Notch信号通路在心肌成纤维细胞向肌成纤维细胞转分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     心肌成纤维细胞(CFs)过度增殖、转分化为肌成纤维细胞(MFB)而表达α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)导致胶原合成分泌过多是心肌纤维化的重要病理基础。转化生长因子-β1 (TGF-β1)具有促进CFs向MFB转分化,上调α-SMA和促进胶原合成等作用,是重要的促心肌纤维化细胞因子。心脏中肾素-血管紧张素系统( rennin-angiotensin system, RAS)的主要产物血管紧张素Ⅱ( angiotensinⅡ,AngⅡ)也能促进心肌纤维化的形成。Notch信号通路通过受体与配体相互作用来精确调控细胞分化,在心血管发育生理、病理过程中起重要作用,已证实其参与调节了成纤维细胞向MFB的分化,但其在CFs向MFB转分化过程中作用如何尚缺乏明确报道。
     【研究目的】
     1.观察基础状态下CFs表达Notch各受体情况以及DAPT对CFs的α-SMA,HYP的作用,初步阐明Notch通路是否参与心肌纤维化。
     2.明确TGF-β1诱导CFs的α-SMA、HYP变化过程中Notch各受体的变化情况。
     3.明确AngⅡ诱导CFs的α-SMA、HYP变化过程中Notch各受体的变化情况。
     【研究内容】
     1.检测基础状态下CFs表达Notch各受体情况以及分别使用DAPT不同作用浓度和不同作用时间对CFs的α-SMA、HYP的影响:分别采用实时定量PCR和蛋白印迹的方法检测Notch各受体的基因和蛋白水平;采用免疫荧光细胞化学和蛋白印迹的方法检测α-SMA的表达;采用消化法测定HYP含量。
     2. TGF-β1不同作用时间和作用浓度对CFs的α-SMA、HYP的影响以及在TGF-β1诱导CFs向MFB转分化中Notch各受体的表达变化:采用免疫荧光细胞化学和蛋白印迹的方法检测α-SMA的表达;采用消化法测定HYP含量;采用实时荧光定量PCR和蛋白印迹的方法检测Notch各受体的基因和蛋白水平。
     3. AngⅡ不同作用时间和作用浓度对CFs的α-SMA、HYP的影响以及在AngⅡ诱导CFs向MFB转分化中Notch各受体的表达变化:采用免疫荧光细胞化学和蛋白印迹的方法检测α-SMA的表达;采用消化法测定HYP含量;采用实时荧光定量PCR和蛋白印迹的方法检测Notch各受体的基因和蛋白水平。
     【研究结果】
     1.基础状态下CFs有Notch各受体基因和蛋白的表达;随着DAPT作用浓度的增加和作用时间的延长CFs的α-SMA、HYP均呈递增趋势。
     2. TGF-β1可以上调CFs的α-SMA、HYP表达量,随着TGF-β1作用浓度的增加和作用时间的延长α-SMA、HYP均呈递增趋势。但Notch1、Notch3、Notch4随着TGF-β1作用时间的延长呈递减趋势,Notch2则无明显变化。
     3. AngⅡ可以上调CFs的α-SMA、HYP表达量,随着AngⅡ作用浓度的增加和作用时间的延长α-SMA、HYP均呈递增趋势。但Notch1、Notch3、Notch4随着AngⅡ作用时间的延长呈递减趋势,Notch2表达则无明显变化。
     【研究结论】
     1. Notch各受体基因和蛋白在基础状态下CFs上均有表达。DAPT阻断Notch通路后,可以引起α-SMA、HYP的增加,导致CFs向MFB发生转分化。Notch通路在CFs向MFB转分化过程中可能具有重要作用。
     2. TGF-β1能够显著增加CFsα-SMA、HYP的表达量,并且呈时间和剂量依赖效应,可以诱导CFs向MFB转分化。在TGF-β1诱导CFs向MFB转分化过程中Notch1、Notch3、Notch4呈递减趋势,Notch2则无明显变化。
     3. AngⅡ能够显著增加CFsα-SMA、HYP的表达量,而且呈时间和剂量依赖效应,可以诱导CFs向MFB转分化。在AngⅡ诱导CFs向MFB转分化过程中Notch1、Notch3、Notch4逐渐降低,Notch2变化不显著。
【Background】
     The excessive proliferation and transdifferentiation of cardiac fibroblasts (CFs) into myofibroblasts, which expressedα-smooth muscle actin and led to excessive collagen synthesis and secretion, are essential pathology of cardiac fibrosis. Transforming growth factor -β1 (TGF-β1), which can promote the differentiation of CFs to the MFB and up-regulate the expression ofα-SMA and collagen synthesis, is an important profibrotic cytokine. AngiotensinⅡ(angiotensinⅡ, AngⅡ), main product of cardiac renin-angiotensin system (rennin-angiotensin system, RAS) can promote myocardial fibrosis either. Notch signaling pathway, which controls the cell differentiation by interaction of ligands and receptors, plays an key role in the development and pathology of cardiovascular system. Although it has been proved that Notch signaling regulated the differentiation of fibroblasts into myofibroblasts, its effects in the differentiation of CFs into MFB remains unclear.
     【Purposes】
     1. To detect the expression level of Notch receptors in the CFs in basic state, investigate the effects of DAPT on the expression level ofα-SMA and HYP. To clarify if Notch signaling pathway participated in the pathology of myocardial fibrosis preliminarily.
     2. To investigate the change of Notch receptors expression in the transdifferentiation of cardiac fibroblasts (CFs) into myofibroblasts (MFB) induced by TGF-β1.
     3. To investigate the change of Notch receptors expression in the transdifferentiation of CFs into MFB induced by AngⅡ.
     【Contents】
     1. Detect the expression level of Notch receptors in the CFs in basic state and the expression level ofα-SMA and HYP stimulated by DAPT at different concentration and for different time length. Real-time quantitative PCR and Western blot were used to detect the expression level of Notch receptors mRNA and protein. Cytochemical immunofluorescence and Western blot were used to detect the expression ofα-SMA. Digestion method was used to detect the content of HYP.
     2. The effects stimulation by TGF-β1 at different concentration and time length on the expression levelα-SMA and HYP in the CFs and the change of Notch receptors expression during the transdifferentiation of CFs into MFB. Cytochemical immunofluorescence and Western blot were used to detect the expression ofα-SMA. Digestion method was used to detect the content of HYP. Real-time quantitative PCR and Western blot were used to detect the expression level of Notch receptors mRNA and protein.
     3. The effects stimulation by AngⅡat different concentration and time length on the expression levelα-SMA and HYP in the CFs and the change of Notch receptors expression during the transdifferentiation of CFs into MFB. Cytochemical immunofluorescence and Western blot were used to detect the expression ofα-SMA. Digestion method was used to detect the content of HYP. Real-time quantitative PCR and Western blot were used to detect the expression level of Notch receptors mRNA and protein.
     【Results】
     1. In basic state, the mRNA and protein of Notch receptors were expressed in CFs. The expression levels ofα-SMA and HYP showed uptrend as the concentration and the time length of DAPT increased.
     2. TGF-β1 could up-regulate the expression ofα-SMA and HYP in CFs. The expression levels ofα-SMA and HYP showed increasing trend as the concentration and the time length of TGF-β1 stimulation increased. However, the expression levels of Notch1, Notch3 and Notch4 decreased with the increase of TGF-β1 concentration and extension of time. The expression of Notch2 did not change significantly.
     3. AngⅡcould up-regulate the expression ofα-SMA and HYP in CFs. The expression levels ofα-SMA and HYP was up-regulated with the increase of AngⅡconcentration and extension of time. However, the expression levels of Notch1, Notch3 and Notch4 decreased with the increase of AngⅡconcentration and extension of time. The expression of Notch2 did not change significantly.
     【Conclusion】
     1. In basic state, the mRNA and protein of Notch receptors were expressed in CFs. Blockade of Notch signaling by DAPT up-regulated the expression ofα-SMA and HYP and resulted in the trandifferentiation of CFs into MFB.
     2. TGF-β1 could up-regulate the expression ofα-SMA and HYP significantly in a time- and dose-dependent manner and induce the trandifferentiation of CFs into MFB. During the trandifferentiation, the expression levels of Notch1, Notch3 and Notch4 decreased gradually, while the expression level of Notch2 did not change significantly.
     3. AngⅡ, which could up-regulate the expression ofα-SMA and HYP significantly in a time- and dose-dependent manner, could induce the trandifferentiation of CFs into MFB. During the trandifferentiation, the expression levels of Notch1, Notch3 and Notch4 decreased gradually, while the expression level of Notch2 did not change significantly.
引文
1李永梅.心肌间质细胞在心肌纤维化中的作用.心血管病学进展.2007,28(4):600-602.
    2 Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol .1995, 147:325–338.
    3 Vliegen HW, van der Laarse A, Cornelisse CJ, et al. Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyp loidization and multinucleation. Eur Heart J. 1991,12 (4):488~494.
    4 Sun Y, KianiMF, Postlethwaite AE, et al. Infarct scar as living tissue. Basic Res Cardiol. 2002,97 (5):343~347.
    5赵智明,蔡辉.心肌成纤维细胞的来源、特征及意义.中国微循环.2006,10 (3):230-232.
    6 Camelliti P, Green CR, LeGrice I, et al. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coup ling. Circ Res.2004,94 (6):828~835.
    7 Sun Y, Weber KT. Animalmodels of cardiac fibrosis. Methods MolMed. 2005,117 (5):273~290.
    8 Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005, 65(1):40~51.
    9 Perez Pomares JM,Carmona R,Gonzalez2IriarteM,et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002,46 (8):1005~1013.
    10王新凤.心肌成纤维细胞分泌生长因子在心肌重塑中的作用.国外医学心血管疾病分册.2002,29(2):73-75.
    11 Meckert PC, Rivello HG, Vigliano C, et al. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res. 2005, 67 (1):116~123.
    12 Rosenkranz S.TGF-beta1 and angiotensin networking in cardiac remod- eling. Cardiovasc Res. 2004, 63 (3):423~432.
    13 James S.Swaney, David M.Roth, Erik R.Olson et al. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. PNAS. 2005,102(2):437–442.
    14 Gabbiani G, Ryan GB, Majno G. Presence of modified fibroblasts in gr- anulation tissue and their possible role in wound contraction. Experientia.1971,27:549–550.
    15 Desmoulie′re A, Gabbiani G. The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. 2nd ed. New York: Plenum Press;1996:391–423.
    16 Tomasek J. J., Gabbiani G., Hinz B.et al. Nat. Rev. Mol. Cell.Biol. 2002, 3:349–363.
    17 Denk Po, Hoppe J , Hoppe V, et al. Related articles, links effect of growth factors on the activation of human Tenon’s cap sule fibroblasts.Curr Eye Res. 2003,27 (1):35-44.
    18 Yao Sun. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovascular Research .2009,( 81):482–490.
    19 Desmoulie′re A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing culturedfibroblasts.J Cell Biol.1993,122:103–111.
    20 Roy S, Khanna S, Bickerstaff AA, et al.Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1).Circ Res. 2003, 92:264–271.
    21 Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995,147:325–338.
    22 Sun Y, Zhang JQ, Zhang J, Ramires FJA. Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol. 1998,30:1559–1569.
    23 Gabbiani G, Hirschel BJ, Ryan GB et al. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med.1973, 135:719–734.
    24 Appleton I, Tomlinson A, Chander CL, Willoughby DA. Effect of endothelin-1 on croton oil-induced granulation tissue in the rat. A pharmacologic and immunohistochemical study.Lab Invest.1992,67: 703–710.
    25 Passier RC, Smits JF, Verluyten MJ, Daemen MJ. Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am J Physiol.1996,271:H1040–H1048.
    26 Sun Y,Zhang J,Zhang JQ,Weber KT. Renin expression at sites of repair in the infarcted rat heart. J Mol Cell Cardiol .2001,33:995–1003.
    27 Katwa LC, Campbell SE, Tyagi SC et al. Cultured myofibroblasts generate angiotensin peptides de novo.J Mol Cell Cardiol.1997,29:1375–1386.
    28 Goto T, Yanaga F, Ohtsuki I. Studies on the endothelin-1-inducedcontraction of rat granulation tissue pouch mediated by myofibroblasts. Biochim Biophys Acta .1998,1405:55–66.
    29 Samuel CS,Unemori EN,Mookerjee I, et al. Relaxin modulates cardiac fibroblast proliferation differentiation and collagen production and re- verses cardiac fibrosis in vivo.Endocrinology.2004,145(9):4125 -41 33.
    30 ZebergM, Strutz F,Muller GA, et al. Role of fibroblast activation in inducing interstitial fibrosis. J Nephrol.2000,13 ( supp l 3):111-120.
    31 Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts duing tissue repair in the rat heart. J Mol Cell Cardiol.1996,28: 851-858.
    32 Katibi IA. Left ventricular hypertrophy and hypertension. Niger J M ed. 2004,13 (1):8– 17.
    33 Marta Ruiz-Ortega, Juan Rodríguez-Vita, Elsa Sanchez-Lopez et al. TGF -βsignaling in vascular fibrosis. Cardiovascular Research. 2007,74:196– 206.
    34 Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005,19:2783–810.
    35 Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci .2003,116:217–24.
    36邓长柏.转化生长因子β1在心肌纤维化中的作用.医学综述.2004, 10 (11):662-663.
    37 Berk BC. Vascular smooth muscle growth: autocrine growth mechanisms.Physiol Rev. 2001,81(3):999–1030.
    38 Grainger DJ. Transforming growth factor-βand atherosclerosis: so far,so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol.2004,24:399–404.
    39 Euler-Taimor G, Heger J. The complex pattern of SMAD signaling inthe cardiovascular system. Cardiovasc Res.2006,69:15–25.
    40 Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology .2006,118:10–4.
    41 Zacchigna L, Vecchione C, Notte A, et al. Emilin 1 links TGF-βmaturation to blood pressure homeostasis. Cell. 2006,124:929–32.
    42 Dai J, Losy F, Guinault AM, et al.Overexpression of transforming growth factor-beta1 stabilizes alreadyformed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy. Circulation. 2005,112(7):1008–15.
    43 Wang M, Zhao D, Spinetti G, et al.Matrix metalloproteinase 2 activation of transforming growth factor-β1 (TGF-β) and TGF-β1-type II receptor signaling within the aged arterial wall. Arterioscler Thromb Vasc Biol .2006,26:1503–9.
    44 Rodriguez-Vita J, Sanchez-Lopez E, Esteban V,et al. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.Circulation. 2005,111:2509–17.
    45 Hao J ,Ju H ,Zhao S , et al . Elevation of expression of Smads 2、3、and4,decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol .1999 ,31 (3) :667-678.
    46 Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep. 2003, 5: 73–9.
    47 Li JH, Huang XR, Zhu HJ, et al. Role of TGF-βsignaling in extracellular matrix production under high glucose conditions. KidneyInt. 2003,63:2010–9.
    48 Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF-β-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J.2004,18:176–8.
    49 Dixon IM, Hao J ,Keid NL , et al . Effect of chronic AT1 receptor blockade on cardiac Smad overexpression in hereditary cardiomyo- pathic hamsters.Cardiovasc Res.2000,46 (2):286-297.
    50 Leask A, Abraham DJ. TGF-βsignaling and the fibrotic response.FASEB J. 2004,18:816–7.
    51 Verrecchia F, Mauviel A. Transforming growth factor-beta signaling thr- ough the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002,118:211–5.
    52 Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci.1995,108(Pt 3):985-1002.
    53 Hosokawa R, Nonaka K, Morifuji M, et al. TGF-beta 3 decreases type I collagen and scarring after labioplasty. J Dent Res.2003, 82(7):558-642.
    54 Eghbali FJ ,Sieck GC ,Prakash YS , et al . Type 1 procollagen production and cell proliferation is mediated by transforming growth factor-βin a model of hepatic fibrosis.Endocrinology.1996,137 (5) :1894-1903.
    55 Sun Y,Zhang J ,Zhang JQ , et al .Local angiotensinⅡand transforming growth factor-β1 in renal fibrosis of rats. Hypertension.2000,35(5): 1078-1084.
    56 Kuwahara F , Kai H ,Tokuda K, et al . Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloade rats.Circulation.2002,106 (1):130- 135.
    57 Yu HCM, Burrell LM,Black MJ,et al . Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation. 1998,98 (23) :2621-2628.
    58 Tsujita-Kyutoku M, Uehara N, Matsuoka Y, et al. Comparison of transforming growth factor-beta/Smad signaling between normal dermal fibroblasts and fibroblasts derived from central and peripheral areas of keloid lesions. In Vivo. 2005,19(6):959-63.
    59 Li JP , Petrov V , Rumilla K, et al . Transforming growth factor-beta1 promotes contraction of collagen gel by cardia fibroblasts through their differentiation into myofibroblasts. Methods Find Exp Clin Pharmacol.2003,25 (2):79-86.
    60 Colwell AS, Phan TT, Kong W, et al. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Plast Reconstr Surg. 2005,116(5):1387-90; discussion 1391-2.
    61 GriffinM, Lee HW, Zhao L, et al. Gender-related differences in prolifera- tive response of cardiac fibroblasts to hypoxia: effects of estrogen. Mol Cell Biochem. 2000,215 (2):21-30.
    62 Sun Y, Ratajska A, Zhou G, Weber KT. Angiotensin converting enzyme and myocardial fibrosis in the rat receiving angiotensin II or aldosterone.J Lab Clin Med.1993,122:395–403.
    63 Ratajska A, Campbell SE, Sun Y, Weber KT. Angiotenin II associatedcardiac myocyte necrosis: role of adrenal catecholamines. Cardiovasc Res.1994,28:684–690.
    64 Lu L, Quinn MT, Sun Y. Oxidative stress in the infarcted heart: role of de novo angiotensin II production. Biochem Biophys Res Commun. 2004,325:943–951.
    65 Cleutjens JPM, Kandala JC, Guarda E,et al. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995,27:1281–1292.
    66 Weber KT. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol. 1997,17:467–491.
    67 Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagoniston inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol. 2001,38:1207–1215.
    68 Jugdutt BI. Effect of captopril and enalapril on left ventricular geometry,function and collagen during healing after anterior and inferior myocardial infarction in a dog model. J Am Coll Cardiol. 1995,25:1718–1725.
    69 . Frimm Cde C, Sun Y, Weber KT. Angiotensin II receptor blockade and myocardial fibrosis of the infarcted rat heart. J Lab Clin Med .1997,129:439–446.
    70 Michel JB, Lattion AL, Salzmann JL, et al. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res .1988,62:641–650.
    71 Van Krimpen C, Smits JFM, Cleutjens JPM, et al. DNA synthesis in thenon-infarcted cardiac interstitium after left coronary artery ligation in the rat heart: effects of captopril. J Mol Cell Cardiol. 1991, 23: 1245–1253.
    72 Schieffer B, Wirger A, Meybrunn M, et al. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation. 1994,89:2273–2282.
    73 Kim S, Ohta K, Hamaguchi A, et al. Contribution of renal angiotensin II type I receptor to gene expressions in hypertension-induced renal injury. Kidney Int .1994,46:1346–1358.
    74 Ward WF, Molteni A, Ts’ao C, Kim YT, Hinz JM. Radiation pneumotox- icity in rats: modification by inhibitors of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys. 1992,22:623–625.
    75 Fraccarollo D, Galuppo P, Bauersachs J. Mineralocorticoid receptor antagonism and cardiac remodeling in ischemic heart failure. Curr Med Chem Cardiovasc Hematol Agents. 2004,2:287–294.
    76 Tu?on J, Ruiz-Ortega M, Egido J. Regulation of matrix proteins and imp- act on vascular structure. Curr Hypertens Rep. 2000,2:106–13.
    77 Wang W, Huang XR, Canlas E, et al.Essential role of Smad3 in angiotens- in II-induced vascular fibrosis.Circ Res. 2006,98:1032–9.
    78 Hao J, Wang B, Jones SC, et al. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol. 2000,279:H3020–30.
    79 Carvajal G, Ruperez M, Sanchez-Lopez E, et al. Angiotensin II causes epithelial mesenchymal transdifferentiation via activation of Smad and MAPK signaling pathways. Nephrol Dial .2006,21:289.
    80 Wamsley-Davis A, Padda R, Truong LD, et al. AT1A-mediated activation of kidney JNK1 and SMAD2 in obstructive uropathy: Preservation of kid- ney tissue mass using Candesartan. Am J Physiol Renal Physiol .2004, 287:F474–80.
    81 Ruperez M, Lorenzo O, Blanco-Colio LM,et al. Connective tissue growth factor is a mediator of angiotensinII-induced fibrosis. Circulation .2003, 108:1499–505.
    82 Ruiz-Ortega M, Ruperez M, Esteban V, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant .2006,21:16–20.
    83 Paravicini TM, Touyz RM. Redox signaling in hypertension.Cardiovasc Res. 2006,71:247–58.
    84 Abraham DJ, Shiwen X, Black CM, et al. Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J Biol Chem. 2000,275(20):15220-15225.
    85 Paradis V, Dargere D, Vidaud M, et al. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology.1999,30(4):968-976.
    86 Ito Y, Aten J, Bende RJ, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998,53(4):853-861.
    87 Allen JT, Knight RA, Bloor CA, et al. Enhanced insulin-like growth factor binding protein related protein 2 (Connective tissue growth factor) expres sion in patients with idiopathic pulmonary fibrosis and pulmonary sarcoid sis. Am J Respir Cell Mol Biol.1999,21(6):693-700.
    88潘丽萍.心肌纤维化的机制及干预治疗.临床医学.2005, 25(10):83-84.
    89张召才,杨英珍,陈灏珠.心肌纤维化的研究进展.临床心血管病杂志.2004,20(1 ).
    90 Tsukamoto H. Oxidative stress, antioxidants, and alcoholic liver fibrogen- esis.Alcohol .1993,10:465–467.
    91 Mastruzzo C, Crimi N, Vancheri C. Role of oxidative stress in pulmonary fibrosis. Monaldi Arch Chest Dis .2002,57:173–176.
    92 Iglesias-De La Cruz MC, Ruiz-Torres P, Alcam?′J, et al. Hydrogen perox- ide increases extracellular matrix mRNA through TGF-beta in human me- sangial cells.Kidney Int .2001,59:87–95.
    93 Miyazaki T, Karube M, Matsuzaki Y, et al.Taurine inhibits oxidative dam- age and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis. J Hepatol. 2005,43:117–125.
    94 Murrell AC, Francis JO, Bromley L. Modulation of fibroblast proliferatio- n by oxygen free radicals. Biochem J.1993,265:659–665.
    95 Sia YT, Parker TG, Liu P,et al. Imporved postmyocardial infarction surviv- al with probucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. J Am Col Cardiol.2002, 39:148–156.
    96 D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligan- ds. Oncogene. 2008,27:5148–5167.
    97 Ladi E, Nichols JT, Ge W,et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling indu- ced by other DSL ligands. J Cell Biol. 2005,170:983–992.
    98 Ingram WJ, McCue KI, Tran TH, et al. Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene. 2008,27:1489–1500.
    99 Iso T, Sartorelli V, Chung G, et al. HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol. 2001,21:6071– 6079.
    100 Morrow D, Sweeney C, Birney YA, et al. Cyclic strain inhibits notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res. 2005,96:567–575.
    101 Nofziger D, Miyamoto A, Lyons KM, Weinmaster G. Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts.Development. 1999,126:1689–1702.
    102 Langdon T, Hayward P, Brennan K, et al. Notch receptor encodes two stru cturally separable functions in Drosophila: a genetic analysis. Dev Dyn. 2006,235:998–1013.
    103 Wu L, Aster JC, Blacklow SC,et al. MAML1, a human homologue of Dr- osophila mastermind, is a transcriptional co-activator for NOTCH recept- ors. Nat Genet. 2000,26:484–489.
    104 Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand -induced proteolytic release of intracellular domain. Nature. 1998, 393: 382–386.
    105 Oswald F, Tauber B, Dobner T,et al. p300 acts as a transcriptional coac- tivator for mammalian Notch-1. Mol Cell Biol.2001,21:7761–7774.
    106 Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to pho- sphorylate the Notch ICD and coordinate activation with turnover.Mol Cell. 2004,16:509–520.
    107 Le Borgne R, Bardin A, Schweisguth F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development. 2005,132: 1751–1762.
    108 Jaekel R, Klein T. The Drosophila Notch inhibitor and tumor suppressorgene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell. 2006,11:655– 669.
    109赵梅、韩伟.Notch信号传导通路相关疾病的研究进展.生物化学与生物物理进展.2006,33(12):1154-1160.
    110 Axelson H. Notch signaling and cancer: emerging complexity. Semin Ca- ncer Biol.2004,14 (5):317-319.
    111 Hu C, Dievart A, Lupien M, et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland develop- pment and induces mammary tumors. Am J Pathol.2006,168 (3):973-990.
    112 Collins B J, Kleeberger W, Ball D W. Notch in lung development and lung cancer. Semin Cancer Biol.2004,14 (5):357-364.
    113 Rae F K, Stephenson S A, Nicol D L, et al. Novel association of a diverse range of genes with renal cell carcinoma as identified by differential disp- lay. Int J Cancer.2000,88(5):726-732.
    114 Hadchouel M. Notch signalling pathway and human diseases. J Hepatol. 2000,32 (Suppl 2): l-2.
    115 Spinner N B, Colliton R P, Crosnier C, et al. Jagged1 mutations in alagille syndrome. Hum Mutat.2001,17 (1):18-33.
    116 Nagarsheth M H, Viehman A, Lippa S M, et al. Notch-1 immunoexpressi- on is increased in Alzheimer!s and Pick"s disease. J Neurol Sci.2006, 244 (1~2):111-116.
    117 Carrie J, Shawber1, Jessica J, et al. Notch: cell fate determination from vascular development to human Vasculopathy. Drug Discov Today: Disease Models.2004,1(3):351-358.
    118 High FA, Zhang M, Proweller A, et al. An essential role for Notch in neural crest during cardiovascular development and smooth muscledifferentiation. J Clin Invest.2007,117:353–363.
    119 Doi H, Iso T, Sato H, et al. Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-J kappa-dependent pathway.J Biol Chem.2006,281:28555–28564.
    120 Noseda M, McLean G, Niessen K,et al. Notch activation results in pheno- typic and functional changes consistent with endothelial-to-mesenchymal transformation.Circ Res.2004,94:910–917.
    121 Lindner V, Booth C, Prudovsky I, et al. Members of the Jagged/Notch gene families are expressed in injured arteries and regulate cell phenotype via alterations in cell matrix and cell-cell interaction.Am J Pathol. 2001, 159:875– 883.
    122 Sakata Y, Xiang F, Chen Z, et al. Transcription factor CHF1/Hey2 regul- ates neointimal formation in vivo and vascular smooth muscle proliferati- on and migration in vitro.Arterioscler Thromb Vasc Biol. 2004,24:2069–2074.
    123 Morrow D, Scheller A, Birney YA, et al. Notch-mediated CBF-1/ RBP–J {kappa}-dependent regulation of human vascular smooth muscle cell phe- notype in vitro. Am J Physiol Cell Physiol. 2005,289:C1188–C1196.
    124 Simone Kennard, Hua Liu, Brenda Lilly.TGF-?1downregulates Notch3 in fibroblasts to promote smooth muscle gene expression. J. Biol. Chem. 2007,11.
    125 Ono, Y., Sensui, H., Okutsu, S., Notch2 negatively regulates myofibrobla- stic differentiation of myoblasts. J Cell Physiol.2007,210(2):358-369.
    126刘佳琦.干扰素-γ对瘢痕成纤维细胞TGF-β/Smad信号通路的作用和机制研究.第四军医大学硕士论文.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700