miR-34c抑制脑胶质瘤生长的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
业已表明miR-34c表达受p53的调控,并在肿瘤形成中起着重要的作用。本研究首次发现miR-34c在脑胶质瘤中呈显著下调的原因是该基因上游启动子区域甲基化而使其功能失活。同时我们也发现过表达miR-34c能抑制脑胶质瘤细胞生长和浸润,并使细胞周期发生G1期延滞。此外,我们还首次发现miR-34c能直接靶向调控Raf1,该基因在脑胶质瘤发生过程中发挥重要作用。概而言之,我们的研究结果提示miR-34c可能是脑胶质瘤的一个新的抑癌基因,并可能作为脑胶质瘤临床诊治的一个潜在的新靶点。
It has been shown mir-34c play an important role in tumorigenesis through modulating the p53 initiated gene expression and to serve as a tumor suppressor in various tumors. Here, we report that mir-34c is down-regulated in glioma and the DNA methylation state of 18 CpG inucleotides upstream of the miR-34c gene causes it down-regulation. Induction of miR-34c leads to Gl arrest and inhibits glioma growth and invasion. Moreover, Raf-1 has been identified as a novel target of mir-34c. Mir-34c transfection could repress the Raf-1 expression. Our data indicate that mir-34c might be a novel tumor suppressor in glioma and a potential therapeutic target in brain cancer therapy.
引文
[1].Bartel,D. P.,MicroRNAs:genomics,biogenesis, mechanism, and function. Cell,2004.116(2):p.281-97.
    [2].Lee, R. C.,R. L. Feinbaum and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993.75(5):p.843-54.
    [3].Ambros,V.,et al.,A uniform system for microRNA annotation. RNA, 2003.9(3):p.277-9.
    [4].Berezikov, E.,et al.,Phylogenetic shadowing and computational identification of human microRNA genes.Cell,2005.120(1):p.21-4.
    [5].Cai,X.,C. H. Hagedorn and B. R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA,2004.10(12):p.1957-66.
    [6].Lee, Y.,et al.,MicroRNA maturation:stepwise processing and subcellular localization. EMBO J,2002.21(17):p.4663-70.
    [7].Kim, Y. K. and V. N. Kim, Processing of intronic microRNAs.EMBO J, 2007.26(3):p.775-83.
    [8].Bernstein, E.,et al.,Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001.409(6818):p.363-6.
    [9].Engels, B. M. and G. Hutvagner, Principles and effects of microRNA-mediated post-transcriptional gene regulation.Oncogene,2006. 25(46):p.6163-9.
    [10].Sempere, L. F.,et al.,Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol,2004. 5(3):p. R13.
    [11].Lu, J.,et al.,MicroRNA expression profiles classify human cancers.Nature,2005.435(7043):p.834-8.
    [12].Mattick, J. S.and I.V. Makunin, Small regulatory RNAs in mammals. Hum Mol Genet,2005.14 Spec No 1:p. R121-32.
    [13].Kloosterman, W.P.,et al.,Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development.PLoS Biol,2007.5(8):p. e203.
    [14].Volinia, S.,et al.,A microRNA expression signature of human solid tumors defines cancer gene targets.Proc Natl Acad Sci U S A,2006. 103(7):p.2257-61.
    [15].Dugas, J. C.,et al.,Dicerl and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron,2010.65(5):p. 597-611.
    [16].Zhao, X.,et al.,MicroRNA-mediated control of oligodendrocyte differentiation. Neuron,2010.65(5):p.612-26.
    [17].Shin, D.,et al.,Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol,2009.66(6):p.843-57.
    [18].Caldas,C. and J. D. Brenton, Sizing up miRNAs as cancer genes.Nat Med,2005.11(7):p.712-4.
    [19].Calin, G. A.,et al.,Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A,2002.99(24):p.15524-9.
    [20].Cai,K. M.,et al.,Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met.Int J Mol Med,2010. 25(4):p.565-71.
    [21].Hagman, Z.,et al.,miR-34c is down regulated in prostate cancer and exerts tumor suppressive functions.Int J Cancer,2010.
    [22].He,L.,et al.,A microRNA component of the p53 tumour suppressor network. Nature,2007.447(7148):p.1130-4.
    [23].Lodygin, D.,et al.,Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle,2008.7(16):p. 2591-600.
    [24].Corney, D. C.,et al.,MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res,2007.67(18):p.8433-8.
    [25].Toyota, M.,et al.,Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res,2008.68(11):p.4123-32.
    [26].Liu, X.,et al.,Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res,2009.15(4):p.1177-83.
    [27].Baylin, S. B.,DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol,2005.2 Suppl 1:p. S4-11.
    [28].Clark, S. J. and J. Melki,DNA methylation and gene silencing in cancer:which is the guilty party?. Oncogene,2002.21(35):p.5380-7.
    [29].Silber, J.,et al.,miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,2008.6:p.14.
    [30].Garzia, L.,et al.,MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One,2009. 4(3):p. e4998.
    [31].Alvarez-Garcia,I.and E. A. Miska,MicroRNA functions in animal development and human disease. Development,2005.132(21):p.4653-62.
    [32].Tsai,N.P.,Y.L. Lin and L. N. Wei,MicroRNA mir-346 targets the 5'-untranslated region of receptor-interacting protein 140 (RIP140)mRNA and up-regulates its protein expression. Biochem J,2009.424(3):p. 411-8.
    [33].Zhou, X.,et al.,Abundant conserved microRNA target sites in the 5'-untranslated region and coding sequence.Genetica,2009.137(2):p. 159-64.
    [34].Lee, I.,et al.,New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites.Genome Res,2009.19(7): p.1175-83.
    [35].Orom,U. A.,F. C. Nielsen and A. H. Lund,MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation.Mol Cell, 2008.30(4):p.460-71.
    [36].Forman, J. J. and H. A. Coller, The code within the code:MicroRNAs target coding regions.Cell Cycle,2010.9(8).
    [37].Bartel,D.P.,MicroRNAs:target recognition and regulatory functions. Cell,2009.136(2):p.215-33.
    [38].Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer:a changing paradigm. Nat Rev Cancer,2009.9(3):p.153-66.
    [39].Santamaria, D. and S.Ortega, Cyclins and CDKS in development and cancer:lessons from genetically modified mice.Front Biosci,2006.11: p.1164-88.
    [40].Wang, Y. and R. Blelloch, Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res,2009.69(10):p.4093-6.
    [41].Bueno, M. J.,I.P. de Castro and M. Malumbres, Control of cell proliferation pathways by microRNAs.Cell Cycle,2008.7(20):p.3143-8.
    [42].Caldon, C. E. and E. A. Musgrove, Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div,2010.5: p.2.
    [43].Aguda, B.D.,et al.,MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92,E2F, and Myc.Proc Natl Acad Sci U S A,2008.105(50):p.19678-83.
    [44].Woods,K.,J. M. Thomson and S.M. Hammond, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors.J Biol Chem, 2007.282(4):p.2130-4.
    [45].Sylvestre, Y.,et al.,An E2F/miR-20a autoregulatory feedback loop. J Biol Chem,2007.282(4):p.2135-43.
    [46].Kim, H. K.,et al.,Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol,2006.174(5):p.677-87.
    [47].Zhao, Y.,et al.,Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2.Cell,2007.129(2): p.303-17.
    [48].Bommer, G. T.,et al.,p53-mediated activation of miRNA34 candidate tumor-suppressor genes.Curr Biol,2007.17(15):p.1298-307.
    [49].Li,Y.,et al.,MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes.Cancer Res,2009.69(19):p.7569-76.
    [50].Tazawa, H.,et al.,Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A,2007.104(39):p. 15472-7.
    [51].Nagarajan, R. P. and J. F. Costello, Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol,2009.19(3):p.188-97.
    [52].Ohgaki,H.,et al.,Genetic pathways to glioblastoma:a population-based study. Cancer Res,2004.64(19):p.6892-9.
    [53].Novakova, J.,et al.,MicroRNA involvement in glioblastoma pathogenesis.Biochem Biophys Res Commun,2009.386(1):p.1-5.
    [54].Novakova, J.,et al.,MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun,2009.386(1):p.1-5.
    [55].Lawler, S. and E. A. Chiocca, Emerging functions of microRNAs in glioblastoma. J Neurooncol,2009.92(3):p.297-306.
    [56].Chan, J. A.,A.M. Krichevsky and K. S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.Cancer Res,2005. 65(14):p.6029-33.
    [57].Corsten, M. F.,et al.,MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas.Cancer Res,2007. 67(19):p.8994-9000.
    [58].Sasayama, T.,et al.,MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors,uPAR and RhoC.Int J Cancer,2009.125(6):p.1407-13.
    [59].Zhang, J.,et al.,miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol,2010.36(4): p.913-20.
    [60].Huse, J.T.,et al.,The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev,2009.23(11):p.1327-37.
    [61].Li,Y.,et al.,MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes.Cancer Res,2009.69(19):p.7569-76.
    [62].He, X.,L. He and G. J. Hannon, The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res,2007.67(23): p.11099-101.
    [63].Yamakuchi,M. and C. J. Lowenstein, MiR-34, SIRT1 and p53:the feedback loop. Cell Cycle,2009.8(5):p.712-5.
    [64].Ji,Q.,et al.,Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres.BMC Cancer,2008.8:p.266.
    [65].Farina, A. R.,et al.,Identification of plasminogen in Matrigel and its activation by reconstitution of this basement membrane extract. Biotechniques,1996.21(5):p.904-9.
    [66].Bommer,G.T.,et al.,p53-mediated activation of miRNA34 candidate tumor-suppressor genes.Curr Biol,2007.17(15):p.1298-307.
    [67].Toyota, M.,et al.,Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res,2008.68(11):p.4123-32.
    [68].Fujita, Y.,et al.,Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells.Biochem Biophys Res Commun, 2008.377(1):p.114-9.
    [69].Sun, F.,et al.,Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest.FEBS Lett,2008.582(10):p.1564-8.
    [70].Silber, J.,et al.,miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,2008.6:p.14.
    [71].Zhang, C.,et al.,Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kipl in vitro and in vivo. Int J Oncol,2009.34(6):p.1653-60.
    [72].Kefas,B.,et al.,microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res,2008.68(10):p.3566-72.
    [73].Chen, Y.,et al.,MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett,2008. 272(2):p.197-205.
    [74].Yao, Q.,et al.,MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4(PDCD4)in HeLa cervical carcinoma cells.Biochem Biophys Res Commun,2009.388(3):p. 539-42.
    [75].Lavon,I.,et al.,Gliomas display a microRNA expression profile reminiscent of neural precursor cells.Neuro Oncol,2010.12(5):p. 422-33.
    [76].Godlewski,J.,et al.,MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells.Mol Cell,2010. 37(5):p.620-32.
    [77].Cole,K. A.,et al.,A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene.Mol Cancer Res,2008.6(5): p.735-42.
    [78].Liang, Y.,An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer.BMC Med Genomics,2008.1:p.61.
    [79].Griffiths-Jones,S.,et al.,miRBase:microRNA sequences, targets and gene nomenclature.Nucleic Acids Res,2006.34(Database issue):p. D140-4.
    [80].Sethupathy, P.,B. Corda and A. G. Hatzigeorgiou, TarBase:A comprehensive database of experimentally supported animal microRNA targets. RNA,2006.12(2):p.192-7.
    [81].Papadopoulos, G. L.,et al.,The database of experimentally supported targets:a functional update of TarBase.Nucleic Acids Res,2009. 37(Database issue):p. D155-8.
    [82].Kloosterman, W. P.,et al.,Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res,2004. 32(21):p.6284-91.
    [83].Lewis, B. P.,C. B. Burge and D. P. Bartel,Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell,2005.120(1):p.15-20.
    [84].Grimson, A.,et al.,MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell,2007.27(1):p.91-105.
    [85].Friedman, R. C.,et al.,Most mammalian mRNAs are conserved targets of microRNAs. Genome Res,2009.19(1):p.92-105.
    [86].Krek, A.,et al.,Combinatorial microRNA target predictions.Nat Genet,2005.37(5):p.495-500.
    [87].Lall,S.,et al.,A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol,2006.16(5):p.460-71.
    [88].John, B.,et al.,Human MicroRNA targets. PLoS Biol,2004.2(11): p. e363.
    [89].Kiriakidou, M.,et al.,A combined computational-experimental approach predicts human microRNA targets.Genes Dev,2004.18(10):p. 1165-78.
    [90].Maragkakis, M.,et al.,Accurate microRNA target prediction correlates with protein repression levels.BMC Bioinformatics,2009.10: p.295.
    [91].Kertesz, M.,et al.,The role of site accessibility in microRNA target recognition. Nat Genet,2007.39(10):p.1278-84.
    [92].Long, D.,et al.,Potent effect of target structure on microRNA function. Nat Struct Mol Biol,2007.14(4):p.287-94.
    [93].Rehmsmeier, M.,et al.,Fast and effective prediction of microRNA/target duplexes.RNA,2004.10(10):p.1507-17.
    [94].Yousef, M.,et al.,Naive Bayes for microRNA target predictions--machine learning for microRNA targets.Bioinformatics,2007. 23(22):p.2987-92.
    [95].Sheng, Y.,P.G. Engstrom and B. Lenhard, Mammalian microRNA prediction through a support vector machine model of sequence and structure. PLoS One,2007.2(9):p. e946.
    [96].Yang, Y.,Y. P. Wang and K. B. Li,MiRTif:a support vector machine-based microRNA target interaction filter.BMC Bioinformatics, 2008.9 Suppl 12:p. S4.
    [97].Kim, S. K.,et al.,miTarget:microRNA target gene prediction using a support vector machine. BMC Bioinformatics,2006.7:p.411.
    [98].Ma, J. B.,et al.,Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature,2005. 434(7033):p.666-70.
    [99].Parker, J. S.,S.M. Roe and D. Barford, Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex.Nature,2005. 434(7033):p.663-6.
    [100].Welch, C.,Y. Chen and R. L. Stallings, MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene,2007.26(34):p.5017-22.
    [101].Cannell,I.G.,et al.,p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication.Proc Natl Acad Sci U S A,2010.107(12):p.5375-80.
    [102].Zhang, X. F.,et al.,Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1.Nature,1993. 364(6435):p.308-13.
    [103].Terai, K. and M. Matsuda, Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase.EMBO Rep,2005. 6(3):p.251-5.
    [104].Avruch, J.,et al.,Ras activation of the Raf kinase:tyrosine kinase recruitment of the MAP kinase cascade.Recent Prog Horm Res,2001. 56:p.127-55.
    [105].Balan,V.,et al.,Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell,2006.17(3):p. 1141-53.
    [106]. Forman, J. J.,A. Legesse-Miller and H. A. Coller, A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A,2008. 105(39):p.14879-84.
    [107].Yekta, S.,I.H. Shih and D. P. Bartel,MicroRNA-directed cleavage of HOXB8 mRNA. Science,2004.304(5670):p.594-6.
    [108].Yamakuchi,M.,M. Ferlito and C. J. Lowenstein, miR-34a repression of SIRT1 regulates apoptosis.Proc Natl Acad Sci U S A,2008.105(36): p.13421-6.
    [109].Johnson, S. M.,et al.,RAS is regulated by the let-7 microRNA family. Cell,2005.120(5):p.635-47.
    [110].Martello, G.,et al.,MicroRNA control of Nodal signalling. Nature, 2007.449(7159):p.183-8.
    [111].Bonci,D.,et al.,The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities.Nat Med,2008.14(11): p.1271-7.
    [112].Wightman, B.,et al.,Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development.Genes Dev,1991.5(10):p.1813-24.
    [113].Hsu, P. W.,et al.,miRNAMap:genomic maps of microRNA genes and their target genes in mammalian genomes.Nucleic Acids Res,2006. 34(Database issue):p. D135-9.
    [114].Reinhart,B. J.,et al.,The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000.403(6772): p.901-6.
    [115].Chen, C.Z.,et al.,MicroRNAs modulate hematopoietic lineage differentiation. Science,2004.303(5654):p.83-6.
    [116].Esquela-Kerscher, A. and F. J. Slack, Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006.6(4):p.259-69.
    [117].Megraw, M.,et al.,miRGen:a database for the study of animal microRNA genomic organization and function.Nucleic Acids Res,2007. 35(Database issue):p. D149-55.
    [118].Robins, H.,Y. Li and R. W. Padgett, Incorporating structure to predict microRNA targets.Proc Natl Acad Sci U S A,2005.102(11):p. 4006-9.
    [119].Stark, A.,et al.,Identification of Drosophila MicroRNA targets. PLoS Biol,2003.1(3):p. E60.
    [120].Bentwich,I.,Prediction and validation of microRNAs and their targets.FEBS Lett,2005.579(26):p.5904-10.
    [121].Brennecke, J.,et al.,bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell,2003.113(1):p.25-36.
    [122].Thadani,R. and M. T. Tammi,MicroTar:predicting microRNA targets from RNA duplexes. BMC Bioinformatics,2006.7 Suppl 5:p. S20.
    [123].Lai,E. C.,Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation.Nat Genet,2002. 30(4):p.363-4.
    [124].Lewis, B. P.,et al.,Prediction of mammalian microRNA targets. Cell,2003.115(7):p.787-98.
    [125].Rajewsky, N.,microRNA target predictions in animals.Nat Genet, 2006.38 Suppl:p. S8-13.
    [126].Brennecke,J.,et al.,Principles of microRNA-target recognition. PLoS Biol,2005.3(3):p. e85.
    [127].Jing, Q.,et al.,Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell,2005.120(5):p.623-34.
    [128].Bakheet,T.,B.R. Williams and K. S. Khabar, ARED 2.0:an update of AU-rich element mRNA database. Nucleic Acids Res,2003.31 (1):p. 421-3.
    [129].Bakheet, T.,B. R. Williams and K. S. Khabar, ARED 3.0:the large and diverse AU-rich transcriptome.Nucleic Acids Res,2006.34(Database issue):p. D111-4.
    [130]. Barreau,C., L. Paillard and H. B. Osborne,AU-rich elements and associated factors:are there unifying principles?.Nucleic Acids Res, 2005.33(22):p.7138-50.
    [131].Lindow, M. and J. Gorodkin, Principles and limitations of computational microRNA gene and target finding.DNA Cell Biol,2007.26(5): p.339-51.
    [132].Wang, X. J.,et al.,Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.Genome Biol,2004.5(9):p. R65.
    [133].Hurst,L. D.,Preliminary assessment of the impact of microRNA-mediated regulation on coding sequence evolution in mammals.J Mol Evol,2006.63(2):p.174-82.
    [134].Chen, K. and N. Rajewsky, Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet,2006.38(12):p.1452-6.
    [135].Cui,Q.,et al.,Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol,2006.2:p.46.
    [136].Cui,Q.,et al.,MicroRNA regulation and interspecific variation of gene expression. Trends Genet,2007.23(8):p.372-5.
    [137].Farh, K. K.,et al.,The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science,2005.310(5755):p.1817-21.
    [138].Fazi,F.,et al.,A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis.Cell,2005.123(5):p.819-31.
    [139].Yu, Z.,et al.,Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos.Nucleic Acids Res,2007.35(1): p.152-64.
    [140].Cui,Q.,et al.,MicroRNAs preferentially target the genes with high transcriptional regulation complexity.Biochem Biophys Res Commun, 2007.352(3):p.733-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700