用于识别、检测细胞内阴离子(CI~-、OCI~-)的新型荧光探针的设计、合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动植物体内存在许多微量或痕量的活性物种(自由基和阴、阳离子等),它们对各种生理、病理过程具有重要的影响,对生命活动起着至关重要的作用,在多种致病过程中都是重要的介导因素,与癌症、机体炎症、组织过氧化、蛋白质交联变性、DNA损伤和细胞信号转导等都有着直接的关系。要进一步了解这些活性小分子物种与上述生理、病理过程中的密切关联,就必须对它们进行准确、实时的检测。但是,由于生物体内大多数活性物种浓度极低,加之生物环境的多样性与复杂性,目前真正能够用于高选择性检测生物活体内活性物种的方法还比较少。荧光法结合共聚焦显微成像技术和微区光谱检测技术,是一种能够实现活细胞和组织内活性物种“实时、可视、定量”检测的有效方法。综上,发展选择性好、灵敏度高、用于检测生物体内痕量物种的分子荧光探针,对动、植物活体细胞中的活性物种动态、原位可视化成像分析是目前生命科学研究的重要热点领域之一。
     氯是人体内的宏量元素,约占体重的0.15%,主要以氯离子的形式存在于细胞内外,参与维持生物体内的酸碱平衡和细胞外液的渗透压,调节细胞凋亡、免疫应答,此外,在酶催化反应等生理过程中也起着至关重要的作用。细胞中氯离子水平的非正常波动会引发各种疾病,例如:囊肿性纤维化、肌强直症、心律不齐以及心肌缺血等。为了更好地探究氯离子参与的众多生理和病理过程,就要求广大生物学家和化学工作者开发出具有高选择性,高灵敏度的荧光分子探针,并将其用于监测细胞内氯离子的含量及其变化情况。
     作为人体内重要的活性氧之一,次氯酸根在人体的生理和病理过程中起着举足轻重的作用。其在生物体内的产生过程如下:在髓过氧化物酶(MPO)的催化作用下,过氧化氢和氯离子发生化学反应,随之产生次氯酸根。作为一种具有强亲核特性的活性物种,次氯酸根最突出的作用就是其具有抗菌性。然而,过多或过少水平的次氯酸根也会引发一系列的疾病,例如:动脉硬化、关节炎以及癌症等。因此,近年来关于次氯酸根的生理功能的探索和研究引起越来越多的关注。
     综上所述,由于阴离子在各种生理、病理过程中的重要作用,对各种阴离子的识别和检测已经成为生命化学学科发展中具有挑战性的前沿课题之一。就目前所报道的阴离子识别方法中,阴离子与受体之间的相互作用过程会受到各种因素的干扰,因而,设计、合成一种具有特异性识别阴离子的荧光受体显得尤为重要。
     针对阴离子的研究和发展现状,本论文以提高探针的响应速度、灵敏度以及选择性为主要出发点,进而发挥探针在实际生物样品和临床疾病诊断等方面的应用,以荧光检测和共聚焦显微成像技术为研究手段。开展了以下两方面的工作:
     (一)设计合成了一种用于检测氯离子的荧光比率探针。该探针的结构由两部分组成:一部分是对氯离子有特异性反应的六甲氧基喹啉衍生物;另一部分是对氯离子不敏感的5-氨基荧光素基团。探针的合成路线简单、快捷,并且通过1H NMR和13C NMR对探针的结构进行了表征,研究了其相关光谱性质。实验表明,该探针能够在瞬间实现对氯离子高灵敏度、高选择性的检测。此外,激光共聚焦荧光比率成像的实验结果表明该探针能够成功监测正常和缺血时心肌细胞中氯离子的浓度波动。
     (二)设计了连接有盐酸羟胺基团的花菁结构的近红外荧光分子探针,用于检测生物体内的ClO-进一步实现在线粒体中的定位。推测探针的检测机理可能是:盐酸羟胺能够被次氯酸根氧化。初步实验结果表明,探针具有较宽的激发波长和发射波长范围,并且对次氯酸根具有较高的灵敏度和较好的选择性,能够实现在近红外区域对次氯酸根的检测。
There were various micro or trace amounts of active species (free radicals, anions and cations) in living systems. They hold a unique position in life processes and are of central importance for many physiological functions. These active species are important mediators for the pathological conditions of various diseases, such as carcinogenesis, inflammation, ischemia-reperfusion injury, and signal transduction. In order to further explore the close relation between these small biological molecules and various physiological or pathological processes, there is an exigent need for researchers to develop fast-respond probes to realize the accurate detection of these important species. However, as a result of the low concentrations of these active species, and the diversities and complexity of the biological environment, methods that can detect the bio-relative species with high selectivity are few. Take full advantage of benefits provided by confocal laser scanning microscopy (CLSM), spectrofluorimetry can serve as a powerful method due to its high sensitivity, simplicity in data collection, and high spatial resolution in imaging techniques. They are considered as the unique method that can realize the“real-time, dynamic, visualized”analysis of fluctuations of various bio-relative species in cells and in tissue. In a word, it is of great value for the researchers to explore fast and convenient probes to investigate the levels of the trace molecules in bio-system, and furthermore realize the real-time imaging in living cells.
     As one important element, chlorine distributes widely in cells in forms of chloride (Cl-). It holds a unique position in a wide range of many cellular functions, including regulation of cells volume and pH, apoptosis and immune response, intracellular trafficand enzyme catalysis reactions. Exceptional fluctuation in concentration of Cl- can result in some diseases, such as cystic fibrosis, myotonia, arrhythmia and myocardial ischemia. Thus, there is exigent challenge for researchers to develop fast-respond probes to trap Cl- for investigation of the mechanisms of the physiological and pathological processes that the chloride anions participate.
     As one of the biologically important ROS, which is produced in living organisms from hydrogen peroxide and chloride ions in a chemical reaction catalyzed by the enzyme myeloperoxidase (MPO) in activated neurophils, hypochlorite anion ( OCl- ) is known to be essential to several biological functions , for example, because OCl- can behave as a strong nucleophilic nonradical oxidant, it is regarded as an important agent with strong antibacterial properties that is used for natural defense; its efficacy lies in the fact that neither bacteria nor mammalian cells can neutralize its toxic effects-they lack the enzymes required for its catalytic detoxification. However, excessive or misplacedprod uction of OCl- can lead to tissue damage and diseases, such as atherosclerosis, arthritis, and cancers. Therefore, more and more attention has been paid to the studies of the biological functions.
     All in all, based on the crucial function of various anions during the physiological and pathological processes, researches about recognition and detection of the bio-relative anions have attracted drastic attention. Up to now, considering the external influence factors that will disturb the recognition process between the anion and the acceptor, it is of vital importance to develop and synthesis probes that are exclusive to specific anions.
     Considering the development status of anions and the excellent rate, sensitivity and selectivity, spectrofluorimetry combined with CLSM was applied successfully. It realized the application both in vivo and in clinic. The following are the main content of dissertation:
     First, we chose the low-toxic 5-Aminofluorescein as the chloride insensitive group. Simultaneously, 6-Methoxyquinoline was chosen as the chloride reactive group, whose fluorescence was quenched linearly with the increased chloride concentration. It was synthesized conveniently by only two steps. Structure of the MQAF was characterized by 1H NMR and 13C NMR, and fluorescence properties of the reaction between MQAF and Cl- were optimized in chemical system. It showed that the probe possessed potent selectivity to Cl- and could respond instantaneously to changes of chloride concentration. During experiments, MQAF was proved to exhibit potent selectivity toward Cl- and respond to changes in chloride concentration instantaneously. Owing to the outstanding performance of the MQAF presented here, we successfully applied it to monitor chloride concentration fluctuations between normal and ischemic conditions.
     Second, in this paper, we design a NIR OCl- fluorescent probe based on tricarbocyanine (Cy), whose maximum emission wavelength is within near-infrared region and choosing hydroxylamine hydrochloride as the reactive group. After addition of the OCl- anion, there undergoes an obvious fluorescence enhancement. Experiment results showed that the probe exhibited wide excitation and emission spectrum, besides, it could detect the hypochlorite anion sensitively and selectively in the near-infrared region.
引文
[1] Davis, F, Collyer, S. D, Higson, S .P. J. The Construction and Operation of Anion Sensors: Current Status and Future Perspectives[J]. Top. Curr. Chem., 2005,255, 97-124.
    [2] Beer, P. D. Anion Selective Recognition and Optical/electrochemical Sensing by Novel Transition-metal Receptor Systems[J]. Chem. Commun., 1996, 5,689-696.
    [3] Kaplan, R. S. Structure and Function of Mitochondrial Anion Transport Proteins[J]. J.Membr. Biol., 2001, 179(3):165-183.
    [4] Anderson, M. P., Gregory, R. J. Thompson, S. et al. Demonstration that CFTR is a Chloride Channel by Alteration of Its Anion Selectivity[J]. Science., 1991, 253(12): 202-205.
    [5] Sessler, J .L., Camiolo, S., Gale, P. A. Pyrrolic and Polypyrrolic Anion Binding Agents[J]. Coord. Chem. Rev., 2003, 240(1):17 -55.
    [6] Fabbrizzi, L., Licchelli, M., Taglietti A. The Design of Fluorescent Sensors for Anions: Taking Profit from the Metal–;Ligand Interaction and Exploiting Two Distinct Paradigms[J]. Dalton Trans., 2003, 18, 3471 -3479.
    [7] Gale, P. A. Anion and Ion-pair Receptor Chemistry:Highlights from 2000 and 2001[J]. Coord. Chem. Rev., 2003, 240(2):191 -221.
    [8] Suksai, C., Tuntulani, T. Chromogenic Anion Sensors[J]. Chem. Soc. Rev, 2003, 32(4):192 -202.
    [9] Aoki, S., Kimura, E. Recent Progress in Artificial Receptors for Phosphate Anions in Aqueous Solution[J]. Rev. Mol. Biotech., 2002, 90, 129 -155.
    [10] Zeng, Z.Y., He Y.B., Wei, L.H. et al.The Synthesis of Two Novel Neutral Receptors and Their Anion Binding Properties[J]. Can. J. Chem.,2004, 82(3):454 -460.
    [11] Zeng, Z.Y, He, Y.B, Meng, L.Z. Progress in Fluorescent Receptors for Anions[J]. Progress in Chemistry., 2005, 17(2): 254-256.
    [12] Gomes, A., Fernandes, E., Lima, J.L.F.C. Fluorescence Probes Used for Detection of Reactive Oxygen Species[J]. J. Biochem. Biophys.Methods., 2005, 65(2):45–80.
    [13] Halliwell, B., Whiteman, M. Measuring Reactive Species and Oxidative Damage in Vivo and in Cell Culture: How Should You Do It and What Do The Results Mean?[J]. Br. J. Pharmacol., 2004, 142(2):231– 255.
    [14] Snowden, T.S., Anslyn, E.V. Anion Recognition: Synthetic Receptors for Anions and Their Application in Sensors[J]. Current Opinion in Chemical Biology., 1999, 3(6): 740-746.
    [15] Valiyaveettil, S., Engbersen, J.F.J., Verboom, W., Reinhoudt, D.N. Synthesis and Complexation Studies of Neutral Anion Receptors[J]. Angew. Chem. Int. Ed.,1993, 32(6):900-901.
    [16] Peng, X., Wu, Y., Fan, J., Tian, M., Han, K. Colorimetric and Ratiometric Fluorescence Sensing of Fluoride: Tuning Selectivity in Proton Transfer[J]. J. Org. Chem., 2005, 70(25):10524–10531.
    [17] Chen, C.Y., Lin, T.P, Chen, C.K., Lin, S.C, Tseng, M.C, Wen, Y.S, Sun, S.S. New Chromogenic and Fluorescent Probes for Anion Detection: Formation of a [2+2] Supramolecular Complex on Addition of Fluoride with Positive Homotropic Cooperativity[J]. J. Org. Chem., 2008, 73(3):900–911.
    [18] Lin, C.I., Selvi, S., Fang, J.M., Chou, P.T., Lai, C.H., Cheng, Y.M. Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as Selective Chemosensors of Fluoride Ion: A Mechanistic Study[J]. J. Org. Chem., 2007, 72(9):3537–3542.
    [19] Sehmidtchen, F. P. Inclusion of Anions in Macrotricyclic Quaternary Ammonium Salts[J]. Angew. Chem. Int. Ed.,1977, 16(10):720-721.
    [20] Sehmidtehen, F P. Chemische Berichte.,1980, 113, 864-874.
    [21] Worm, K, Sehmidtchen, F.P, Schier, A., Hesse, M.Macrotricyclic Borane - Amine Adducts: The First Uncharged Synthetic Host Compounds Without Lewis Acid Character, for Anionic Guests[J]. Angew. Chem. Int. Ed., 1994, 33(3):327-329.
    [22] Andrey, S. K., Guy, D., Turan, O., Vasyl G. P., Yves, M., Alexander P. D. Novel Two-Band Ratiometric Fluorescence Probes with Different Location and Orientation in Phospholipid Membranes[J]. Chemistry & Biology., 2002, 9(11):1199–1208.
    [23] Painter, R. G., Wang, G. Direct Measurement of Free Chloride Concentrations in the Phagolysosomes of Human Neutrophils[J]. Anal. Chem., 2006, 78(9):3133-3137.
    [24] Geddes, C. D., Apperson, K., Karolin, J., Brich, D. J. S. Chloride-Sensitive Fluorescent Indicators[J]. Analytical Biochemistry., 2001, 293(1):60-66.
    [25] Geddes, C. D., Apperson, K., Birch, D. J. S. New fluorescent quinolinium dyes—applications in nanometre particle sizing[J]. Dyes Pigments., 2000, 44(2):69–74.
    [26] Park, C. H., Simmons, H. E.Macrobicyclic amines. III. Encapsulation of Halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.] Alkane Ammonium ions[J].J. Am. Chem. Soc., 1968, 90(9):2431-2432.
    [27] Hosseini, M. W., Lehn, J. M. Anion Receptor Molecules. Chain Length Dependent Selective Binding of Organic and Biological Dicarboxylate Anions by ditopic Polyammonium Macrocycles[J].J. Am. Chem. Soc., 1982, 104(12):3525-3527.
    [28] Hosseini, M. W., Lehn, J. M.Anion Coreceptor Molecules. Linear Molecular Recognition in the Selective Binding of Dicarboxylate Substrates by Ditopic Polyammonium Macrocycles[J]. Helvetica Chimica Acta.,1986,69(3):587-603.
    [29] Newcomb, M., Blanda, M. T., Azuma, Y., Delord, T.J. J. Am. Chem. Soc.,1984, 17, 1159-1160.
    [30] Katz, H. E. 1,8-Naphthalenediylbis(dichloroborane) Chloride: the First Bis Boron Chloride Chelate[J]. Organometallics.,1987,6(5):1134-1136.
    [31] Yang, X., Knobler, C.B., Hawthorne, M. F. [12]Mercuracarborand-4 , the First Representative of a New Class of Rigid Macrocyclic Electrophiles: The Chloride Ion Complex of a Charge-Reversed Analogue of [12]Crown-4[J]. Angew. Chem. Int. Ed., 1991, 30(11):1507-1508.
    [32] Liu, X.Y., Bai, D.R., Wang, S. Charge-Transfer Emission in Nonplanar Three-Coordinate Organoboron Compounds for Fluorescent Sensing of Fluoride[J]. Angew. Chem. Int. Ed., 2006, 45(33):5475–5478.
    [33] Swamy, K. M. K., Lee, Y. J., Lee, H. N., Chun, J., Kim, Y., Kim, S.J., Yoon, J. A New Fluorescein Derivative Bearing a Boronic Acid Group as a Fluorescent Chemosensor for Fluoride Ion[J]. J. Org. Chem., 2006, 71(22):8626–8628.
    [34] Ramachandram Badugu, Joseph R. Lakowicz, and Chris D. Geddes. Enhanced Fluorescence Cyanide Detection at Physiologically Lethal Levels: Reduced ICT-Based Signal Transduction[J]. J. Am. Chem. Soc., 2005, 127(10): 3635-3641.
    [35] Hume, J. R., Duan, D., Collier, M. L., Jun, Y., Burton, H. Anion Transport in Heart[J]. Physiol Rev., 2000, 80(1):31-81.
    [36] Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., Tsui, L.C. Identification of the cystic fibrosis gene: genetic analysis[J]. Science.,1989, 245(4922):1073–1080.
    [37] Kere, J., Lohi, H., Hoglund, P. Am J. Physiol Gastrointest Liver Physiol[J]. Am J Physiol., 1999, 276(1):G7–G13.
    [38] Brugnara, C. Erythrocyte Membrane Transport Physiology[J].Curr Opin Hematol.,1997, 4, 122–127.
    [39] Koch, M.C., Steinmeyer, K., Lorenz, C, Ricker, K., Wolf, F., Otto, M., Zoll B, Lehmann-Horn, F., Grzeschik, K.H., Jentsch, T.J. The Skeletal Muscle Chloride Channel in Dominant and Recessive Human Myotonia[J]. Science.,1992, 257(5071): 797–800.
    [40] Simon, D.B., Lifton, R.P. The Molecular Basis of Inherited Hypokalemic Alkalosis:Bartter's and Gitelman's Syndromes[J]. Am J Physiol., 1996, 271(5):961–966.
    [41] Schlesinger, P.H., Ferdani, R., Liu J, Pajewska, J., Pajewski, R., Saito, M., Shabany, H., Gokel, G.W.SCMTR. A Chloride-Selective, Membrane-Anchored Peptide Channel that Exhibits Voltage Gating[J]. J. Am. Chem. Soc.,2002,124, 1848-1849.
    [42] Marandi, N., Konnerth, A., Garaschuk, O. Two-photon Chloride Imaging in Neurons of Brain Slices[J]. Pflügers Archiv, Physiol. Eur. J., 2002, 445(3):357- 365.
    [43] Martínez-Ansó, E., Castillo, J. E., Díez, J., Medina, J. F., Prieto, J. Immunohistochemical Detection of Chloride/bicarbonate Anion Exchangers in Human Liver[J]. Hepatology., 1994, 19(6):1400– 1406.
    [44] Pilas, B., Durack, G. A Flow Cytometric Method for Measurement of Intracellular Chloride Concentration in Lymphocytes Using the Halide-specific Probe 6-methoxy-N-(3-sulfopropyl) Quinolinium[J]. Cytometry., 1997, 28(4):316–322.
    [45] Painter, R.G., Wang, G. Direct Measurement of Free Chloride Concentrations in the Phagolysosomes of Human Neutrophils[J]. Anal.Chem., 2006, 78(9):3133-3137.
    [46] Lai, Z.F., Nishi, K. Intracellular Chloride Activity Increases in Guinea Pig Ventricular Muscle during Simulated Ischemia[J]. Am. J. Physiol., 1998, 275(5):1613-1619.
    [47] Lai, Z.F., Liu, J., Nishi, K. Jpn. J. Pharmacol., 1996, 72, 161-174.
    [48] Lai, Z.F., Hotokebuchi, N., Cragoe, E.J., Nishi, K. Effects of 5-(N,N-Hexamethylene) Amiloride on Action Potentials, Intracellular Na, and pH of Guinea Pig Ventricular Muscle In Vitro[J]. J.Cardiovasc. Pharmacol., 1994, 23, 259-267.
    [49] Yao J.P., Gao E. Study Progress of Cardiac Chloride Channels[J]. Medical Recapitulate.,2007,13(13):1688-1691.
    [50] Knapton, D., Burnworth, M., Rowan, S. J., Weder, C. Cover Picture: Pd-Catalyzed -Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives[J]. Angew. Chem. Int. Ed., 2006, 45(35):5825-5829.
    [51] Iyer, P. K., Beck, J. B., Weder, C., Rowan,S. J. Synthesis and optical properties of metallo-supramolecular polymers[J]. Chem. Commun., 2005, 3,319-321.
    [52] Zucchero, A. J., Wilson, J. N., Bunz, U. H. F. Cruciforms as Functional Fluorophores:Response to Protons and Selected Metal Ions[J]. J. Am. Chem. Soc., 2006, 128(36): 11872-11881.
    [53] Wilson, J. N., Bunz, U. H. F. Switching of Intramolecular Charge Transfer inCruciforms:Metal Ion Sensing[J]. J. Am. Chem.Soc., 2005, 127(12):4124-4125.
    [54] Wilson, J. N., Josowicz, M., Wang, Y.Q., Bunz, U. H. F. Cruciform -Systems: Hybrid Phenylene-ethynylene/phenylene-vinylene Oligomers[J]. Chem. Commun., 2003, 24, 2962-2963.
    [55] Spitler, E. L., Shirtcliff, L. D., Haley, M. M. Systematic Structure?Property Investigations and Ion-Sensing Studies of Pyridine-Derivatized Donor/Acceptor Tetrakis(arylethynyl)benzenes[J]. J. Org. Chem., 2007, 72(1):86-96.
    [56] Marsden, J. A., Miller, J. J., Shirtcliff, L. D., Haley, M. M. Structure?Property Relationships of Donor/Acceptor-Functionalized Tetrakis(phenylethynyl)benzenes and Bis(dehydrobenzoannuleno)benzenes[J]. J. Am. Chem. Soc., 2005, 127(8):2464-2476.
    [57] Sorensen, J. K., Vestergaard, M., Kadziola, A., Kilsa, K., Nielsen, M. B. Synthesis of Oligo(phenyleneethynylene)-Tetrathiafulvalene Cruciforms for Molecular Electronics[J]. Org. Lett., 2006, 8(6):1173-1176.
    [58] Tolosa, J., Diez-Barra, E., Sanchez-Verdu, P., Rodriguez-Lopez, J. Unsymmetrically Substituted Four-armed Tolanes: New Multichromophoric Molecules[J] . Tetrahedron Lett.,2006, 47(27):4647-4651.
    [59] Zen, A., Bilge, A., Galbrecht, F., Alle, R., Meerholz, K., Grenzer, J., Neher, D., Scherf, U., Farrell, T. Solution Processable Organic Field-Effect Transistors Utilizing anα,α‘-Dihexylpentathiophene-Based Swivel Cruciform[J]. J. Am. Chem. Soc., 2006, 128(12):3914-3915.
    [60] Klare, J. E., Tulevski, G. S., Sugo, K., de Picciotto, A., White,K. A., Nuckolls, C. Cruciformπ-Systems for Molecular Electronics Applications[J].J. Am. Chem. Soc., 2003, 125(20):6030-6031.
    [61] Miao,Q., Chi, X. L., Xiao, S. X., Zeis, R., Lefenfeld, M., Siegrist, T., Steigerwald,M. L., Nuckolls, C. Organization of Acenes with a Cruciform Assembly Motif[J]. J. Am. Chem. Soc., 2006, 128(4):1340-1345.
    [62] Kang, H., Evmenenko, G., Dutta, P., Clays, K., Song, K., Marks,T. J. X-Shaped Electro-optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics[J]. J. Am. Chem. Soc., 2006, 128(18): 6194- 6205.
    [63] Scott M. Brombosz., Anthony J. Zucchero, Ronnie L. Phillips, Diana Vazquez, Alando Wilson, Uwe H. F. Bunz. Terpyridine-Based Cruciform?Zn2+ Complexes as Anion-Responsive Fluorophores[J]. Org. Lett., 2007, 9(22):4519-4522.
    [64] Gassensmith, J. J., Barr, L., Baumes, J. M., Paek, A., Nguyen, A., Smith, B. D.Synthesis and Photophysical Investigation of Squaraine Rotaxanes by“Clicked Capping”[J]. Org. Lett., 2008, 10(15):3343– 3346.
    [65] Gassensmith, J. J., Baumes, J. M., Smith, B. D. Synthesis and Photophysical Investigation of Squaraine Rotaxanes by“Clicked Capping”[J]. Chem. Commun., 2009, 42:6329–6338.
    [66] Martijn M. G, Antonisse, David N. Reinhoudt. Neutral anion receptors: design and application[J]. Chem. Commun., 1998,4, 443-448.
    [67] Jung, M. E.; Xia, H. Synthesis and Transport Properties of 12-silacrown-3, a New Type of Anion Complexing Agent[J]. Tetrahedron Lett., 1988, 29(3):297-300.
    [68] S. Aoyagi; K. Tanaka; Y. Takeachi. Asymmetric[2+2]Cycloaddition of Ketene with Aldehydes Catalysed by Me3Al Complexes of Axially Chiral 1,1’-binaphthalene-2,2’-diol Derivatives[J]. J. Chem. Soc. Perkin Trans., 1994, 12, 1549.
    [69] Blanda, M. T., Horner, J. H., Newcomb, M. Macrocycles containing tin. The Preparation of Macrobicyclic Lewis Acidic Hosts Containing Two Tin Atoms and tin-119 NMR Studies of Their Chloride and Bromide Binding Properties in Solution[J]. J. Org. Chem., 1989, 54(19):4626-4636.
    [70] Newcomb, M., Horner, J. H., Blanda, M. T., Squattrito, P. J. Macrocycles containing tin. Solid Complexes of Anions Encrypted in Macrobicyclic Lewis Acidic Hosts[J].J. Am. Chem. Soc., 1989, 111(16):6294-6301.
    [71] Gomes, A., Fernandes, E., Lima, J. L. F. C. Fluorescence Probes Used for Detection of Reactive Oxygen Species[J]. J. Biochem. Biophys.Methods., 2005, 65(2): 45–80.
    [72] Fink MP. Role of Reactive Oxygen and Nitrogen Species in Acute Respiratory Distress Syndrome[J].Curr. Opin. Crit. Care., 2002, 8(1):6–11.
    [73] Li, X. H., Zhang, G. X., Ma, H. M., Zhang, D. Q., Li, J., Zhu, D. B. 4,5-Dimethylthio-4‘-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a Highly Selective and Sensitive Chemiluminescence Probe for Singlet Oxygen[J].J. Am. Chem. Soc., 2004, 126(37):11543–11548.
    [74]Kettle, A. J., Winterbourn, C.C. Myeloperoxidase: A Key Regulator of Neutrophil Oxidant Producation[J]. Redox Rep., 1997, 3, 3–15.
    [75] Hidalgo, E., Bartolome, R., Dominguez, C. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness[J].Chem. Biol. Interact., 2002, 139(3): 265–282.
    [76] Pattison, D. I., Davies, M. J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds[J].Chem. Res. Toxicol.,2001,14(10):1453–1464.
    [77] O’Brien, P. J. Peroxidases[J]. Chem. Biol. Interact., 2000, 129(2):113–139.
    [78] Lapenna, D., Cuccurullo, F.Hypochlorous acid and its pharmacological antagonism: An update picture[J].Gen. Pharmacol., 1996, 27(7):1145–1147.
    [79] Kettle, A. J., Winterbourn, C. C. Myeloperoxidase: A Key Regulator of Neutrophil Oxidant Producation[J]. Redox Rep., 1997, 3, 3–15.
    [80] Pattison, D. I., Davies, M. J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds[J]. Chem. Res. Toxicol., 2001, 14(10):1453–1464.
    [81] P. J. O’Brien. Peroxidases[J]. Chem.–Biol. Interact. 2000, 129(2):113–139.
    [82] Podrez, E. A, Abu-Soud, H. M., Hazen, S. L. Myeloperoxidase-generated Oxidants and Atherosclerosis[J]. Free Radical Biol. Med., 2000, 28(12):1717–1725.
    [83] Pattison, D. I., Davies, M. J. Evidence for Rapid Inter- and Intramolecular Chlorine Transfer Reactions of Histamine and Carnosine Chloramines: Implications for the Prevention of Hypochlorous-Acid-Mediated Damage[J]. Biochemistry, 2006, 45(26):8152– 8162.
    [84] Kawai, Y, Kiyokawa, H, Kimura, Y., Kato, Y., Tsuchiya, K., Terao, J. Hypochlorous Acid-Derived Modification of Phospholipids: Characterization of Aminophospholipids as Regulatory Molecules for Lipid Peroxidation[J]. Biochemistry, 2006, 45(47):14201– 14211.
    [85] Pattison, D. I., Davies, M. J. Kinetic Analysis of the Role of Histidine Chloramines in Hypochlorous Acid Mediated Protein Oxidation[J]. Biochemistry, 2005, 44(19):7378–7387.
    [86] Kenmoku, S., Urano, Y., Kojima, H., Nagano, T. Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis[J]. J. Am. Chem. Soc., 2007, 129(23):7313–7318.
    [87] Bizyukin, A. V., Korkina, L. G., Velichkovskii, B. T. Comparative Use of 2,7-dichlorofluorescin Diacetate, Dihydrorhodamine 123, and Hydroethidine to Study Oxidative Metabolism in Phagocytic cells[J]. Bull. Exp. Biol.Med., 1995, 119(4): 347– 351.
    [88] Setsukinai, K., Urano, Y., Kakinuma, K.; Majima, H. J., Nagano, T. Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species [J]. J.Biol. Chem., 2003, 278(5): 3170– 3175.
    [89] Takats Z., Koch, K. J., Cooks, R. G. Organic Chloramine Analysis and Free ChlorineQuantification by Electrospray and Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry [J]. Anal. Chem., 2001, 73(18):4522–4529.
    [90] Halliwell, B. Oxidative Stress and Cancer: Have We Moved Forward? [J] .Biochem. J., 2007, 401(1):1–11.
    [91] Bowler, R.P., Crapo, J.D. Oxidative stress in allergic respiratory diseases [J]. J. Allergy Clin. Immunol. 2002, 110(3): 349–356.
    [92] Bickers, D.R., and Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease [J]. J. Invest. Dermatol., 2006,126(12): 2565–2575.
    [93] McCord, J.M. Free Radicals and Inflammation: Protection of Synovial Fluid by Superoxide Dismutase[J]. Science, 1974, 185(4150):529–531.
    [94] McCord, J.M., and Day, E.D. Superoxide-Dependent Production of Hydroxyl Radical Catalyzed by Iron-EDTA Complex[J].FEBS Lett., 1978, 86(1):139–142.
    [95] Repine, J.E., Fox, R.B.; and Berger, E.M. Hydrogen Peroxide Kills Staphylococcus Aureus by Reacting with Staphylococcal Iron to Form Hydroxyl Radical[J]. J. Biol. Chem., 1981, 256(14):7094–7096.
    [96] Harrison, J.E., and Schultz, J. Studies on the Chlorinating Activity of Myeloperoxidase [J]. J. Biol. Chem., 1976, 251(5):1371–1374.
    [97] Hammerschmidt, S., Buchler, N.;and Wahn, N. Tissue Lipid Peroxidation and Reduced Glutathione Depletion in Hypochlorite-Induced Lung Injury[J].Chest, 2002, 121(2):573–581.
    [98] Venglarik, C.J., Giron-Calle, J.;Wigley, A.F., Malle, E.,Watanabe, N. and Forman, H.J. Watanabe, N., and Forman, H.J. Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione[J]. J. Appl. Physiol., 2003, 95(6):2444–2452.
    [99] Hammerschmidt, S., Vogel, T.; Jockel, S.; Gessner, C.,Seyfarth, H.J.,Gillissen, A.; and Wirtz, H. Protein Kinase C Inhibition Attenuates Hypochlorite-induced Acute Lung Injury[J]. Respir. Med., 2007, 101(6):1205–1211.
    [100] Wu, S.M., and Pizzo, S.V.α2-Macroglobulin from Rheumatoid Arthritis Synovial Fluid: Functional Analysis Defines a Role for Oxidation in Inflammation[J]. Arch. Biochem. Biophys., 2001, 391(1):119–126.
    [101] Jasin, H.E. Oxidative Modification of Inflammatory Synovial Fluid Immunoglobulin G[J]. Inflammation., 1993, 17(2):167–181.
    [102] Hasegawa, T., Malle, E.; Farhood, A., Jaeschke, H. Generation ofHypochlorite-modified Proteins by Neutrophils During Ischemia-reperfusion Injury in Rat Liver: Attenuation by Ischemic Preconditioning[J]. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(4): 760–767.
    [103] Malle, E., Buch, T., and Grone, H.-J. Myeloperoxidase in Kidney Disease[J]. Kidney Int., 2003, 64(6): 1956–1967.
    [104] Maruyama, Y., Lindholm, B., and Stenvinkel, P. Inflammation and Oxidative Stress in ESRD–the Role of Myeloperoxidase [J]. J. Nephrol., 2004, 17(8): S72–S76.
    [105] Daugherty, A., Dunn, J.L., Rateri, D.L., and Heinecke, J.W. Myeloperoxidase, a Catalyst for Lipoprotein Oxidation, is Expressed in Human Atherosclerotic Lesions [J]. J. Clin. Invest ., 1994, 94(1): 437–444.
    [106] Hazell, L.J., Arnold, L.; Flowers, D., Waeg, G., Malle, E., and Stocker, R., J. Presence of Hypochlorite-modified Proteins in Human Atherosclerotic Lesions[J]. Clin. Invest., 1996, 97(6): 1535–1544.
    [107] Hazen, S.L., and Heinecke, J.W. 3-Chlorotyrosine, a Specific Marker of Myeloperoxidase-catalyzed Oxidation, is Markedly Elevated in Low Density Lipoprotein Isolated from Human Atherosclerotic Intima.[J]. J. Clin. Invest., 1997, 99(9): 2075–2081.
    [108] Sugiyama, S., Kugiyama, K., Aikawa, M., Nakamura, S., Ogawa, H., and Libby, P.. Hypochlorous Acid, a Macrophage Product, Induces Endothelial Apoptosis and Tissue Factor Expression: Involvement of Myeloperoxidase-Mediated Oxidant in Plaque Erosion and Thrombogenesis[J]. Arterioscler. Thromb. Vasc. Biol., 2004, 24(7): 1309–1314.
    [109] Chen, X.Q, Wang, X.C., Wang, S. J., Shi, W., Wang, K. and Ma, H. A Highly Selective and Sensitive Fluorescence Probe for the Hypochlorite Anion[J]. Chem. Eur. J., 2008, 14(15):4719-4724.
    [110] Leffler, J. E., Bond, W. B. The Influence of Polar Substituents and Polar Solvents on Radical Decomposition Reactions[J]. J. Am. Chem. Soc., 1956, 78(2), 335–341.
    [111] Yang, Y.K., Hyungseoph, J. C., Lee, J., Shin, I., and Tae, J. S. A Rhodamine?Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings[J]. Org. Lett., 2009, 11(4): 859–861.
    [112] Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S., Yoon, J. A New Trend in Rhodamine-based Chemosensors: Application of Spirolactam Ring-opening to Sensing Ions[J]. Chem. Soc. ReV., 2008, 37(8):1465–1472.
    [113] Yang, Y. K., Yook, K. J.; Tae, J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media [J]. J. Am. Chem. Soc., 2005, 127(48):16760–16761.
    [114] Yang, Y. K., Ko, S. K.; Shin, I.; Tae, J. Synthesis of a Highly Metal-selective Rhodamine-based Probe and Its Use for the in Vivo Monitoring of Mercury[J]. Nat. Protocols., 2007, 2(7):1740–1745.
    [115] Sun, Z. N., Liu, F.Q., Chen, Y., Tam, P. K. H. and Yang, D. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid[J]. Org. Lett., 2008, 10(11): 2171–2174.
    [116] Gabe, Y., Urano, Y.; Kikuchi, K., Kojima, H., Nagano, T. Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene ChromophoreRational Design of Potentially Useful Bioimaging Fluorescence Probe[J]. J. Am.Chem. Soc., 2004, 126(10) :3357–3367.
    [118] Ziessel, R.; Ulrich, G., Harriman, A. The Chemistry of BODIPY: A New El Dorado for Fluorescence Tools [J]. New J. Chem., 2007, 31(4) :496–501.
    [119] Loudet, A., Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties [J]. Chem.ReV., 2007, 107(11): 4891–4932.
    [120] Ulrich, G., Ziessel, R., Harriman, A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed[J]. Angew.Chem. Int. Ed. , 2008, 47(7): 1184–1201.
    [121] Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., and Nagano, T. Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species[J]. J. Biol. Chem., 2003, 278(5): 3170–3175.
    [122] Shepherd, J., Hilderbrand, S. A., Waterman, P., Jay, W. H., Weissleder, R. and Libby, P. A Fluorescent Probe for the Detection of Myeloperoxidase Activity in Atherosclerosis-Associated Macrophages[J]. Chemistry & Biology., 2007, 14(11): 1221–1231.
    [123] Stevens, R.V., F. Gaeta, C. A., Lawrence,D. S. Camphorae: Chiral Intermediates for the Enantiospecific Total Synthesis of Steroids. [J]. J. Am. Chem. Soc., 1983, 105(26): 7713–7719.
    [124] Bigdeli, M., Rahmati, A. Catalytic Effect of Wet Molecular Sieve 3? in Dry Media on Syntheses of Oximes and 1,3-dioximes[J]. J.Chem. Res., 2005, 3,605–607.
    [125] Jeong, T., Kim, M. J. Yu, H., Kim, K. S., Choi, J., Kimb, S., Lee, W. S. (E)-Phenyl-and-heteroaryl-substituted O-benzoyl-(oracyl) Oximes as Lipoprotein-associated Phosphlipase A2 Iinhibitors[J]. Bioorg. Med. Chem. Lett., 2005, 15(5):1525–1527.
    [126] Khurana, J. M., Ray, A., Sahoo, P. K. Bull. Oxidative Deoximation with Sodium Hypochlorite[J].Chem. Soc. Jpn., 1994, 67(4):1091– 1093.
    [127] Lin, W.Y., Long, L.L., Chen, B.B. and Tan, W. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction [J].Chem. Eur. J., 2009, 15(10): 2305– 2309.
    [128] Haugland, R. P. A Guide to Fluorescent Probes and Labeling Technologies[J]. InvitrogenTM: Carlsbad., 2005:67-75.
    [129] Kojima, H., Hirotani, M., Urano, Y., Kikuchi, K., Higuchi, T. Fluorescent indicators for nitric oxide based on rhodamine chromophore[J]. Nagano, T. Tetrahedron Lett., 2000, 41(1): 69-72.
    [130] Zhao, M., Hollingworth, S., Baylor. Properties of tri- and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers[J]. S. M. Biophys. J., 1996, 70(2):896-916.
    [131] Kenmoku, S., Urano, Y., Kojima, H. and Nagano, T. Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis [J]. J. Am. Chem. Soc., 2007, 129(23):7313–7318.
    [1] Lai, Z. F. Acta. Acad. Med. Sin. 2002, 24, 90-96.
    [2] Kisters, K., Tepel, M., Hahne, G., Wibbeke, C., Spieker, C., Zidek, W. Chloride Concentrations in Plasma, Erythrocytes, and Lymphocytes Indicating Different Chloride Fluxes: Measurements Using SPQ and Colorimetric Titration[J]. Trace. Elem. Electrolytes, 1997, 14(2):55-57.
    [3] Thomas, J. J., Valentin, S., Frank, W., Anselm, A. Z. Molecular Structure and Physiological Function of Chloride Channels[J]. Physiol. Rev., 2002, 82(2):503-568.
    [4] David, N. S., Michael, J. W. Structure and Function of the CFTR Chloride Channel [J]. Physiol. Rev., 1999, 79(1): 23-45.
    [5] Hume, J. R., Duan, D., Collier, M. L. Anion Transport in Heart[J]. Physiol .Rev., 2000, 80(1):31-81.
    [6] Verkman, A. S., Development and Biological Applications of Chloride-sensitive Fluorescent Indicators[J]. Am J. Physiol. Cell. Physiol., 1990, 259(3):375-388.
    [7] Koch, S. M.; Taylor, R.W. Chloride Ion in Intensive Care Medicine[J]. Crit. Care. Me., 1992, 20(2), 227–40.
    [8] Warick, J. W., Huang, N. N., Waring, W. W., Cherian, A. G., Brown, I., Stejskal-Lorenz, E., Yeung, W. H., Duhon, G., Hill, J. G., Strominger, D. Chloride-Sensitive Fluorescent Indicators[J]. Clin. Chem., 1986, 32(2):850-853.
    [9] Steinmeyer, K., Klocke, R., Ortland, C. Inactivation of Muscle Chloride Channel by Transposon Insertion in Myotonic Mice[J]. Nature, 2001, 354(28):304-308.
    [10] Yamawake, N., Hirano, Y., Sawanobori, T., Hiraoka, M. Arrhythmogenic Effects of Isoproterenol-activated Cl? current in Guinea-pig Ventricular Myocytes[J]. J. Mol. Cell. Cardiol., 1992, 24(9):1047-1058.
    [11] Marandi, N., Konnerth, A., Garaschuk, O. Two-photon Chloride Imaging in Neurons of Brain Slices[J]. Pflügers Archiv, Physiol. Eur. J., 2002, 445(3):357-365.
    [12] Martínez-Ansó, E., Castillo, J. E., Díez, J., Medina, J. F., Prieto, J. Immunohistochemical Detection of Chloride/bicarbonate Anion Exchangers in Human Liver[J]. Hepatology, 1994, 19, 400– 1406.
    [13] Pilas, B., Durack, G. A Flow Cytometric Method for Measurement of Intracellular Chloride Concentration in Lymphocytes Using the Halide-specific Probe 6-methoxy-N-(3-sulfopropyl) Quinolinium (SPQ)[J]. Cytometry, 1997, 28(4):316–322.
    [14] Painter, R.G., Wang, G. Direct Measurement of Free Chloride Concentrations in the Phagolysosomes of Human Neutrophils[J]. Anal.Chem., 2006, 78, 3133-3137.
    [15]Lai, Z.F., Nishi, K. Intracellular Chloride Activity Increases in Guinea Pig Ventricular Muscle During Simulated Ischemia[J]. Am. J. Physiol., 1998, 275, 1613-1619.
    [16] Lai, Z.F., Liu, J., Nishi, K. Effects of Stilbene Derivatives SITS and DIDS on Development of Intracellular Acidosis during Ischemia in Isolated Guinea Pig Ventricular Papillary Muscle in Vitro1996[J]. Jpn. J. Pharmacol., 1996, 72,161-174.
    [17] Lai, Z.F., Hotokebuchi, N., Cragoe, E.J., Nishi, K. Effects of 5-(N,N-hexamethylene) Amiloride on Action Potentials, Intracellular Na, and pH of Guinea Pig Ventricular Muscle in Vitro[J]. J .Cardiovasc. Pharmacol., 1994, 23(2): 259-267.
    [18] Gomes. A, Fernandes, E., Lima, JLFC. Fluorescence Probes Used for Detection of Reactive Oxygen Species[J]. J. Biochem. Biophys. Methods, 2005, 65, 45–80.
    [19] Halliwell, B., Whiteman, B. Measuring Reactive Species and Oxidative Damage in Vivo and in Cell Culture: How Should You Do It and What Do the Results Mean? [J]. Br. J. Pharmacol., 2004, 142(2):231– 255.
    [20] Takeharu, N., Keiji, I., Eun, S. P., Mie, K., Katsuhiko, M., Atsushi, M. A Variant of Yellow Fluorescent Protein with Fast and Efficient Maturation for Cell-biological Applications[J]. Nat. Biotechnol., 2002, 20, 87-90.
    [21] Huber, C., Klimant, I., Krause, C., Wolfbeis, O.S. Nitrate-selective Optical Sensor Applying a Lipophilic Fluorescent Potential-sensitive Dye[J]. Anal. Chem. 2001, 73, 2097-2103.
    [22] Jayaraman, S., Song, Y. L., Vetrivel, L., Shankar, L., Verkman, A. S. Non-invasive in Vivo Fluorescence Measurement of Airway Surface Liquid Depth, Salt Concentration, and pH[J]. J. Clin.Invest., 2001, 107, 317-324.
    [23] Lindena, J., Burkhardt, H. Separation and Chem-iluminescence Properties of Human, Canine and Rat Poly- Morphonuclear Cells[J]. J. Immunol. Methods., 1988, 115, 141-147.
    [24] Chao, A. C., Widdicombe, J. H., Verkman, A. S. Chloride Conductive and Cotransport Mechanisms in Cultures of Canine Tracheal Epithelial Cells Measured by an Entrapped Fluorescent Indicator[J]. J. Membr. Biol. 1990, 113(3),193-202.
    [25] Mahlangu, D. A. F. D., Dix, J. Halide Fluxes in Epithelial Cells Measured with an Automated Cell Plate Reader[J]. A. Anal. Biochem., 2004, 325, 28-34.
    [26] Kuner, T., Augustine, G. J. A Genetically Encoded Ratiometric Indicator for Chloride:Capturing Chloride Transients in Cultured Hippocampal Neurons[J]. Neuron , 2000, 27(3):447-459.
    [27] Sujatha, J., Joachim, B., Verkman, A. S. Synthesis and Characterization of Dual-wavelength Cl--sensitive Fluorescent Indicators for Ratio Imaging[J]. Am J. Physiol ., 1999, 276(3):747-757.
    [28] Seong-Jin Hong, Jaeduk Yoo, Sook-Hee Kim, Jong Seung Kim, Juyoung Yoon and Chang-Hee Lee. -Vinyl Substituted calix[4] pyrrole as a Selective Ratiometric Sensor for Cyanide Anion [J]. Chem. Commun., 2009, 189–191.
    [29] Richard G. Painter, and Guoshun Wang. Direct Measurement of Free Chloride Concentrations in the Phagolysosomes of Human Neutrophils [J]. Anal. Chem., 2006, 78(9):3133-3137.
    [30] Lin Xue, Chun Liu and Hua Jiang . A Ratiometric Fluorescent Sensor with a Large Stokes Shift for Imaging Zinc Ions in Living Cells [J]. Chem. Commun., 2009, 1061–1063.
    [31] Huan-Huan Wang, Lin Xue, Yuan-Yu Qian, and Hua Jiang. Novel Ratiometric Fluorescent Sensor for Silver Ions [J]. Org. Lett., 2010, 12, 292–295.
    [32] Kensuke Komatsu, Yasuteru Urano, Hirotatsu Kojima and Tetsuo Nagano. Development of an Iminocoumarin-based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc[J]. J. Am. Chem. Soc., 2007, 129, 13447–13454.
    [33] Jayaraman, S., Song, Y. L., Vetrivel, L., Shankar, L., Verkman, A. S. Noninvasive in Vivo Fluorescence Measurement of Airway-surface Liquid Depth, Salt Concentration, and pH [J]. J. Clin. Invest. , 2001, 107(1):317-324.
    [34] Lakowicz, J. R. Principles of Fluorescence Spectroscopy[J]. Second Edition, Plenum Press , New York, 1999, 237-265.
    [35] Michalke, B.; Schramel, P.; Hasse, S. Separation of Free Iodide From Other I-species in Human Serum : Quantification in Serum Pools and Individual Samples[J]. Mikrochim. Acta., 1996, 122(5),67–76.
    [36] Buchberger, W.; Winsauer, K. Mikrochim. Acta , 1985, 3, 347–352.
    [37] Buchberger, W.; Huebauer, U. Selective Determination of Bromide and Iodide in Serum and Urine by Gas Chromatography[J]. Mikrochim. Acta, 1989, 3, 137–142.
    [38] Versieck, J.; Cornelis, R. Normal Levels of Trace Elements in Human Blood Plasma or Serum[J]. Anal. Chim. Acta , 1980, 116, 217–254.
    [39] Geddes, C. D., Apperson, K., Karolin, J., Birch, D. J. Chloride-sensitive Fluorescent Indicators[J]. Anal. Biochem. 2001, 293(1):60-66.
    [40]Chen, J.; Liu, D.; Chen, H. P.; Liao, Z. P.; Lai, Z. F.; He, M., Chinese. Pharmacological. Bulletin., 2007, 23, 724.
    [41] Tanaka, H., Matsui, S., Kawanishi, T. Use of Chloride Blockers: a Novel Approach for Cardioprotection Against Ischemia-reperfusion Damage[J]. J. Pharmacol. Exp. Ther., 1996, 278(2):854-861.
    [42] Ridley, P. D., Curtis, M. J. Action of Substitution of Chloride with Nitrate on Ischemia- and Reperfusion-induced Ventricular Fibrillation and Contractile Function[J]. CircRes., 1992, 70, 617-632.
    [1] Kettle, A. J., Winterbourn, C. C. Myeloperoxidase: A Key Regulator of Neutrophil Oxidant Producation[J]. Redox Rep., 1997, 3, 3–15.
    [2] Hidalgo, E., Bartolome, R., Dominguez, C. Cytotoxicity Mechanisms of Sodium Hypochlorite in Cultured Human Dermal Fibroblasts and Its Bactericidal effectiveness[J]. Chem. Biol. Interact., 2002, 139(3):265–282.
    [3] Pattison, D. I., Davies, M. J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds[J]. Chem. Res. Toxicol., 2001, 14(10):1453–1464.
    [4] O’Brien, P. J. Peroxidases[J]. Chem. Biol. Interact., 2000, 129(1):113–139.
    [5] Lapenna, D., Cuccurullo, F. Hypochlorous Acid and Its Pharmacological Antagonism: An Update Picture[J]. Gen. Pharmacol., 1996, 27(7):1145–1147.
    [6] A. J. Kettle, C. C. Winterbourn. A Key Regulator of Neutrophil Oxidant Producation[J]. Redox Rep., 1997, 3, 3–15.
    [7] D. I. Pattison, M. J. Davies. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds[J]. Chem. Res. Toxicol., 2001, 14(10):1453–1464.
    [8] O’Brien, P. J. Peroxidases[J]. Chem. Biol. Interact., 2000, 129(1):113–139.
    [9] E. A. Podrez, H. M. Abu-Soud, S. L. Hazen. Myeloperoxidase-generated Oxidants and Atherosclerosis[J]. Free Radical Biol. Med., 2000, 28(12):1717–1725.
    [10] D. I. Pattison, M. J. Davies. Evidence for Rapid Inter- and Intramolecular Chlorine Transfer Reactions of Histamine and Carnosine Chloramines: Implications for The Prevention of Hypochlorous-Acid-Mediated Damage[J]. Biochemistry., 2006, 45(26):8152– 8162.
    [11] Y. Kawai, H. Kiyokawa, Y. Kimura, Y. Kato, K. Tsuchiya, J. Terao. Hypochlorous Acid-Derived Modification of Phospholipids: Characterization of Aminophospholipids as Regulatory Molecules for Lipid Peroxidation[J]. Biochemistry., 2006, 45 (47):14201– 14211.
    [12] D. I. Pattison, M. J.Davies. Kinetic Analysis of the Role of Histidine Chloramines in Hypochlorous Acid Mediated Protein Oxidation [J]. Biochemistry .,2005, 44(19):7378–7387.
    [13] Z. Takats, K. J. Koch, R. G. Cooks. Organic Chloramine Analysis and Free Chlorine Quantification by Electrospray and Atmospheric Pressure Chemical Ionization TandemMass Spectrometry[J]. Anal. Chem., 2001, 73(18):4522–4529.
    [14] S. Kenmoku, Y. Urano, H. Kojima, T. Nagano. Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis[J]. J. Am. Chem. Soc.,2007, 129(23):7313–7318.
    [15] A. V. Bizyukin, L. G. Korkina, B. T. Velichkovskii. Comparative Use of 2,7-dichlorofluorescin Diacetate, Dihydrorhodamine 123, and Hydroethidine to Study Oxidative Metabolism in Phagocytic Cells[J]. Bull. Exp. Biol.Med., 1995, 119(4):347– 351.
    [16] K. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, T. Nagano. Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species[J]. J.Biol. Chem., 2003, 278, 3170– 3175.
    [17] S. L. Hempel, G. R. Buettner, Y. Q. O’IMalley, D. A. Wessels, D. M.Flaherty. Dihydrofluorescein Diacetate is Superior for Detecting Intracellular Oxidants: Comparison with 2′,7′-dichlorodihydrofluorescein Diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein Diacetate, and Dihydrorhodamine 123[J]. Free Radical Biol. Med., 1999, 27(1):146–159.
    [18] Young-Keun Yang, Hyungseoph Jason Cho, Jihyun Lee, Injae Shin, and Jinsung Tae. A Rhodamine?Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings[J]. Org. Lett., 2009, 11(4):859–861.
    [19] Weiying Lin,Lingliang Long, Bingbing Chen, and Wen Tan. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction[J]. Chem. Eur. J., 2009, 15(10):2305– 2309.
    [20] Zhen-Ning Sun, Feng-Qin Liu, Yan Chen, Paul Kwong Hang Tam, and Dan Yang. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid[J]. Org. Lett., 2008, 10(11):2171–2174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700