, at which the Tntl was inserted into NF2089, is an invariant residue within SGR family.
     MtSGR gene was constitutively expressed in all organs at low level. It is noteworthy, however, transcription was highly induced during seed maturation and nodule development with a dramatically improvement during nodule senescence. Therefore, it suggested that MtSGR is not only related with chlorophyll senescence, but may be also involved in nodule development and senescence.
     Altogether, we identified MtSGR gene, which is member of SGR gene family, from M. truncatula sgr mutant with stable type C stay-green phenotype during senescence. Based on the gene expression atlas, we propose that MtSGR is performed in nodule development and senescence pathway, suggesting overlap between chlorophyll senescence and nodule development.
     3. Down-regulation of MsSGR in alfalfa by RNA interference
     Alfalfa is regarded as important forage around the world. Hay is the most common method of forage preservation for animal feed and storage, which can cause little loss of forage material. When alfalfa in field is used as hay, the harvesting is usually fresh-cut, baled and then dried. In order to improve the quality of alfalfa, it is also important to breed stay-green cultivar whose leaf senescence can be delayed. Therefore, we cloned SGR from alfalfa (M. sativa) according to the conserved relationship between M. truncatula and alfalfa. To analyze the role of MsSGR, the MsSGR-RNAi transgenic lines of alfalfa was constructed through transformation of MsSGR-RNAi vector under the control of 35S-promoter. Five out of twelve positive transgenic lines, MsSGR-RNAi (SGRi) No.10,17,21,29, and 39 have significantly lower SGR transcription level by more than 60% compared with control line (CTRL) using qRT-PCR. The analysis of dark-induced senescence showed that the stay-green phynotype of RNAi transgenic lines also showed the characterization of type C stay-green mutant.
     To evaluate the potential application of MsSGR-RNAi alfalfa, we performed the mimic harvest process of these transgenic alfalfa lines. overground parts of each transgenic line and wild-type were cut and put in the field where the air is well ventilated. During the naturally dry progress, transgenic lines still stably showed the stay-green phenotype, compared with the yellowing of wild-type. Therefore, transgenic alfalfa lines have the potential predominance in harvest and post-harvest storage.
     We evaluated all the five MsSGR-RNAi transgenic alfalfa lines by forage analysis. It was found that No.39 has higher contents of crude protein, lower in value of ADF and NDF, compared with wild-type RSY-4D. It is commonly valued that forages with higher digestibility could supply more energy to the animal per unit of DM consumed than less digestible forages could. So the strategy of senescence delay leads to forage improvements as predicted above.
     In this part of study, we identified the homologs of SGR in forage alfalfa (M. sativa), and obtained stay-green transgenic alfalfa by RNA interference silencing of SGR expression. Stay-green phenotype was remained even after plants were cut off and dried. By the senescence inhibition, the forage quality analysis of transgenic alfalfa lines shows no loss but a slightly improvement, which might be considered a good sign for application of stay-green phenotype. Our work also constructs a bridge between the theoretical study of genes in M. truncatula and application of genetic improvement of alfalfa. There are few comments about alfalfa improvement of delaying leaf senescence by directly genetic manipulation. And this is the first report on applications of stay-green into legume forages.
引文
柴晓杰,王丕武,关淑艳等.2005.应用RNA干扰技术降低玉米支链淀粉含量.植物生理与分子生物学学报31:625-630.
    陈爱民,连瑞丽,孙杰,王彦章.2006.豆科模式植物——蒺藜苜蓿.植物生理学通讯42:997-1003.
    陈善福,舒庆尧.1999.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报16:555-560.
    韩贻仁,樊廷俊,杨晓梅,时永香,粟翼玟.2001.分子细胞生物学(第二版).北京:科学出版社.p326.
    黄文惠,刘自学.1995.概论苜蓿的分布和发展.中国苜蓿.北京:中国农业出版社.2-7.
    李培旺,卢向阳,李昌珠,方俊,田云.2007.植物microRNAs研究进展.遗传29:283-288.
    吕德扬,曹学远,唐顺学.2000.紫花苜蓿外源基因共转化植株的再生.中国科学30:342-348.
    任国栋.拟南芥叶绿素降解相关基因NYE1、NYE2、CRN1的鉴定及其功能研究.上海:复旦大学,2009.
    史向毅,苗琛,王江,时振英.2008.植物中的一种内源小RNA ta-siRNA.植物生理学通讯44:378-384.
    魏臻武,盖钧镒.2006.豆科模式植物蒺藜苜蓿基因组研究进展.中国草地学报28:83-90.
    徐子勤,贾敬芬.2000.苜蓿红豆草属间体细胞杂种的分子生物学鉴定.生物工程学报16:173-178.
    杨晓棠,张昭其,徐兰英,庞学群.2008.植物叶绿素的降解.植物生理学通讯44:7-14.
    张振霞,符义坤,储成才.2002.豆科牧草基因工程研究进展.遗传24:607-612.
    曾晓珊,戴良英,刘雄伦,王国梁.2007.dsRNA介导植物基因沉默及其应用.生命科学19:132-138.
    周兴龙,杨青川,王凭青,吴明生,谢伟伟.2005.苜蓿转基因研究进展.重庆大学学报28:126-130.
    周小云,陈信波,向建华.2005.RNAi技术及在植物功能基因组研究中的应用.生物学杂志22:38-40.
    Achard P, Herr A, Baulcombe DC, Harberd NP.2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357-3365.
    Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H.2006. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927-932.
    Alexander MP.1969. Differential staining of aborted and nonaborted pollen. Stain Technol 44: 117-122.
    Allen E, Xie Z, Gustafson AM, Carrington JC.2005. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207-221.
    Allen JF, Forsberg J.2001. Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317-326.
    Alos E, Roca M, Iglesias DJ, Minguez-Mosquera MI, Damasceno CM, Thannhauser TW, Rose JK, Talon M, Cercos M.2008. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Physiol 147:1300-1315.
    Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E.2007. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant Microbe Interact 20:1138-1148.
    Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC.2005. Cloning and characterization of micro-RNAs from moss. Plant J 43:837-848.
    Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I.2006. From crop to model to crop:Identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592-597.
    Aubry S, Mani J, Hortensteiner S.2008. Stay-green protein, defective in mendel's green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243-256.
    Axtell MJ, Jan C, Rajagopalan R, Bartel DP.2006. A two-hit trigger for sirna biogenesis in plants. Cell 127:565-577.
    Axtell MJ, Snyder JA, Bartel DP.2007. Common functions for diverse small RNAs of land plants. Plant Cell 19:1750-1769.
    Aziz N, Paiva NL, May GD, Dixon RA.2005. Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28-38.
    Bachmann A, Fernandez-Lopez J, Ginsburg S, Thomas H, Bouwkamp JC, Solomos T, Matile P. 1994. Stay-green genotypes of Phaseolus vulgaris L.:chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol 126:592-600.
    Baier MC, Barsch A, Kuster H, Hohnjec N.2007. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145:1600-1618.
    Baker CC, Sieber P, Wellmer F, Meyerowitz EM.2005. The early extra petalsl mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15: 303-315.
    Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ.2008. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol 147:179-187.
    Bartel B.2005. MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol 12:569-571.
    Bartel B, Bartel DP.2003. MicroRNAs:At the root of plant development? Plant Physiol 132: 709-717.
    Baskerville S, Bartel DP.2005. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241-247.
    Baucher M, Bernard-Vailhe MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J.1999. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437-447.
    Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK.2008. A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504-513.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J.2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591-602.
    Bethlenfalvay GJ, Phillips DA.1977. Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes. Plant Physiol 60:419-421.
    Bollivar DW.2006. Recent advances in chlorophyll biosynthesis. Photosynth Res 90:173-194.
    Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK.2005. Endogenous sirnas derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123: 1279-1291.
    Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F. 2008. MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876-887.
    Boudet A, Grima-Pettenati J.1996. Lignin genetic engineering. Molecular Breeding 2:25-39.
    Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D.2003. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol J1:3-22.
    Buitink J, Leger JJ, Guisle I, Vu BL, Wuilleme S, Lamirault G, Le Bars A, Le Meur N, Becker A, Kuster H, Leprince O.2006. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47:735-750.
    Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G.2007. Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768-781.
    Byzova M, Verduyn C, De Brouwer D, De Block M.2004. Transforming petals into sepaloid organs in Arabidopsis and oilseed rape:Implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner. Planta 218:379-387.
    Canfield MR, Guiamet JJ, Nooden LD.1995. Alteration of soybean seedling development in darkness and light by the stay-green mutation cytG and Gd1d2. Annals of Botany 75: 143-150.
    Carmell MA, Xuan Z, Zhang MQ, Hannon GJ.2002. The argonaute family:Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733-2742.
    Chandran D, Sharopova N, Ivashuta S, Gantt JS, Vandenbosch KA, Samac DA.2008. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151-166.
    Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC.2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18: 1179-1186.
    Chen X.2005. MicroRNA biogenesis and function in plants. FEBS Lett 579:5923-5931.
    Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR.2004a. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166: 1463-1502.
    Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR.2004b. Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289-15294.
    Collins M, Fritz J.2003. Forage quality. In:Barnes rf, nelson cj, collins m, moore kj, eds. Forages: An introduction to grassland agriculture 6th edition. Blackwell publishing. Iowa, USA: Iowa state press.363-390.
    Cook DR.1999. Medicago truncatula-a model in the making! Curr Opin Plant Biol 2:301-304.
    d' Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P.2003. Efficient transposition of the Tntl tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34: 95-106.
    De Michele R, Formentin E, Todesco M, Toppo S, Carimi F, Zottini M, Barizza E, Ferrarini A, Delledonne M, Fontana P, Lo Schiavo F.2009. Transcriptome analysis of Medicago truncatula leaf senescence:Similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytol 181:563-575.
    Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS.2006. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45: 616-629.
    Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL.2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768-1774.
    Espinosa-Victoria D VC, Graham PH..2000. Host variation in traits associated with crown nodule senescence in soybean. Crop Science 40:103-109.
    Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. 2006. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939-944.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.1998. Potent and specific genetic interference by double-stranded rna in Caenorhabditis elegans. Nature 391: 806-811.
    Fu X, Kohli A, Twyman RM, Christou P.2000. Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene, single-copy transgenic locus in rice. Mol Gen Genet 263:106-118.
    Gallardo K, Firnhaber C, Zuber H, Hericher D, BelghaziM, Henry C, Kuster H, R. T.2007. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds.. Mol Cell Proteom 6:2165-2179.
    Gasciolli V, Mallory AC, Bartel DP, Vaucheret H.2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494-1500.
    Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M.2003. Large-scale identification of leaf senescence-associated genes. Plant J 36:629-642.
    Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M.1997. N2 fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol 113:1193-1201.
    Gonzalez E, Aparicio-Tejo PM, Gordon AJ, Minchin FR, Royuela M, C A-I.1998. Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49:1705-1714.
    Grandbastien MA, Spielmann A, Caboche M.1989. Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376-380.
    Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F.2004. A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Molecular Biology Rep 54:39-54.
    Greenberg JT, Guo A, Klessig DF, Ausubel FM.1994. Programmed cell death in plants:A pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551-563.
    Gualtieri G, Kulikova O, Limpens E, Kim DJ, Cook DR, Bisselin T, Geurts R.2002. Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol Biol 50:225-235.
    Guiamet J, Pichersky E, LD N.1999. Mass exodus from senescing soybean chloroplasts. Plant and Cell Physiology 40:986-992.
    Guo D, Chen F, Inoue K, Blount JW, Dixon RA.2001. Downregulation of caffeic acid 3-o-methyltransferase and caffeoyl CoA 3-o-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73-88.
    Guo HS, Xie Q, Fei JF, Chua NH.2005. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376-1386.
    Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM.2005. Cross-species amplification of medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210-1217.
    Hamilton AJ, Baulcombe DC.1999. A species of small antisense rna in posttranscriptional gene silencing in plants. Science 286:950-952.
    Hawker NP, Bowman JL.2004. Roles for class III hd-zip and kanadi genes in arabidopsis root development. Plant Physiol 135:2261-2270.
    Helliwell C, Wesley S, Wielopolska A, Waterhouse P.2002. High-throughput vectors for efficient gene silencing in plants. Functional Plant Biology 29:1217-1225.
    Henikoff S, Till BJ, Comai L.2004. Tilling. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630-636.
    Hill K, Jarvis-Eagan N, Halk EL, Krahn KJ, Liao LW, Mathewson RS, Merlo DJ, Nelson SE, Rashka KE, LS. L-F.1991. The development of virus-resistant alfalfa, Medicago sativa L. Nature Biotechnology 9:373-377
    Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H.2005. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283-1301.
    Hortensteiner S.2006. Chlorophyll degradation during senescence. Annu Rev Plant Biol 57: 55-77.
    Hortensteiner S.2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155-162.
    Hu G, Yalpani N, Briggs SP, Johal GS.1998. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10: 1095-1105.
    Hunter C, Sun H, Poethig RS.2003. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734-1739.
    Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutierrez-Nava M, Poethig SR.2006. Trans-acting sirna-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973-2981.
    Husbands AY, Chitwood DH, Plavskin Y, Timmermans MC.2009. Signals and prepatterns:new insights into organ polarity in plants. Genes Dev 23:1986-1997.
    Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, Stieger PA.2010. Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137:975-984.
    Inoue K, Sewalt VJ, Murray GB, Ni W, Stiirzer C, Dixon RA.1998. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme a 3-O-methyltransferase in relation to lignification. Plant Physiol 117: 761-770.
    Irigoyen J, Emerich D, Sanchez-Diaz M.2006. Alfalfa leaf senescence induced by drought stress: Photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution. Physiologia Plantarum 84:67-72.
    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP.2003. Summaries of affymetrix genechip probe level data. Nucleic Acids Res 31:el 5.
    Ito H, Tanaka A.1996. Determination of the activity of chlorophyll b to chlorophyll a conversion during greening of etiolated cucumber cotyledons by using pyrochlorophyllide b. Plant Physiol Biochem 34:35-40.
    Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G 2007. Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197-209.
    Jones KMS, N. Lohar, D. P. Zhang, J. Q. VandenBosch, K. A. Walker, G C.2008. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105:704-709.
    Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible W-R, Stitt M, Torres-Jerez I, Xiao Y, Redman J, Wu H.2008. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4: 1-12.
    Kapoor S, Kobayashi A, Takatsuji H.2002. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14:2353-2367.
    Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC.2003. P1/HC-pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205-217.
    Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T.2001. Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49-58.
    Kurihara Y, Takashi Y, Watanabe Y 2006. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12: 206-212.
    Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A.2007. Rice NON-YELLOWING COLORING 1 is involved in light-harvesting complex ii and grana degradation during leaf senescence. Plant Cell 19: 1362-1375.
    Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A. 2004. Construction and validation of cDNA-based Mt6k-RIT macro-and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JBiotechnol 108: 95-113.
    Lamb J, CC. S, LH. R, RM. S, DJ. U, EC B.2006. Five decades of alfalfa cultivar improvement: Impact on forage yield persistence and nutritive value. Crop Sci 46:902-909.
    Lawrence RJ, Pikaard CS.2003. Transgene-induced RNA interference:A strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36: 114-121.
    Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J, Thompson R.2009. Optimizing tilling populations for reverse genetics in Medicago truncatula. Plant Biotechnol J 7:430-441.
    Lee DY, Hayes JJ, Pruss D, Wolffe AP.1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73-84.
    Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R.2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630-633.
    Lingel A, Simon B, Izaurralde E, Sattler M.2003. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465-469.
    Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y, Cao X.2007. Oryza sativa dicer-like4 reveals a key role for small interfering rna silencing in plant development. Plant Cell 19:2705-2718.
    Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ.2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106-2123.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ.2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437-1441.
    Liu Q, Singh SP, Green AG.2002. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732-1743.
    Mach JM, Castillo AR, Hoogstraten R, Greenberg JT.2001. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771-776.
    Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H.2004. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063-1077:
    Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA.2003. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15:223-236.
    Matamoros MA, Baird LM, Escuredo PR, Dalton DA, Minchin FR, Iturbe-Ormaetxe I, Rubio MC, Moran JF, Gordon AJ, Becana M.1999. Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol 121:97-112.
    Matile P, Schellenberg M, Vicentini F.1997. Localization of chlrophyllase in the chloroplast envelope. Planta 201:96-99.
    McCabe MS, Garratt LC, Schepers F, Jordi WJ, Stoopen GM, Davelaar E, van Rhijn JH, Power JB, Davey MR.2001. Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505-516.
    McFadden G, van Dooren G 2004. Evolution:Red algal genome affirms a common origin of all plastids. Curr Biol 14:514-516.
    McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D'Halluin K, Botterman J. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago Sativa L.). Plant Physiol 103:1155-1163.
    McKersie BD, Murnaghan J, Jones KS, Bowley SR.2000. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427-1437.
    Meilan R, Branner A, Skinner J.2001. Modification of flowering in transgenic trees. Morohoahi N, Komamine A. Molecular Breeding of woody plant. The Netherland:Elsevier SciBv.41: 247-256.
    Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ.2000. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194-5201.
    Miki D, Shimamoto K.2004. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490-495.
    Miyoshi K, Ito Y, Serizawa A, Kurata N.2003. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J 36:532-540.
    Mizukami Y, Houmura I, Takamizo T, Nishizawa Y.2000. Production of transgenic alfalfa with chintinase gene (RCC2).2nd International Symposium Molecular Breeding of Forage Crops. Lorne and Hamilton, Victoria,:105.
    Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS.1989. Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol 89: 375-380.
    Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H, Shimamoto K.2005. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol 46:699-715.
    Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND.2005. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biol 5:15.
    Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, Nosaka M, Mukouhata M, Ashikari M, Kitano H, Matsuoka M, Nagato Y, Sato Y.2007. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A 104:14867-14871.
    Napoli C, Lemieux C, Jorgensen R.1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289.
    Narasimhamoorthy B, Bouton JH, Olsen KM, Sledge MK.2007. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor Appl Genet 114: 901-913.
    Narvaez-Vasquez J, Orozco-Cardenas ML, Ryan CA.1992. Differential expression of a chimeric CaMV-tomato proteinase inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol Biol 20:1149-1157.
    Ogita S, Uefuji H, Morimoto M, Sano H.2004. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931-941.
    Oldroyd GE, Downie JA.2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519-546.
    Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS.2005. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691-3696.
    Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YI, Paek NC.2007. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649-1664.
    Pekker I, Alvarez JP, Eshed Y.2005. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899-2910.
    Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS.2004. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368-2379.
    Prasad K, Vijayraghavan U.2003. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics 165:2301-2305.
    Pruzinska A, Anders I, Aubry S, Schenk N, Tapernoux-Luthi E, Miiller T, Krautler B, Hortensteiner S.2007. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369-387.
    Pruzinska A, Tanner G, Anders I, Roca M, Hortensteiner S.2003. Chlorophyll breakdown: Pheophorbide a oxygenase is a rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259-15264.
    Pruzinska A, Tanner G, Aubry S, Anders I, Moser S, Miiller T, Ongania KH, Krautler B, Youn JY, Liljegren SJ, Hortensteiner S.2005. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the greening reaction. Plant Physiol 139:52-63.
    Qi Y, Denli AM, Hannon GJ.2005. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421-428.
    Rajagopalan R, Vaucheret H, Trejo J, Bartel DP.2006. A diverse and evolutionarily fluid set of micrornas in Arabidopsis thaliana. Genes Dev 20:3407-3425.
    Reinbothe C, Satoh H, Alcaraz JP, Reinbothe S.2004. A novel role of water-soluble chlorophyll proteins in the transitory storage of chorophyllide. Plant Physiol 134:1355-1365.
    Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B.2007. Identification of a novel chloroplast protein AtNYE 1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429-1441.
    Rensink WA, Buell CR.2004. Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiol 135:622-629.
    Rogers C, Oldroyd G.2008. Fast neutron mutagenesis for functional genomics. In G Kahl, K Meksem, eds. The Handbook of Plant Functional Genomics. Wiley-VCH, Weinheim, Germany:291-306.
    Rotz C, Buckmaster D, Mertens D, Black J.1989. Dafosym:A dairy forage system model for evaluating alternatives in forage conservation. Journal of Dairy Science 72:3050-3063.
    Rudiger W.2002. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Res 74: 187-193.
    Rudiger W.2006. Biosynthesis of chlorophylls a and b:The last steps. In:Grimm B, Porra R, Rudiger W, Scheer H, eds. Chlorophylls and bacteriochlorophylls. Dordrecht:Springer: 189-200.
    Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M.2008. Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146:2020-2035.
    Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M.2009. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC 1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120-131.
    Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M.2007. Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci U S A 104:14169-14174.
    Schelbert S, Aubry S, Burla B, Agna B, Kessler F, Krupinska K, Hortensteiner.2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767-785.
    Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dormann P, Hortensteiner S.2007. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBSLett 581:5517-5525.
    Schmidt CL, Shaw L.2001. A comprehensive phylogenetic analysis of rieske and rieske-type iron-sulfur proteins. JBioenerg Biomembr 33:9-26.
    Sledge MK, Ray IM, Jiang G.2005. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 111:980-992.
    Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, McGuire PE, Qualset CO.2003. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818-1827.
    Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kiihlbrandt W.2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919-928.
    Strizhov N, Keller M, Mathur J, Koncz-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A.1996. A synthetic cryIC gene, encoding a Bacillus thuringiensis 8-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA 93:15012-15022.
    Sunkar R, Girke T, Jain PK, Zhu JK.2005. Cloning and characterization of microRNAs from rice. Plant Cell 17:1397-1411.
    Sunkar R, Kapoor A, Zhu JK.2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051-2065.
    Sunkar R, Zhu JK.2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001-2019.
    Tabe LM, Higgins CM, McNabb WC, Higgins TJ.1993. Genetic engineering of grain and pasture legumes for improved nutritive value. Genetica 90:181-200.
    Tadege M, Wang TL, Wen J, Ratet P, Mysore KS.2009. Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiol 151:978-984.
    Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS.2008. Large-scale insertional mutagenesis using the Tntl retrotransposon in the model legume Medicago truncatula. Plant J 54:335-347.
    Tanaka R, Hirashima M, Satoh S, Tanaka A.2003. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a:Inhibition of the pheophorbide a oxygenase activity does not lead to the "Stay-green" phenotype in Arabidopsis. Plant Cell Physiol 44:1266-1274.
    Tang G, Reinhart BJ, Bartel DP, Zamore PD.2003. A biochemical framework for RNA silencing in plants. Genes Dev 17:49-63.
    Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL.2000. Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. TheorAppl Genet 100:1225-1232.
    Tesfaye M, Silverstein K, Bucciarelli B, Samac D, Vance C.2006. The affymetrix medicago genechip array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct Plant Biol 33:783-788.
    Thomas H, Howarth CJ.2000. Five ways to stay green. JExp Bot 51 Spec No:329-337.
    Thomas JC, Wasmann CC, Echt C.1994. Introduction and expression of an insect proteinase inhibitor in aflalfa(medicago sativa L.). Plant Cell Reports 14:31-36.
    Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ.2001. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809-2822.
    Tkaczuk KL, Obarska A, Bujnicki JM.2006. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis. BMC Evol Biol 6: 6.
    Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K.1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation:Finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362-15367.
    Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kazmierczak AE, Niemela J, James P.2007. Promoting ecosystem and human health in urban areas using Green Infrastructure:a literature review. Landsc. Urban Plan 81:167-178.
    Van de Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S.2006. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711-720.
    Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP.2007. Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:1-12.
    Vaucheret H, Mallory AC, Bartel DP.2006. Ago1 homeostasis entails coexpression of miR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129-136.
    Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P.2004. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69-79.
    Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD.2008. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567-580.
    Vlahova M, Stefanova G, Petkov P, Barbulova A, Petkova D, Kalushkov P, Atanassov A.2005. Genetic modification of alfalfa (Medicago sativa L.) for quality improvement and production of novel compounds. Biotechnology and Biotechnological Equipment 19: 56-62.
    Voinnet O, Vain P, Angell S, Baulcombe DC.1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177-187.
    Wandelt CL, Khan MR, Craig S, Schroeder HE, Spencer D, Higgins TJ.1992. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J2:181-192.
    Wang H, Li G, Chen R.2006. Fast neutron bombardment (fnb) mutagenesis for forward and reverse genetic studies in plants. In:Floriculture, Ornamental and Plant Biotechnology: Advances and Special Issues, vol 1. Edited by Teixeira de Silva J. Global Science Books: 629-639.
    Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY.2005. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204-2216.
    Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM.2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581-590.
    Wightman B, Ha I, Ruvkun G.1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans. Cell 75:855-862.
    Williams L, Carles CC, Osmont KS, Fletcher JC.2005a. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703-9708.
    Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC.2005b. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657-3668.
    Winicov Ⅱ, Bastola DR.1999. Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120:473-480.
    Wuthrich KL, Bovet L, Hunziker PE, Donnison IS, Hortensteiner S.2000. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21:189-198.
    Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L.2003. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52: 957-966.
    Xie Q, Frugis G, Colgan D, Chua NH.2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024-3036.
    Xiong J, Bauer CE.2002. Complex evolution of photosynthesis. Annu Rev Plant Biol 53: 503-521.
    Yan H,Mudge J, Kim D, Shoemaker R, Cook D, Young N.2004. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsi thaliana. Genome Res 47:141-155.
    Yan J, Cai X, Luo J, Sato S, Jiang Q, Yang J, Cao X, Hu X, Tabata S, Gresshoff PM, Luo D.2010. The reduced leaflet genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. Plant Physiol 152:797-807.
    Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H.2005. Light regulates COP 1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804-821.
    Yao N, Greenberg JT.2006. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18:397-411.
    Yen C, Yang C.1998. Evidence for programmed cell death during leaf senescence in plants. Plant and Cell Physiology 39:922-927.
    Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS.2010. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382-1391.
    Yoshikawa M, Peragine A, Park MY, Poethig RS.2005. A pathway for the biogenesis of trans-acting sirnas in Arabidopsis. Genes Dev 19:2164-2175.
    Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S.2005. Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174-1181.
    Young ND, Udvardi M.2009. Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193-201.
    Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X.2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307:932-935.
    Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA.2005. Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336-360.
    Zhang Y, Sledge MK, Bouton JH.2007. Genome mapping of white clover(Trifolium repens L.) and comparative analysis within the trifolieae using cross-species SSR markers. Theor Appl Genet 114:1367-1378.
    Zhou X, Liao Y, Ren G, Zhang Y, Chen W, Kuai B.2007. Repression of AtCLH1 expression results in a decrease in the ratio of chlorophyll a/b but does not affect the rate of chlorophyll degradation during leaf senescence. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33:596-606.
    Zhu H, Choi HK, Cook DR, Shoemaker RC.2005. Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189-1196.
    Zilberman D, Henikoff S.2004. Silencing of transposons in plant genomes:Kick them when they're down. Genome Biol 5:249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700