荧光素系列化合物FL_n(n=1~5)检测NO和铱(Ⅲ)喹喔啉配合物的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光传感器是近年来学术和生物化学研究的热门课题,并且应用于哺乳动物心血管、免疫和神经系统方面。一氧化氮(NO)是生物体内的一种信使分子和效应分子,在生理和病理过程中起着重要的作用,对心脑血管系统、消化系统、神经系统均具有重要的调节作用。利用荧光传感器在生物体内检测NO的含量就成为了生物学家、化学家等关注的热门课题。尤其是荧光探针的出现,更是吸引了大量科学家的兴趣。因此,对该类荧光物质的结构、性质及吸收光谱的研究是非常有价值的。
     本文还介绍了三种红色发光物质—铱(Ⅲ)配合物,在密度泛函DFT理论下,应用B3LYP的方法对基态构型进行了全优化,用CIS方法计算最低三重激发态。这些配合物没有对称性限制。在基态和激发态几何优化的基础上,在PCM二氯甲烷(CH2Cl2)溶剂中,采用TDDFT/B3LYP计算光谱,以获得单态(Sn)和三重激发态(Tn)的垂直激发能。所有的计算均采用高斯03程序包。
     主要成果如下:
     1.我们使用DFT理论方法对一系列FLn及其与NO反应后的产物FLnNOm(m=1-3)的分子结构进行了全优化,对其键长键角的变化做了详细的对比分析,同时还探究了NO+对FLnCu荧光探针的三种进攻部位。通过对这一系列物质的频率的计算,证明这些结构式的稳定性,计算都是在B3LYP/6-31G**理论基础上,由Gaussian 03数据包完成的。计算结果表明,NO+进攻羟基邻位即生成FLnNO2的能量是最低的。同时我们还利用不同基组B3LYP/6-311++G**做了对比试验,结果表明,基组的增加对其结果的优化影响作用是微小的,而溶剂化效应是显著的。我们利用含时密度泛函理论(TD-DFT)方法对上述物质的吸收光谱做了深入的研究,通过对其强度的对比分析,得出吸电子取代基,通常能够使LUMO轨道能量升高,HOMO轨道能量下降,致使LUMO与HOMO之间的能量差增加,从而导致它们的最低吸收波长发生蓝移,反之,斥电子取代基会导致最低吸收波长发生红移。
     2.量子化学不仅研究电子结构,吸收光谱,而且还研究磷光机制以及电致发光(EL)性质,本文还介绍了三种红色发光物质—铱(Ⅲ)配合物,(fpmqx)2Ir(L) (fpmqx= 2 (-4 -氟苯基)- 3 -甲基喹喔啉; L为triazolylpyridine (trz) (1),L为picolinate (pic) (2)和L为acetylacetonate (acac) (3)。计算结果表明,1的HOMO主要分布于trz基团,因为trz是强π-电子接受体,而2和3的HOMO主要是铱d轨道和苯环π轨道组合。此外我们还分析比较了上述三类配合物磷光产量的高低和电致发光效率的差异。我们使用DFT和TDDFT方法,对3种Ir (Ⅲ)配合物(fpmqx)2Ir(L)进行了几何全优化,分析了电子结构以及磷光光谱,并对电致发光机理进行探讨和研究。计算结果表明,trz比pic与acacπ电子受体能力强,导致1的HOMO分布于trz,而2和3分布于Ir的d轨道和苯环π轨道。1-3最低能量吸收主要贡献在于HOMO→LUMO跃迁,由于有较大的HOMO与HOMO-1、LUMO与LUMO +1能隙,它们都拥有MLCT,LLCT和ILCT混合跃迁特征。此外,2比1和3有更高的电致发光效率,原因是2与α- NPD和LiF/Al相比有相对较小的HOMO和LUMO的能量差,而且它可以改善空穴或电子注入效率且将重组区限制在发光层。当然,其它因素,例如温度和环境也会引起这些配合物的磷光效率的差异。
Fluorescent sensors have been the subject of considerable academic and biochemistry research in recent years because of their possible applications in the mammalian cardiovascular, immune and nervous systems. Consequently, detection of NO levels in vivo becomes a popular topic for biologists, chemists, etc.. In particular, the appearance of fluorescent probe for detecting NO molecule in vivo is of great interests to a large number of scientists. Therefore, the research on the structures, properties and absorption spectrum of such fluorescent materials is very valuable.
     Three red-emitting Ir(III) complexes, (fpmqx)2Ir(L) {fpmqx=2-(4-fluorophenyl)-3-methyl-quinoxaline; L= triazolylpyridine (trz) (1); L= picolinate (pic) (2) and L= acetylacetonate (acac) (3)} were introduced in the present paper. The ground-state geometries were fully optimized at DFT level using the B3LYP method, and the lowest-lying triplet excited-state geometries were calculated with the single excitations (CIS) approach. There were not any symmetry constraints during the structural optimizations. optimized by DFT with Becke’s LYP (B3LYP) exchange-correlation functional and the configuration interaction with single excitations (CIS) approach. There were no symmetry constraints among these complexes. On the base of respective optimized geometries of ground and excited states, the TDDFT/B3LYP method is applied to calculate the spectrum associating with the polarized continuum model (PCM) in dichloromethane (CH2Cl2) media in order to obtain the vertical excitation energies of singlet (Sn) and triplet (Tn) states. All calculations were performed with Gaussian 03 program package.
     The main results are as follows:
     1. By using the theoretical method of DFT and TD-DFT we optimized the geometries of a series of FLn and FLnNO1, FLnNO2, FLnNO3 fluorescent materials. And we also made a detailed analysis on the changes of bond lengths and angles. Meanwhile, we explored three positions of NO+ to offense the FLnCu fluorescent probe. We demonstrated the stabilities of these structures by frequency calculations. All of the calculations on these fluorescent complexes have been performed at the B3LYP/6-31G** level using the Gaussian 03 program package. The results show that the energy of FLnNO2 generated by NO+ attacking the o-OH position was the lowest. Meanwhile, we also made a comparison test using different basis set 6-311++G** at the same B3LYP level. The results showed that influence of the increase in basis functions on the optimization is small, and the solvent effects are remarkable. We made a deep research in the absorption spectrum of above mentioned materials by means of the time-dependent density functional theory (DFT) method. Through the comparative analysis of the strengths of absorption spectrum, we can see that strong electron-withdrawing group can increase the energy of LUMO orbital, and decrease the energy of HOMO orbital, which leads to the increase of HOMO-LUMO gaps. Finally, their minimum absorption is blue shifted. Conversely, the electron-pushing group leads to red shifted minimum absorption.
     2. Quantum-chemistry study was applied to investigate the electronic structures, absorption and phosphorescence mechanism, as well as electroluminescence (EL) properties. Three red-emitting Ir(III) complexes, (fpmqx)2Ir(L) {fpmqx=2-(4-fluorophenyl)-3-methyl-quinoxaline; L= triazolylpyridine (trz) (1); L= picolinate (pic) (2) and L= acetylacetonate (acac) (3)} were introduced in the present paper. The calculation shows that the HOMO distribution for 1 is mainly localized on trz moiety due to its strongerπ-electron acceptor ability, and HOMOs for 2 and 3 are mainly the combination of Ir d- and phenyl ringπ-orbital. The differences of phosphorescence yields and electroluminescence efficiencies among 1-3 are also investigated in this paper. The geometrical and electronic structures, and the phosphorescence spectrum and electroluminescence properties of three Ir(III) complexes (fpmqx)2Ir(L) were investigated using the DFT and TDDFT methods. The computational results reveal that, strongerπ-electron acceptor ability of trz than pic and acac results in the HOMO distribution residing on the trz moiety for 1, and those localized on Ir d- and phenyl ringπ-orbital for 2 and 3. The lowest energy absorption for 1-3 is mainly HOMO→LUMO transition configuration. Due to the large HOMO and HOMO-1, LUMO and LUMO+1 energy gaps, all of them have mixed transition characters of MLCT, LLCT and ILCT. In addition, the higher electroluminescent efficiency of 2 than 1 and 3 comes from the relative smaller HOMO or LUMO energy differences between 2 andα-NPD and LiF/Al, which can improve the hole or electron injection efficiency and confine the recombination zone within the light-emitting layer. Certainly, other factors, such as different temperature and environment can also resulting in different phosphorescent efficiencies among these complexes.
引文
[1]小阿瑟·E·科尔文,荧光传感器[P].美国马里兰;GO1N21/25,1996,8: 29.
    [2] RAMANATHAN M, SIMONIAN A L. Arraybiosensor based on enzyme kinetics monitoring by fluorescence spectroscopy: Application for neurotoxins detection [J]. Biosens Bioelectron., 2007, 22: 3001–3007.
    [3] KNAPTON D, BURNWORTH M, ROWAN S J, et al. Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics** [J]. Chem. Int. Ed. 2006, 45: 5825–5829.
    [4] DALE T J, REBEK J. Fluorescent Sensors for Organophosphorus Nerve Agent Mimics [J]. J. Am. Chem. Soc., 2006, 128: 4500–4501.
    [5] VIVEROS L, PALIWAL S, MCCRAE D, et al. A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents [J]. Sens. Actuators, B: Chem. 2006, 115: 150–157.
    [6] NGUYEN B T, ANSLYN E V. Modern supramolecular chemistry: strategies for macrocycle synthesis [J]. Coord. Chem. Rev., 2006, 250: 3118–3127.
    [7] NGUYEN B T, ANSLYN E V. Coord. Chem. Rev., 2006, 250: 3118–3127.
    [8] NGUYEN B T, ANSLYN E V. Coord. Chem. Rev., 2006, 250: 3118–3127.
    [9] ZHANG M, LI M Y, ZHAO Q, et al. Novel Y-type two-photon active fluorophore: synthesis and application in fluorescent sensor for cysteine and homocysteine [J]. Tetrahedron Lett., 2007, 48: 2329–2333.
    [10] ZGURIS J, PISHKO M V. Nitric oxide sensitive fluorescent poly (ethylene glycol) hydrogel microstructures [J]. Sens. Actuators, B: Chem., 2006, 115: 503–509.
    [11] KIM W S, YE X Y, RUBAKHIN S S, et al. Measuring Nitric Oxide in Single Neurons by Capillary Electrophoresis with Laser-Induced Fluorescence: Use of Ascorbate Oxidase in Diaminofluorescein Measurements [J]. Anal. Chem., 2006, 78: 1859–1865.
    [12] LIM M H, LIPPARD S J. Metal-Based Turn-On Fluorescent Probes forSensing Nitric Oxide [J]. Acc. Chem. Res., 2007, 40: 41–51.
    [13] KOCINCOVA A S, BORISOV S M, KRAUSE C, et al. Fiber-Optic Microsensors for Simultaneous Sensing of Oxygen and pH, and of Oxygen and Temperature [J]. Anal. Chem., 2007, 79: 8486–8493.
    [14] CHARIER S, RUEL O, BAUDIN J B, et al. Chem.sEur. J., 2006, 12: 1097–1113.
    [15] THOMAS S W, JOLY G D, SWAGER T M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers [J]. Chem. Rev., 2007, 107: 1339–1386.
    [16] LI J, KENCLIG C E, NESTEROV E E. Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials [J]. J. Am. Chem. Soc., 2007, 129: 15911–15918.
    [17] ZENG L, MILLER E W, PRALLE A, et al. A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells [J]. J. Am. Chem.Soc., 2006, 128: 10–11.
    [18] YANG H, LIU Z Q, ZHOU Z G, et al. Tetrahedron Lett., 2006, 47: 2911–2914.
    [19] KOMATSU K, URANO Y, KOJIMA H, et al. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc [J]. J. Am. Chem. Soc., 2007, 129: 13447–13454.
    [20] NOLAN E M, LIPPARD S J. Turn-On and Ratiometric Mercury Sensing in Water with a Red-Emitting Probe [J]. J. Am. Chem. Soc. 2007, 129: 5910–5918.
    [21] MURAD F. Nitric oxide and cyclic GMP in cell signaling and drug development [J]. N. Engl. J. Med., 2006, 355:2003.
    [22] GARTHWAITE J, et al. Nitric oxide signaling in the central nervous system [J]. Ann Rev Physiol., 1995, 57: 683.
    [23] (a) PIEPER G M. Review of Alterations in Endothelial Nitric Oxide Production in Diabetes: Protective Role of Arginine on Endothelial Dysfunction [J]. Hypertension., 1998, 31: 1047–1060. (b) JOHANNING J M, FRANKLIN D P, HAN D C, et al. Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion [J]. J. Vasc. Surg., 2001, 33:579–586. (c) ALZEER A H, AL-ARIFI A, WARSY A S, et al. Intensive Care Med., 1999, 25: 58–62. (d) ERDOGAN H FADILLIOGLU E AND EMRE M H. Protection from renal ischemia reperfusion injury by an endothelin-A receptor antagonist BQ-123 in relation to nitric oxide production [J]. Toxicology, 2006, 228: 219–228.
    [24] (a) JOHNSON R A and FREEMAN R H. Am. J. Hypertens., 1992, 5: 919–922. (b) LAHERA V, SALAZAR J, SALOM M G , et al. J. Hypertens. Suppl., 1992, 10: S173–177. (c) BROCK G, NUNES L, PADMA-NATHAN H, et al. Urology, 1993, 42: 412–417. (d) MCGUFFEY E. Am. Pharm., 1993, NS33: 20. (e) KOGLIN J, GLYSING-JENSEN T, MUDGETT J S, et al. Circulation, 1998, 97: 2059–2065. (f) WEIS M, KLEDAL T N, LIN K Y, et al. Circulation, 2004, 109: 500–505. (g) FANG L, NOWICKI B J, DONG Y L, et al. Localized increase in nitric oxide production and the expression of nitric oxide synthase isoforms in rat uterus with experimental intrauterine infection [J]. Am. J. Obstet. Gynecol., 1999, 181: 601–609. (h) HOPKINS N, GUNNING Y, O’CROININ D F, et al. Anti-inflammatory effect of augmented nitric oxide production in chronic lung infection [J]. J. Pathol., 2006, 209: 198–205.
    [25] (a) AKAIKE T, MAEDA H. Methods Enzymol. 1996, 268: 211-221. (b) YOSHIMURA T, YOKOYAMA H, FUJII S, et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice [J]. Nat. Biotcchnol., 1996, 14: 992-994. (c) BARKER S L R, ZHAO Y, MARLETTA M A, et al. Cellular applications of a sensitive and selective fiber optic nitric oxide biosensor based on a dye-labeled heme domain of soluble guanylate cyclase [J]. Anal. Chem., 1999, 71: 2071-2075.(d) MEINEKE P, RAUEN U, DE GROOT H, et al. Cheletropic traps for the fluorescence spectroscopic detection of nitric oxide (nitrogen monoxide) in biological systems [J]. Chem. Eur. J., 1999, 5: 1738-1747
    [26] KOJIMA H, NAKATSUBO N, KIKUCHI K, et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem., 1998, 70: 2446-2453.
    [27] KOJIMA H, NAKATSUBO N, KIKUCHI K, et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins [J]. Anal. Chem., 1998, 70: 2446–2453.
    [28] NAKATSUBO N, KOJIMA H, SAKURAI K, et al. Improved nitric oxide detection using 2,3-diaminonaphthalene and its application to the evaluation of novel nitric oxide synthase inhibitors [J]. Biol. Pharm. Bull., 1998, 21: 1247–1250.
    [29] MISKO T P, SCHILLING R J, SALVEMINI D, et al. Improved nitric oxide detection using 2,3-diaminonaphthalene and its application to the evaluation of novel nitric oxide synthase inhibitors [J]. Anal. Biochem. 1993, 214: 11–16.
    [30] KOJIMA H, NAKATSUBO N, KIKUCHI K, et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins [J]. Anal. Chem., 1998, 70: 2446–2453.
    [31] KOJIMA H, SAKURAI K, KIKUCHI K, Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore [J]. et al. Chem. Pharm. Bull., 1998, 46: 373–375.
    [32] MI HEE LIM, BRIAN A WONG, WILLIAM H, et al. Direct Nitric Oxide Detection in Aqueous Solution by Copper(II) Fluorescein Complexes [J]. J. Am. Chem. Soc., 2006, 128: 14364-14373.
    [33] MI HEE LIM, DONG XU, STEPHEN J LIPPARD. Visualization of nitric oxide in living cells by a copper-based fluorescent probe [J]. Nature. Che. Bio., 2006, 2: 375-380.
    [34] SMITH R C, TENNYSON A G, LIM M H, et al. Conjugated polymer-based fluorescence turn-on sensor for nitric oxide [J]. Org. Lett., 2005, 7: 3573–3575.
    [35] RALT D, WISHNOK J S, FITTS R, et al. Bacterial catalysis of nitrosation: involvement of the nar Operon of Escherichia coli [J]. J. Bacteriol., 1988,170: 359–364.
    [36] JI X B, HOLLOCHER T C. Mechanism for nitrosation of 2,3-diaminonaphthalene by Escherichia coli: Enzymatic production of NO followed by O2-dependent chemical nitrosation [J]. Appl. Environ. Microbiol., 1988, 54: 1791–1794.
    [37] NAKATSUBO N, et al. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins [J]. FEBS Lett., 1998, 427: 263–266.
    [38] GABE Y, URANO Y, KIKUCHI K, et al. Highly sensitive fluorescence probes for nitric oxide bas ed on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe [J]. J. Am. Chem. Soc., 2004, 126: 3357–3367.
    [39] SMITH R C, TENNYSON A G, LIM M H, et al. Conjugated polymerbased fluorescence turn-on sensor for nitric oxide [J]. Org. Lett., 2005; 7: 3573–3575.
    [40] QIN Y, PEPER S, RADU A, et al. Plasticizer-free polymer containing a covalently immobilized Ca2+-selective lonophore for potentiometric and optical sensors [J] Anal. Chem. 2003, 75: 3038-3045.
    [41] KUSWANDI B. Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions [J] Anal. Bioanal. Chem. 2003, 376 (7): 1104-1110.
    [42] SALINS L L E, GOLDSMITH E S, ENSOR C M, et al. A fluorescence-based sensing system for the environmental monitoring of nickel using the nickel binding protein from Escherichia coli [J]. Anal. Bioanal. Chem. 2002, 372 (1): 174-180.
    [43] MI HEE LIM, BRIAN A WONG, WILLIAM H, et al. Direct Nitric Oxide Detection in Aqueous Solution by Copper(II) Fluorescein Complexes[J]. J. Am. Chem. Soc., 2006, 128: 14364-14373.
    [44] MI HEE LIM, DONG XU, STEPHEN J LIPPARD. Visualization of nitric oxide in living cells by a copper-based fluorescent probe [J]. Nature Chemical Biology., 2006, 2: 7.
    [45] KARAGHIOSOFF K, et al. N-Nitroso- and N-nitraminotetrazoles[J]. J. Org. Chem., 2006, 71: 1295–1305.
    [46] MIWA M, STUEHR D J, MARLETTA M A, et al. Nitrosation of amines by stimulated macrophages [J]. Carcinogenesis, 1987, 8: 955–958.
    [47] (a)麦松威,周公度,李伟基.高等无几结构化学[M].北京:北京大学出版社;香港中文大学出版社,2001. (b)徐光宪,王祥云.物质结构(第二版)[M].北京:高等教育出版社, 1987. (c)江元生.结构化学[M].北京:高等教育出版社, 1997. (d)赖文(Levine I N)著;褚徳萤,李芝芬,张玉芬译.物理化学(第二版)[M]北京:北京大学出版社,1987.
    [48] SCHRODINGER, E. Ann, Physic. 1926, 79: 361, 489, 734; 81: 109.
    [49] SCHRODINGER E, An undulatory theory of the mechanics of atoms and Molecules [J]. Phys. Rev. 1926, 28: 1049.
    [50] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln Ann. Phsik [J]. Quantum Theory of the Molecules Ann. Phys. 1927, 84: 457.
    [51] (a) HEHRE W J, RADOM L, SCHLEYE P V R, et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986; (b) MCQUARRIE D A. Quantum Chemistry University Science Books: Mill Vally. CA.1983.
    [52] (a)唐敖庆,杨忠志,李前树,量子化学[M],北京,科学出版社, 1982. (b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M].北京:科学出版社, 1985. (c) P. W.阿特金斯著;王作新,潘强余,王作庆译.量子物质结构概念手册[M].科学出版社,1986.
    [53] LOWDIN P O. Correlation Problem in Many-Electron Quantum Mechanics[J]. Adv. Chem. Phys. 1959, 2: 207.
    [54] ROOTHAAN C C J. Rev. Mod. Phys. 1951, 23: 69.
    [55] (a) FOCK V, PHYSIK Z. 1930, 126: 61 (b) SLATER J C. Phys. Rev., 1930, 210: 35.
    [56] KOHN W and SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev. A, 1965, 140: 1133
    [57] Slater J C. The Self-Consistent Field for Molecular and Solids McGraw-Hill [J] Quantum Theory of Molecular and Solids New York, 1974, 4.
    [58] SALAHUB D R and ZERNER M C, eds., The Challenge of d and f Eledtrons ACS: [M]. Washington, D. C., 1989.
    [59] PARR R G and YANG W. Density-functional theory of atoms and molecules [M]. Oxford Univ. Press: Oxford, 1989.
    [60] POPLE J A, GILL P M W and JOHNSON B G. Kohn-Sham density-funtional theory within a finite basis set [J]. Chem. Phys. Lett, 1992, 199: 557.
    [61] B. G. JOHNSON and M. J. FRISCH, An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys. 1994, 100: 7429.
    [62] LABANOWSKI J K and ANDZELM J W, eds. Density Functional Methods in Chemistry [M]. Springer-Verlag: New York, 1991.
    [63] FUKUI K. Variational Principles in a Chemical Reaction [J]. Int. J. Quantum. Chem. 1981, 15: 633.
    [64] HOGENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Phys Rev, 1964, 136: B864.
    [65] MEL LEVY. Electron densities in search of Hamiltonians [J]. Proc Natl Acal Sci, 1979,76: 6062; Phys Rev A, 1982, 26: 1200
    [66] PARR R G,YANG W. Density Function Theory [M]. Oxford University Press, 1898.
    [67] GROSS E K U, KOHN W. Adv Quantum Chem, 1990, 21: 255.
    [68] RUNGE E, GROSS E K U. Density-Functional Theory for Time-Dependent Systems Phys Rev Lett, 1984, 52: 997.
    [69] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev, 1965, 140: A1133
    [70] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a Systematic Molecular Orbital Theory for Excited States [J]. J. Phys. Chem. 1992, 96: 135.
    [71] KRISHNAN R, SCHLEGEL H B AND POPLE J A. Derivate Studies in Configuration Inetraction Theory [J]. J. Chem. Phys. 1980, 72: 4654.
    [72] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J. Chem. Phys., 1980, 72: 4652.
    [73] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic Energy Derivatives in Many-Body Methods I. First Derivatives [J]. J. Chem. Phys., 1989, 90: 1752.
    [74] RAGHAVACHARI K AND POPLE J A. Int. J. Quant. Chem. 1981, 20: 167.
    [75] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies [J]. J. Chem. Phys., 1987, 87: 5968.
    [76] CIOSLOWSKI J. A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues [J]. Chem. Phys. Lett., 1994, 219: 151.
    [77] MIERTUS S, SCROCCO E, TOMASI J. Chem Phys, 1981,55:117.
    [78] FORESMAN J B, et al. Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations [J]. J Phys Chem, 196, 100: 16098.
    [79] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J Chem Phys, 1997, 107: 3210.
    [80] COSSI M ET AL. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J]. Chem. Phys. Lett, 1996, 255: 327.
    [81] CANCES E, MENNUCCI B, TOMASI J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J]. J Chem Phys, 1997,107: 3032.
    [82] COSSI M, et al. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. Chem Phys Lett, 1998, 286: 253.
    [83] BARONE V, COSSI M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model [J]. J Phys Chem: A, 1998, 102: 1995.
    [84] KLAMT A, et al. Refinement and Parametrization of COSMO-RS [J] J Phys Chem: A, 1998, 102: 5074.
    [85] MI HEE LIM, BRIAN A WONG, WILLIAM H, et al. Direct Nitric Oxide Detection in Aqueous Solution by Copper (II) Fluorescein Complexes[J]. J. Am. Chem. Soc., 2006, 128: 14364-14373.
    [86] MI HEE LIM, DONG XU, STEPHEN J LIPPARD. Visualization of nitric oxide in living cells by a copper-based fluorescent probe [J]. Nature Chemical Biology. 2006, 2: 7.
    [87] LEE J, CHEN L, WEST A H, et al. Interactions of organic nitroso compunds with metals [J]. Chem. Rev., 2002, 102: 1019–1066.
    [88] KARAGHIOSOFF K, et al. N-Nitroso- and N-nitraminotetrazoles [J]. J. Org. Chem., 2006, 71: 1295–1305.
    [89] a) WEHRY E L ED. Modern Fluorescence Spectroscopy [M]. New York: Plenum Press, 1976, Vol. 1. b) WEHRY E L ED. Modern Fluorescence Spectroscopy [M]. New York: Plenum Press, 1976, Vol. 2. c) WEHRY E L ED. Modern Fluorescence Spectroscopy [M]. New York: Plenum Press, 1981, Vol. 3. d) WEHRY E L ED. Modern Fluorescence Spectroscopy [M]. New York: Plenum Press, 1981, Vol. 4.
    [90] a) LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. New York: Plenum Press, 1983. b) LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. New York: Plenum Press, 1999.
    [91] a) LAKOWICZ J R ED. Topics in Fluorescence Spectroscopy: Techniques [M]. New York: Plenum Press, 1991, Vol. 1. b) LAKOWICZ J R ED. Topics in Fluorescence Spectroscopy: Principles [M]. New York: Plenum Press, 1991, Vol. 2. c) LAKOWICZ J R ED. Topics in Fluorescence Spectroscopy: Biochemical Applications [M]. New York: Plenum Press, 1991, Vol. 3. d) LAKOWICZ J R ED. Topics in Fluorescence Spectroscopy: Probe Design and Chemical Sensing [M]. New York: Plenum Press, 1994, Vol. 4. e) LAKOWICZ J R ED. Topics in Fluorescence Spectroscopy: Nonlinear and Two-Photon-Induced Fluorescence [M]. New York: Plenum Press, 1997, Vol. 5.
    [92] a) SCHULMAN S G ED. Molecular Luminescence Spectroscopy: Methods and Applications. Part 3 [M]. New York: John Wiley & Sons, 1985.b) SCHULMAN S G ED. Molecular Luminescence Spectroscopy: Methods and Applications. Part 3 [M]. New York: John Wiley & Sons, 1988. c) SCHULMAN S. G. ED. Molecular Luminescence Spectroscopy: Methods and Applications. Part 3 [M]. New York: John Wiley & Sons, 1993.
    [93] GUIBAULT G. G. ED. Practical Fluorescence 2nd[M]. New York: Marcel Dekker, 1990.
    [94] BAEYENS W R G, DE KEUKELEIRE D, KORKIDIS K EDS.Luminescence Techniques in Chemical and Biochemical Analysis [M]. New York: Marcel Dekker, 1991.
    [95] Wolfbeis O S Ed. Fluorescence Spectroscopy: New Methods and Applications [M]. Berlin Heidelberg: Springer-Verlag, 1993.
    [96] TAO LIU, HONG-XING ZHANG, BAO-HUI XIA. Theoretical Studies on Structures and Spectroscopic Properties of a Series of Novel Cationic [trans-(C^N)2Ir(PH3)2]+ (C^N ) ppy, bzq, ppz, dfppy) [J]. J. Phys. Chem. A., 2007, 111: 8724-8730.
    [97] ZHAO-DI YANG, JI-KANG FENG, AI-MIN REN, ET AL. Theoretical Investigation of One-Photon and Two-Photon Absorption Properties for Multiply N-Confused Porphyrins [J]. J. Phys. Chem. A., 2006, 110: 13956-13965.
    [98] OTTO S. Wolfbeis Fiber-Optic Chemical Sensors and Biosensors Analytical Chemistry [J]. 2004, 76: 12.
    [99] YSER E G, TKA N HALL.“A Survey of Recent Literature on Chemiluminescence and Fluorescence in Solution”[D], AD 683673, Naval Ordnance Lab., Maryland, U.S.A., 1968.
    [100] BERLMAN I B.“Handbook of Fluorescence Spectra of Aromatic Molecules”[M]. Academic Press, 1965.
    [101] NIKITINA A N. et al., Opt. and Spectry., 1962: 348.
    [102] NIKITINA A N, GALANIN M D, TER-SARKISIAN G S, et al. Opt. and Spectrosc., 1959, 6: 226
    [103] DUGGAN D W, BOWMAN R L, BRODIE E B, Cheletropic traps for the fluorescence spectroscopic detection of nitric oxide (nitrogen monoxide) in biological systems [J]. et al. Arch. Biochem. Biophys., 1957, 68: 1.
    [104] UDENFRIEND S, DUGGAN D E, VASTA E B, A spectrophotofluorometric study of organic compounds of pharmacological interest [J]. et al. Pharmacol. Exptl. Therap., 1957, 120: 26.
    [105] (a) Williams R T, Roy J. Fluorescence of some aromatic compounds in aqueous solution [J] Inst. Chem., 1959, 83: 611. (b) Photoeletric Spectrometry Group Bulletin, No. 1961, 13, 339
    [106] UDENFRIEND S.“Fluorescence Assay in Biology and Medicine”[D]. Academic Press: New York, 1962, pp: 23, 28.
    [107] OLSON A R, HUDSON F L. The dielectric constant of H2H2O [J]. J. Am. Chem. Soc., 1933, 55:1410. [109] XIAO QING YANA, ZHUO BIN SHANGA, ZHAO ZHANGA, et al. Fluorescence sensing of nitric oxide in aqueous solution by triethanolaminemodified CdSe quantum dots [J]. Luminescence., 2009, 24: 255–259.
    [108] RODOLPHE POLLET, et al. Assessment of time-dependent density functional theory for predicting excitation energies of bichromophoric peptides: case of tryptophan-phenylalanine [J]. Theor Chem Account., 2008, 121: 307–312.
    [110] JIA-ZHENG LU, JIN-WANG HUANG, LI-FEN FAN, et al. Supramolecular self-assembly of porphyrin–fluorescein hybrid with amino-porphyrinatocopper(II) and its fluorescence strengthening character. Inorganic Chemistry Communications., 2004, 7: 1030–1033.
    [111] MI HEE LIM. Preparation of a copper-based fluorescent probe for nitric oxide and its use in mammalian cultured cells [J]. NATURE PROTOCOLS., 2007, VOL. 2 NO. 2: 408-415.
    [112] MI HEE LIM AND STEPHEN J. LIPPARD*. Metal-based turn-on fluorescent probes for sensing nitric oxide [J]. Acc. Chem. Res. 2007, 40, 41-51
    [113] FRANCISCO GALINDO, a Nurul Kabir, b, c Jelena Gavrilovicb and David A. Russellc [J]. Photochem. Photobiol. Sci., 2008, 7: 126–130.
    [114] LI YANG, JI-KANG FENG, AI-MIN REN. Theoretical Study on Electronic Structure and Optical Properties of Phenothiazine-Containing Conjugated Oligomers and Polymers [J]. J. Org. Chem. 2005, 70: 5987-5996.
    [115] (a) D’ANDRADE B W, FORREST S R. White Organic Light-Emitting Devices for Solid-State Lighting [J]. Adv Mater., 2004, 16: 1585-1595. (b) HO C L, WANG Q, LAM C S, et al. Phosphorescence Color Tuning by Ligand, and Substituent Effects of Multifunctional Iridium(III) Cyclometalates with 9-Arylcarbazole Moieties [J]. Chem Asian J., 2009, 4: 89-103.
    [116] (a) TSUBOYAMA A, IWAWAKI H, FURUGORI M, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to OrganicLight-Emitting Diode [J]. J. Am. Chem. Soc., 2003, 125: 12971-12979. (b) HOLMES R J, FORREST S R, TUNG Y J; et al. Thompson, Blue organic electrophosphorescence using exothermic host–guest energy transfer [J]. Appl. Phys. Lett., 2003, 8: 2422-2424.
    [117] (a) CHOU P T, CHI Y. Osmium- and Ruthenium-Based Phosphorescent Materials: Design, Photophysics, and Utilization in OLED Fabrication [J] Eur. J. Inorg. Chem., 2006 : 3319-3332. (b) CHOU P T, CHI Y. Phosphorescent Dyes for Organic Light-Emitting Diodes [J]. Chem. Eur. J., 2007, 13: 380-395. (c) BURN P L, LO S C, SAMUEL I D W. Phosphorescent Dyes for Organic Light-Emitting Diodes [J]. Adv. Mater., 2007, 19: 1675-1688.
    [118] (a) HO C L, WONG W Y, GAO Z Q, CHEN C H, et al. Red-Light-Emitting Iridium Complexes with Hole-Transporting 9-Arylcarbazole Moieties for Electrophosphorescence Efficiency/Color Purity Trade-off Optimization [J]. Adv. Funct. Mater., 2008, 18: 319-331. (b) LIU Z, GUAN M, BIAN Z, et al. Red Phosphorescent Iridium Complex Containing Carbazole-Functionalized b-Diketonate for Highly Efficient Nondoped Organic Light-Emitting Diodes [J]. Adv. Funct. Mater., 2006, 16: 1441-1448. (c) CHEN X, LIAO J L, LIANG Y, et al. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety [J]. J. Am. Chem. Soc., 2003, 125: 636-637.
    [119] (a) CUMMINGS S D, EISENBERG R. Tuning the Excited-State Properties of Platinum(II) Diimine Dithiolate Complexes [J]. J. Am. Chem. Soc., 1996, 118: 1949-1960. (b) WILSON J S, CHAWDHURYN, AL-MANDHARY M R A, et al. The Energy Gap Law for Triplet States in Pt-Containing Conjugated Polymers and Monomers [J]. J. Am. Chem. Soc., 2001, 123: 9412-9417.
    [120] HAY P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory [J]. J. Phys. Chem. A., 2002, 106: 1634-1641.
    [121] SCHNEIDENBACH D, AMMERMANN S, DEBEAUX M, et al. Efficient and Long-Time Stable Red Iridium(III) Complexes for Organic Light-Emitting Diodes Based on Quinoxaline Ligands [J]. Inorg. Chem., 2010, 49: 397–406.
    [122] YOU Y, HUH H S, KIM K S, et al. Comment on‘aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes’: origin of the enhanced phosphorescence [J]. Chem. Commun., 2008: 3998–4000.
    [123] RUNGE E, GROSS E K U. Density-Functional Theory for Time-Dependent Systems [J]. Phys. Rew. Lett., 1984, 52: 997-1000.
    [124] MAYO S L, OLAFSON B D, GODDARD W A. Dreiding: A generic Force Field for Molecular Simulations [J]. J. Phys. Chem., 1990, 94: 8897-8909.
    [125] FOREMAN J B, GORDON M H, POPLE J A. Toward, a Systematic Molecular Orbital Theory for Excited States [J]. J. Phys. Chem., 1992, 96: 135-149.
    [126] (a) HELGAKER T, JRGENSEN P. An electronic Hamiltonian for origin independent calculations of magnetic properties J. Chem. Phys. 1991, 95: 2595-2601. (b) BAK K L, JDRGENSEN P, HELGAKER T, et al. Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism [J]. J. Chem. Phys., 1993, 98: 8873-8887. (c) AUTSCHBACH J, ZIEGLER T, GISBERGEN S J A, et al. Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules [J]. J. Chem. Phys., 2002, 116: 6930-6940.
    [127] MENNUCCI B, TOMASI J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries [J]. J. Chem. Phys., 1997, 106 : 5151-5158.
    [128] (a) HAY P J, WADT W R. Ab initio effitive core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys. 1985, 82; 270-283. (b) HAY P J, WADT W R. Ab initio effitive core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys. 1985, 82; 299-310.
    [129] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, revision C.02; Gaussion. Inc.: Wallingford CT, 2004.
    [130] LI X N, WU Z J, SI Z J, et al. Injection, Transport, Absorption and Phosphorescence Properties of a Series of Blue-Emitting Ir(III) Emitters in OLEDs: a DFT and Time-Dependent DFT Study [J]. Inorg. Chem., 2009, 48: 7740–7749.
    [131] LI X N, WU Z J, ZHANG H J, et al. Si, Different electronic structures and spectroscopic properties of cationic[M(ppy)2(N^N)]+ (M = Rh, Ir; N^N = Hcmbpy, H2dcbpy), a DFT study [J]. Phys. Chem. Chem. Phys., 2009, 11: 6051–6059.
    [132] LI X N, WU Z J, ZHANG H J, et al. The Reasons for Ligand-Dependent Quantum Yields and Absorption Spectrum of Four Polypyridylruthenium(II) Complexes with a Tetrazolate-Based Ligand:TDDFT Study [J]. Eur. J. Inorg. Chem., 2009: 4052–4061.
    [133] AVILOV I, MINOOFAR P, CORNIL J, et al. Influence of Substituents on the Energy and Nature of the Lowest Excited States of Heteroleptic Phosphorescent Ir(III) Complexes: A Joint Theoretical and Experimental Study [J]. J. Am. Chem. Soc., 2007, 129: 8247-8258.
    [134] LI X N, WU Z J, SI Z J, et al. Effect of secondary ligands’size on energy transfer and electroluminescent efficiencies for a series of europium(III) complexes, a density functional theory study [J]. Phys. Chem. Chem. Phys., 2009, 11: 9687–9695.
    [135] SHI L L, LIAO Y, ZHAO L, et al. Theoretical studies on the electronic structure and spectral properties of versatile diarylethene-containing 1,10-phenanthroline ligands and their rhenium(I) complexes [J]. J. Organomet. Chem., 2007, 692: 5368-5374.
    [136] (a) CHU T Y, HO M H, CHEN J F, et al. Ab initio molecular orbital study of 1,3,5-triazine derivatives for phosphorescent organic light emittingdevice [J] Chem. Chem. Phys. Lett., 2005, 415: 137-140. (b) TONG K L, SO S K, NG H F, et al. Transport and luminescence in naphthyl phenylamine model compounds[J]. Synthe. Met., 2004, 147: 199–203. (c) YOUNG R H, FITZGERALD J J. Effect, of polar additives on charge transport in a molecularly doped polymer: Survey of various additives [J]. J. Chem. Phys., 1995, 102: 2209-2221.
    [137] ZHOU L, ZHANG H J, DENG R P, et al. Electroluminescence of Hole Block Material Caused by Electron Accumulation and Hole Penetration [J]. J. Phys. Chem. C., 2008, 112: 15065-15070.
    [138] MEYER J, HAMWI S, BüLOW, et al. Highly efficient simplified organic light emitting diodes [J]. Appl. Phys. Lett., 2007, 91: 113506-113508.
    [139] YING L, ZOU J H, YANG W, et al. Novel, blue light-emitting polyfluorenes containing a fluorinated quinoxaline unit [J]. Dyes and Pigments., 2009, 82: 251-257.
    [140] LAMANSKY S, DJUROVICH P, MURPHY D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Charaterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc., 2001, 123: 4304-4312.
    [141] HANEDER S, DA COMO E, FELDMANN J, et al. Controlling the Radiative Rate of Deep-Blue Electrophosphorescent Organometallic Complexes by Singlet-Triplet Gap Engineering [J] Adv. Mater., 2008, 20: 3325-3330.
    [142] (a) FANTACCI S, DE ANGELIS F, SGAMELLOTTI A, et al. Photophysical Car-Parrinello and TDDFT Study [J]. J. Am. Chem. Soc., 2005, 127: 14144-14145. (b) TAMAYO A B, GARON S, SAJOTO T, Thompson, Cationic Bis-cyclometalated Iridium(III) Diimine Complexes and Their Use in Efficient Blue, Green, and Red Electroluminescent Devices [J]. Inorg. Chem., 2005, 44: 8723-8732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700