粒子加速器中复杂静力水准系统的精度理论与验证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静力水准系统(Hydrostatic leveling system,下面简称HLS)根据相连的钵体中液体总是相同势能的水平原理,测量和监测观测点之间的相对高程变化量。HLS系统以很高的测量精度在精密工程测量领域得到广泛应用,尤其在精密工程测量如粒子加速器准直测量中应用最为普遍,国际上大部分粒子加速器实验室的准直测量工作中均用到了静力水准系统。粒子加速器在铅垂方向的位移变化是影响加速器正常运行的主要形变,因此利用HLS对粒子加速器中各重要元部件的沉降变化进行监测是必要的。
     论文首先结合目前粒子加速器准直的研究发展趋势,对HLS系统在国内外粒子加速器准直工作中的应用进行了系统介绍,阐述了各大加速器实验室在利用HLS进行准直测量时面临的相关问题及挑战。随着加速器新理论和技术的发展,新一代光源加速器不断出现,工程对准直精度的要求越来越高,因此仅仅单方面靠提高HLS传感器本身精度是不足够的。
     论文一方面着重探讨了影响HLS测量精度的因素,并对这些影响因素进行了深入的理论分析;另一方面通过合理设计,建立多套实验验证系统,对理论研究进行验证,进而提出了剔除这一系列影响因素的方法。具体研究内容和成果主要如下:
     1.温度不均匀对HLS系统测量读数的影响研究。静力水准系统的工作媒介是液体,温度不均匀变化必然引起液体密度的变化,也就使液体体积发生变化,必然影响系统的测量精度。通过理论研究和实验验证,得出了一套可靠的温度修正方法。
     2.阐述了钵体液面所受压力不同对HLS系统读数的影响,并提出了消除该影响的措施。采用了密封传感器钵体,将传感器钵体之间用等压气管连接的方法来保证钵体内液面所受压强大小相等,减小HLS系统误差来源。同时还简要阐述了地面振动、重力异常对HLS读数的影响。
     3.深入研究了倾斜固体潮、海洋负荷潮对HLS读数的影响。地球在引潮力作用下,固体地球会发生周期性的形变,倾斜固体潮周期性地在HLS读数中呈现。在高精度大地测量尤其是高精度粒子加速器准直测量中,固体潮的影响不可忽视。因此,首先需要对HLS数据进行预处理,对HLS数据进行温度补偿,再对数据进行调和分析,得到当地的潮波模型以及倾斜潮的准确影响,进而可以对HLS读数中包含的倾斜固体潮部分进行潮汐改正以得到更高的监测精度。
     4.在合肥光源实验室搭建一套长约20米的HLS实验平台。该平台主要验证了采用的HLS系统精度足够分辨固体潮,并且该系统的读数变化主要源于固体潮的影响。
     5.在噪声干扰很小的泾县地震台监测洞体内搭建了一套HLS监测系统,更进一步验证利用该套HLS系统进行固体潮修正的可靠性。
     6.为了更广泛地研究固体潮修正模型,完成了基于瑞士CERN和日本Spring-8加速器实验室的HLS数据的固体潮改正研究。
     本论文首先提出了粒子加速器中复杂静力水准系统的精度理论与验证研究,属于首创。通过运用多学科的知识,综合研究HLS系统的各个影响因素,可以更严格、更科学地反映HLS的真实测量精度。采用理论和实验相结合的方法是本项目的特色,对静力水准系统进行全面的理论研究和实验验证,为正在使用的和将要使用的静力水准系统提供科学的评价标准。
     本论文研究工作的完成,为已经建成以及即将开始建设的新一代粒子加速器中使用静力水准系统获得更高精度的测量数据奠定了基础,具有重要意义。
Hydrostatic leveling system (HLS) follows the principle that the liquid (deionized water or purified water) in it is always looking for equipotential surface, which uses connected reservoirs of water to determine the relative elevation difference of the monitoring points. It's widely used in engineering survey because of its high accuracy, especially in precision engineering survey such as particle accelerators alignment. Deformation in the vertical direction of the particle accelerator is the main affecting factor in the operation of an accelerator, so it is always necessary to use HLS to monitor the deformation of key component parts in a particle accelerator.
     Firstly, considering the current development tendency of particle accelerator alignment, application of HLS used in particle accelerators home and abroad is introduced systematically and the relative issues and challenges are described. With the development of the new theory and technology of alignment used in large particle accelerator, an increasing number of new generation light sources were built successively, and the requirements of the alignment accuracy have become increasingly harsh, even micron-level precision is required in the large scale measurement. Therefore, increasing the HLS accuracy unilaterally cannot meet the demand in the alignment work in the future.
     This paper on the one hand mainly discusses the factors affecting the measurement accuracy of HLS through theoretical analysis and case studies. On the other hand, the theoretical study is verified by building multiple sets of HLS experimental verification system. And then the corresponding method and theory to eliminate the influencing factors are proposed. The main research contents and achievements are as follows:
     1. Studies on effects of uneven temperature change on HLS system are finished. Working medium of HLS system is liquid, so uneven temperature changes inevitably lead to changes of the density of the liquid, and then lead to the changes of the liquid volume, which will inevitably affect the measurement accuracy of HLS. Thus a set of reliable temperature compensation method is obtained through theoretical and experimental verification.
     2. Describing effect of different pressures on the surface of the fluid on the HLS readings, and the measure to eliminating the effect is proposed for reducing the source of errors. Firstly, using rubber ring to seal the sensor pot, and then, using isobaric connecting air pipe to connect sensors together to ensure the pressures on the surface of the fluid in different sensors pot are equivalent. Meanwhile, the effects of ground vibration and gravity anomaly on HLS readings are introduced briefly in this paper.
     3. In-depth studies on tidal effects (earth tide and oceanic load tide) on HLS readings are expounded in this paper. The earth is a complicated exercise body deformed under the action of various forces; any point on earth is affected by the gravitation of the sun and the moon besides the gravity and the rotational centrifugal force of the earth. Solid earth deforms periodically under the action of tidal force, and the tidal effects on the readings of HLS are non-ignorable, especially in the alignment of particle accelerator. Therefore, temperature compensation and pre-processing to the raw data is fatal with using software Tsoft. After finishing the harmonic analysis to the data with using Eterna, local tide model is calculated. In other words, the tidal effects on HLS readings are obtained. Finally, the local ground deformations are got by deleting the tidal effects.4. About20meters HLS testing platform have been built in Hefei light source. This platform is mainly used for verifying the accuracy of HLS is enough to distinguish the earth tide signal and the HLS reading changes was mainly due to the earth tide.5. A set of HLS was installed in Jingxian seismicstation for studies on tidal correction of observations from HLS, and further validating its reliability.6. Studies on tidal correction of the data based on HLS used at CERN and Spring-8is completed for studying the tidal correction model more widely. Studies on accuracy theory and validation of HLS system used in particle accelerators were first introduced in this paper. Studying relative affecting factors mentioned above by using multidisciplinary knowledge and experimental verification, more reliable and scientific evaluation criterion of HLS measuring accuracy can be provided for relative alignment work. The current research establishes a foundation for getting higher precision of measurement data for HLS used in new generation particle accelerator have been built and will be built in the future.
引文
[1]何晓业.静力水准系统在大科学工程中的应用及发展趋势[J].核科学与工程,2006,26(4):84-85.
    [2]刘经南,叶晓明,杨蜀江.数字电子水准仪原理综述[J].电子测量与仪器学报,2009,23(7):89-94.
    [3]何晓业,黄开席,陈森玉,等.CCD静力水准系统的标定方法和拟合[J].大地测量与地球动力学,2007,27(3):113-117.
    [4]何晓业,汪鹏,许少峰.合肥光源电容式静力水准传感器的标定[J].原子能科学技术,2013,47(9):1648-1651.
    [5]Herty A, Mainaud-Durand H, Marin A. Test and calibration facility for HLS and WPS sensors[C]. Proceedings of the 8th International Workshop on Accelerator Alignment.2004.
    [6]李农发,赵义飞.静力水准测量系统在向家坝水电站的应用[J].大地测量与地球动力学,2013,33(Supp.1):181-182.
    [7]Schlosser M, Herty A. High precision survey and alignment of large linear colliders-vertical alignment[C].Proceedings of the Seventh International Workshop on Accelerator Alignment, Spring8, Japan.2002.
    [8]梁振英,李明.流体静力水准测量的精度[J].测绘科学,1992,1.
    [9]何晓业,黄开席,陈森玉,等.压力和温度对静力水准系统精度影响分析[J].核技术,2006,29(5):321-325.
    [10]梁振英,董鸿闻,姬恒炼.精密水准测量的理论和实践[M].测绘出版社,2004.
    [11]何晓业,许少峰,汪鹏.初探地球潮汐对静力水准系统的影响[J].核技术,2012,35(006):405-408.
    [12]于成浩,柯明,杜涵文,等.上海光源的一级平面控制网[J].原子能科学技术,2009,43(10):931-934
    [13]于成浩.几种水准测量方法在电子直线加速器测量中的应用[J].北京测绘,2005,2:007.
    [14]何晓业,黄开席,陈森玉,等.一种用于高能加速器高程监测的静力水准系统[J].核技术,2007,30(6):486-487.
    [15]何晓业,黄开席,陈森玉,等.CCD静力水准系统的数据采集[J].数据采集与处理,2006,21(B12):213-217.
    [16]何晓业,吴军.上海光源静力水准系统的安装与调试[J].核技术,2010,5.
    [17]Martin D. The European Synchrotron Radiation Facility Hydrostatic Levelling System-Twelve Years Experience with a Large Scale Hydrostatic Levelling System[C]. Proceedings of the 7th International Workshop on Accelerator Alignment, Spring-8.2002.
    [18]Roux D. The hydrostatic levelling system (HLS)/servo-controlled precision jacks:a new generation altimetric alignment and control system[C].Particle Accelerator Conference,1993., Proceedings of the 1993. IEEE,1993:2932-2934.
    [19]Roux D., Hydrostatic Levelling System (HLS) And Servo-Controlled Jack Prototypes, ESRF, ALGE 88.06, Nov 1988.
    [20]Martin D. Alignment at the ESRF[J]. EPAC, Berlin, Germany,1992.
    [21]Martin D. Applications of Hydrostatic Leveling in Civil Engineering[C].Proceedings of the Third International Workshop on Accelerator Alignment, CERN, Annecy, France.1993.
    [22]Herty A, Durand H M, Marin A. Test and calibration facility for HLS and WPS sensors[C].Proceedings of the 8th International Workshop on Accelerator Alignment.2004.
    [23]Durand H M, Touze T. The Active Prealignment of the CLIC Components[J]. Proceedings of the 9th International Workshop on Accelerator Alignment,2006.
    [24]C. Zhang, K. Fukami, S. Matsui. Primary hydrokinetics study and experiment on the Hydrostatic Leveling System[C].Proceedings of the 7th International Workshop on Accelerator Alignment, SPring-8,2002.
    [25]Shigeru Takeda, Hiroshi Matsumoto, Sakuo Matsui. Basic Alignment System for SCSS[C].Proceedings of the 7th International Workshop on Accelerator Alignment, SPring-8, 2002.
    [26]Shiltsev V, Volk J, Singatulin S. Recent Ground Motion studies at Fermilab[C].Proc. of IEEE Particle Accelerator Conference.2009.
    [27]Volk J T,Guerra J A,Hansen S U,et al. Hydro static water level systems at Fermilab[C].Preprint FERMILAB-CONF-06-334.2006.
    [28]Volk J, Hansen S, Johnson T, et al. Hydrostatic level sensors as high precision ground motion instrumentation for Tevatron and other energy frontier accelerators[J]. Journal of Instrumentation,2012,7:1004.
    [29]Wei F Q, Meier E, Rivkin L, et al. Data analysis of SLS hydrostatic levelling system in 2003[J]. PSI Scientific and Technical Reports,2003,6:26-27.
    [30]Wei F Q, Rivkin L, Wrulich A. Experiences with the Hydrostatic Leveling System at the SLS[C].Proceedings of EPAC.2004:1651.
    [31]HE Xiaoye, WANG Junhua, CHEN Qitie. Design and Distribution of HLS in SSRF[C]. Proceedings of The 10th International Workshop on Accelerator Alignment,KEK, Tsukuba, 11-15 February 2008.
    [32]Buras B, Tazzari S. European synchrotron radiation facility[M]. European Science Foundation,1985.
    [33]Elleaume H, Fiedler S, Esteve F, et al. First human transvenous coronary angiography at the European Synchrotron Radiation Facility[J]. Physics in medicine and biology,2000,45(9): L39.
    [34]Somogyi A, Drakopoulos M, Vincze L, et al. ID18F:a new micro-x-ray fluorescence end-station at the European Synchrotron Radiation Facility (ESRF):preliminary results[J]. X-Ray Spectrometry,2001,30(4):242-252.
    [35]Weitkamp T, Tafforeau P, Boller E, et al. Status and evolution of the ESRF beamline ID19[C].AIP Conference Proceedings.2010,1221:33.
    [36]Berkvens P, Biasci J C, Chavanne J, et al. Operation and recent developments at the ESRF[C].Proceedings of the Particle Accelerator Conference,2003. IEEE,2003,2:854-856.
    [37]Hardy L, Biasci J C, Bouteille J F, et al.Operation and recent developments at the ESRF[C].Proc. EPAC.2008.
    [38]Revol J L, Biasci J C, Bouteille J F, et al. Operation and Recent Development at the ESRF[C].EPAC.6:3290.
    [39]Roux D.Alignment & Geodesy for the ESRF Project[C].Proceedings of the First International Workshop on Accelerator Alignment, SLAC, Stanford University,California, America.1989.
    [40]Martin D. Some reflections on the validation and analysis of HLS data[C]. Proceedings of the 8th International Workshop on Accelerator Alignment.2004.
    [41]Meier E, Wei F, Rivkin L, et al. Long-Term Results of the Hydrostatic Levelling System at the Swiss Light Source(SLS)[C].Proceedings of the 8th International Workshop on Accelerator Alignment.2004.
    [42]Seryi A, Ruland R, Shiltsev V, et al. Long term stability study at FNAL and SLAC using BINP developed Hydrostatic level system[C].Proceedings of the Particle Accelerator Conference,2003. IEEE,2003,4:2769-2771.
    [43]Singatulin S, Volk J, Shiltsev V, et al. A High Precision Double Tubed Hydrostatic Leveling System for Accelerator Alignment Applications[R].Fermi National Accelerator Laboratory (FNAL), Batavia, IL,2006.
    [44]Seryi A, Ruland R, Baklakov B, et al. Hydrostatic level system for slow ground motion studies at Fermilab and SLAC [C].Particle Accelerator Conference,2001.Proceedings of the 2001. IEEE,2001,2:1479-1481.
    [45]Prenting J. TESLA-The range of survey and alignment work[C].Proceedings of the Seventh International Workshop on Accelerator Alignment, Spring-8, Japan.2002.
    [46]Hara, M. Status Report on the Spring-8[C].Proceedings of the 4th European Particle Accelerator Conference.1994.1:597-599.
    [47]C.Zhang,K.Fukami,S.Matsui.From the HLS measurement for ground movement at theSpring-8[C].Proceedings of the 8th International Workshop on Accelerator Alignment.Geneva,Switzerland.2004.
    [48]Tsumoru Shintake,XFEL/SPring-8 Joint Team.Status report on Japanese XFEL constructionproject at Spring-8[C].Proceedings of IPAC 10,Kyoto,Japan.2010.
    [49]C.Zhang,S.Matsui,H.Kimura.A four hundred meters long underground HLS atXFEL/Spring-8 site[C].Proceedings of the 10th International Workshop on AcceleratorAlignment.KEK,Tsukuba,11-15 February 2008.
    [50]Alain Lestrade.Principles & status of SOLEIL alignment system[C].Proceedings of the 8thInternational Workshop on Accelerator Alignment.CERN,Geneva,4-7 October,2004.
    [51]Lestrade A,Bourgoin C,Guign6 E,et al.THE HLS used as an Absolute Reference for theAlignment of the SOLEIL Storage Ring[C].Proceedings of the 9th International Workshop onAccelerator Alignment.SLAC,25-29 September,2006.
    [52]于成浩,殷立新,杜涵文,赵振堂.上海光源准直测量工作的组织实施[J].测绘通 报,2009(3):42-44.
    [53]何晓业,吴军.上海光源HLS系统技术方案[J].中国物理c,2008(S1).
    [54]A.Herty,E.Dimovasili,H.Mainaud Durand,A.Marin,T.Wijnands.Radiation InducedEffects on Hydrostatic Levelling Sensors[C].Proceedings of the 9th International Workshopon Accelerator Alignment.SLAC,25-29 September,2006.
    [55]Dimovasili E,Herty A,Durand H M,et al.Radiation induced effects on the sensors of theHydrostatic Leveling System for the LHC low beta quadrupoles[C].Proceedings of the 8thEuropean Conference on Radiation and Its Effects on Components and Systems.19-29 Sept.,2005.
    [56]YC.Kim,K.W.Seo,B.I.Moon,C.W.Chung,I.S.Ko.The Results of HLS Measurement andGeological Investigation at Pohang Light Source[C].Proceedings of the 9th InternationalWorkshop on Accelerator Alignment.SLAC,25-29 September,2006.
    [57]A.Seryi.SLAC Tunnel Motion and Analysis[C].Proceedings of 22nd Advanced ICFA BeamDynamics Workshop on Ground Motion in Future Accelerators,SLAC Stanford,2000,Preprint SLAC-WP-018,pp.283-302.
    [58]Jones M,Boerez J,Guillaume S, et al. Latest results from the CLIC geodeticstudies[C].Proceedings of the 11th International Workshop on Accelerator Alignment.DESY,Germany.2010.
    [59]许泽厚等.固体地球潮汐[M].湖北科学技术出版社,2010.
    [60]陈晓东.武汉九峰台超导重力仪固体潮观测资料的预处理和分析结果[D].中科院测量与地球物理研究所,2003.
    [61]方俊.固体潮[M].北京:科学出版社,1984.
    [62]Love A E H. A treatise on the mathematical theory of elasticity[M]. Cambridge University Press,2013.
    [63]徐建桥,孙和平SNREI地球对表面负荷和引潮力的形变响应[J].地球物理学报,2004,46(3):328-334.
    [64]肖峻,莫易敏,胡国庆.基于固体潮观测的高精度垂直摆倾斜仪[J].武汉大学学报:信息科学版,2005,29(11):973-976.
    [65]黄玉,武立华.高精度倾斜仪研究进展[J].传感器世界,2008,14(5):10-15.
    [66]程永进,左谨平,李铁平,张天成.新型高灵敏度二维大地倾斜仪的研制和应用[C].中国地球物理学会年刊2002——中国地球物理学会第十八届年会论文集.
    [67]Beavan J, Bilham R.Thermally induced errors in fluid tube tiltmeters[J] Journal of Geophysical Research,1977,82(36):5699-5704.
    [68]Huggett G.R.,Slater L.E.,Pavlis G.Precision leveling with a two-fluid tiltmeter[J].Geophysical Research Letters,1976,3(12):754-756.
    [69]杨军,朱虎,茆冠球,等.SQ-70B型水平摆倾斜仪在山东泰安台的固体潮观测[J].地震学报,1983,4:006.
    [70]肖峻.高精度垂直摆倾斜仪及其应用研究[D].中国科学院测量与地球物理研究所,2002.
    [71]谢川.一种基于磁强计和倾角传感器的钻井测斜仪[J].仪器仪表学报,2010,31(10):2357-2362.
    [72]李安印,汤忠国,江的丽,等.钻孔式气泡倾斜仪首批观测资料的调和分析结果[J].地球物理学报,1989,32(6):675-685.
    [73]聂磊,杜为民,易治春,等.FSQ型浮子水管倾斜仪的设计与研制[J].地壳形变与地震,1984,1:010.
    [74]聂磊,温兴卫.DSQ型短基线水管倾斜仪及标定装置的研制[J].地壳形变与地震,2001,21(3):74-81.
    [75]刘长恩,钟菊林.WSQ-1型电涡流自记水管倾斜仪的研制[J].地震学报,1984,1:011.
    [76]杨江,王平.基于CCD的高精度水管倾斜仪研制[J].西北地震学报,2012,33(4):359-362.
    [77]罗荣祥.中国倾斜台网水平摆工作位置的普查及重调[J].大地测量与地球动力学,1990,4:007.
    [78]施志龙,吴书朝.垂直摆倾斜仪灵敏度标定方法研究[J].测绘科学,2007,32(4).
    [79]Rodgers P W. The response of the horizontal pendulum seismometer to Rayleigh and Love waves, tilt, and free oscillations of the Earth[J]. Bulletin of the Seismological Society of America,1968,58(5):1385-1406.
    [80]Chistyakov V A. Investigation of the dynamic characteristics of a horizontal pendulum[J]. Seismicheskie pribory,1986,18:70-81.
    [81]Bella F, Della Monica G, Ermini A, et al. A horizontal pendulum tiltmeter with digital recording system[J]. IL Nuovo Cimento C,1989,12(6):799-809.
    [82]施志龙.地倾斜的二维垂直摆测量方法研究[D].华中科技大学,2006.
    [83]Jones R V, Richards J C S. The design and some applications of sensitive capacitance micrometers[J]. Journal of Physics E:Scientific Instruments,1973,6(7):589-600.
    [84]胡国庆,蔡亚先.一种高精度电容测微器[J].大地测量与地球动力学,1986,3:016.
    [85]Allen R V. A borehole tiltmeter for measurements at tidal sensitivity [J]. Bulletin of the Seismological Society of America,1972,62(3):815-821.
    [86]陈宗镛.海洋潮汐学[M].北京:科学出版社,1980.
    [87]何晓业.静力水准系统的最新发展及应用.合肥:中国科学技术大学出版社,2010.
    [88]王莹辉.高低潮数据的潮汐分析及预报方法研究[D].南京:河海大学,2008.
    [89]李英冰.固体地球的环境变化响应[D].武汉大学,2003.
    [90]熊先保,黄晓华,杨婕,等.海潮对厦门台地倾斜干扰的可能机制[J].大地测量与地球动力学,2007,27(6):45-50.
    [91]Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research:102(C11):25173-25194,1997.
    [92]Schwiderski E W. On charting global ocean tides[J]. Reviews of Geophysics,1980,18(1): 243-268.
    [93]Andersen O B. Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry[J]. Journal of Geophysical Research:Oceans (1978-2012),1995,100(C12):25249-25259.
    [94]Eanes R J, Bettadpur S. The CSR 3.0 global ocean tide model:diurnal and semi-diurnal ocean tides from TOPEX/POSEIDON altimetry[J]. The University of Texas Center for Space Research,1996.
    [95]Le Provost C, Lyard F, Molines J M, et al. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set[J]. Journal of Geophysical Research: Oceans (1978-2012),1998,103(C3):5513-5529.
    [96]Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides:modern insights from FES2004[J]. Ocean Dynamics,2006,56(5-6):394-415.
    [97]Farrell W E. Deformation of the Earth by surface loads[J]. Reviews of Geophysics,1972, 10(3):761-797.
    [98]Pagiatakis S D. The response of a realistic Earth to ocean tide loading[J]. Geophysical Journal International,1990,103(2):541-560.
    [99]Agnew D C. NLOADF:A program for computing ocean-tide loading[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1997,102(B3):5109-5110.
    [100]Matsumoto K. GOTIC2:a software for computation of oceanic tidal loading effect[J]. J. Geod. Soc. Japan.,2001,47:243-248.
    [101]Scherneck H G. A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements[J]. Geophysical Journal International,1991,106(3): 677-694.
    [102]Scherneck H G, Webb F H. Ocean Tide Loading and Diurnal Tidal Motion of the Solid Earth Center[J]. IERS Technical Note,1998 (25).
    [103]Khan S A, Scherneck H G The M 2 ocean tide loading wave in Alaska:vertical and horizontal displacements, modelled and observed[J]. Journal of Geodesy,2003,77(3-4): 117-127.
    [104]Wunsch C, Stammer D. Atmospheric loading and the oceanic "inverted barometer" effect[J]. Reviews of Geophysics,1997,35(1):79-107.
    [105]Ponte R M. Variability in a homogeneous global ocean forced by barometric pressure[J]. Dynamics of atmospheres and oceans,1993,18(3):209-234.
    [106]Ponte R M. Understanding the relation between wind-and pressure-driven sea level variability[J]. Journal of Geophysical Research:Oceans (1978-2012),1994,99(C4): 8033-8039.
    [107]Hoar T J, Wilson C R. Geosat observations of sea level response to barometric pressure forcing[J]. Geophysical research letters,1994,21(23):2515-2518.
    [108]Fu L L, Pihos G. Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data[J]. Journal of Geophysical Research:Oceans (1978-2012),1994, 99(C12):24633-24642.
    [109]Gaspar P, Ponte R M. Relation between sea level and barometric pressure determined from altimeter data and model simulations[J]. Journal of Geophysical Research:Oceans (1978-2012),1997,1O2(C1):961-971.
    [110]Hayes S P, Schumacher J D. Description of wind, current, and bottom pressure variations on the continental shelf in the northeast Gulf of Alaska from February to May 1975[J]. Journal of Geophysical Research,1976,81(36):6411-6419.
    [111]Chao Y, Fu L L. A comparison between the TOPEX/Poseidon data and a global ocean general circulation model during 1992-1993[J]. Journal of Geophysical Research:Oceans (1978-2012),1995,100(C12):24965-24976.
    [112]Dickman S R. Theoretical investigation of the oceanic inverted barometer response[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1988,93(B12):14941-14946.
    [113]Longman IM. A Green's function for determining the deformation of the Earth under surface mass loads:2. Computations and numerical results[J]. Journal of Geophysical Research, 1963,68(2):485-496.
    [114]Longman IM. Computation of Love numbers and load deformation coefficients for a model earth[J]. Geophysical Journal of the Royal Astronomical Society,1966,11(1):133-137.
    [115]Dziewonski A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the earth and planetary interiors,1981,25(4):297-356.
    [116]汪汉胜,许厚泽,李国营SNREI地球模型负荷勒夫数数值计算的新进展[J].地球物理学报,1996,39:182-189.
    [117]徐建桥,孙和平SNREI地球对表面负荷和引潮力的形变响应[J].地球物理学报,2004,46(3):328-334.
    [118]许厚泽,毛伟建.不同地球模型对负荷潮汐改正的影响[J].地球物理学报,1985,28(3):282-289.
    [119]吴庆鹏.球状径向不均匀弹性地球模型的负荷潮应力格林函数[J].地球物理学报,2009(z1):38-44.
    [120]汪汉胜.粘弹负荷形变理论的应用.北京:中国科学院研究生院,1999
    [121]Han D, Wahr J. The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound[J]. Geophysical Journal International,1995,120(2):287-311.
    [122]孙和平,周江存.中国地壳运动观测网络基准站倾斜固体潮观测中的海潮负荷信号改正问题[J].地球物理学进展,2001,16(3):31-39.
    [123]Melchior P. The tides of the planet Earth[M].Oxford, Pergamon Press,1978.
    [124]李瑞浩.重力学引论.北京:地震出版社,1988.
    [125]Melchior P, Francis O. Tidal loading in the Caribbean sea, as measured along the central America and south America coasts[J]. Wolfgang Torge's Festschrift, Wissenschatftliche Arbeiten der Fachrichtung Vermessungswesen der Universitat Hannover,2001,241:25-41.
    [126]Slichter L B, Caputo M. Deformation of an earth model by surface pressures[J]. Journal of Geophysical Research,1960,65(12):4151-4156.
    [127]Rabbel W, Zschau J. Static deformations and gravity changes at the Earth's surface due to atmospheric loading[J]. Journal of Geophysics Zeitschrift Geophysik,1985,56:81-89.
    [128]Van Dam T M, Wahr J M. Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1987,92(B2):1281-1286.
    [129]VanDam T M, Herring T A. Detection of atmospheric pressure loading using very long baseline interferometry measurements[J]. Journal of Geophysical Research,1994, 99(B3):4505-4517.
    [130]Vandam T M, Blewitt G, Heflin M B. Atmospheric pressure loading effects on Global Positioning System coordinate determinations[J]. Journal of Geophysical Research,1994, 99(B12):23939-23950.
    [131]Merriam J B. The response method applied to the analysis of superconducting gravimeter data[J]. Physics of the Earth and Planetary Interiors,2000,121(3):289-299.
    [132]Van Dam T M, Wahr J, Chao Y, et al. Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading[J]. Geophysical Journal International,1997,129(3):507-517.
    [133]Vandam T M, Wahr J. The atmospheric load response of the ocean determined using Geosat altimeter data[J]. Geophysical Journal International,1993,113(1):1-16.
    [134]Van Dam T M, Wahr J. Modeling environment loading effects:a review[J]. Physics and Chemistry of the Earth,1998,23(9):1077-1087.
    [135]Dam T, Larson K, Wahr J, et al. Using GPS and gravity to infer ice mass changes in Greenland[J]. Eos, Transactions American Geophysical Union,2000,81(37):421-427.
    [136]van Dam T, Wahr J, Milly P C D, et al. Crustal displacements due to continental water loading[J]. Geophysical Research Letters,2001,28(4):651-654.
    [137]Boy J P, Hinderer J, Gegout P. Global atmospheric loading and gravity[J]. Physics of the earth and planetary interiors,1998,109(3):161-177.
    [138]Boy J P, Gegout P, Hinderer J. Reduction of surface gravity data from global atmospheric pressure loading[J]. Geophysical Journal International,2002,149(2):534-545.
    [139]Wahr J M. The effects of the atmosphere and oceans on the Earth's wobble-I. Theory[J]. Geophysical Journal of the Royal Astronomical Society,1982,70(2):349-372.
    [140]Wahr J M. Deformation induced by polar motion[J]. Journal of Geophysical Research, 1985,90(B11):9363-9368.
    [141]Niebauer T M. Correcting gravity measurements for the effects of local air pressure[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1988,93(B7):7989-7991.
    [142]罗少聪.大气负荷响应计算误差估计模型[J].武汉大学学报:信息科学版,2001,26(3):217-221.
    [143]Heki K. Seasonal modulation of interseismic strain buildup in northeastern Japan driven by snow loads[J]. Science,2001,293(5527):89-92.
    [144]Heki K. Snow load and seasonal variation of earthquake occurrence in Japan[J], Earth and Planetary Science Letters,2003,207(1):159-164.
    [145]Wang H. Surface vertical displacements and level plane changes in the front reservoir area caused by filling the Three Gorges Reservoir[J]. Journal of Geophysical Research:Solid Earth (1978-2012),2000,105(B6):13211-13220.
    [146]Wang H, Hsu H T, Zhu Y Z. Prediction of surface horizontal displacements, and gravity and tilt changes caused by filling the Three Gorges Reservoir[J]. Journal of Geodesy,2002,76(2): 105-114.
    [147]Dong D, Fang P, Bock Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research,2002,107(B4):ETG 9-1-ETG 9-16.
    [148]Chao B F, O'Connor W P. Global surface-water-induced seasonal variations in the Earth's rotation and gravitational field[J]. Geophysical Journal International,1988,94(2):263-270.
    [149]Milly P C D, Shmakin A B. Global modeling of land water and energy balances. Part I:The Land Dynamics (LaD) model[J]. Journal of Hydrometeorology,2002,3(3).
    [150]MacMillan D S, Gipson J M. Atmospheric pressure loading parameters from very long baseline interferometry observations[J]. Journal of Geophysical Research,1994,99(B9): 18081-18087.
    [151]许厚泽,孙和平.我国重力固体潮实验研究进展[J].地球科学进展,1998,13(5):416-421.
    [152]雷湘鄂,许厚泽.利用超导重力观测资料检测地球自由振荡[J].科学通报,2002,47(18):1432-1436.
    [153]徐建桥,许厚泽.利用超导重力仪观测资料检测地球近周日共振[J].地球物理学报,1999,42(5):599-608.
    [154]徐建桥,孙和平.利用国际超导重力仪观测资料研究地球自由核章动[J].中国科学:D辑,2001,31(9):719-726.
    [155]许厚泽,孙和平.武汉国际重力潮汐基准研究[J].中国科学:D辑,2000,30(5):549-553.
    [156]孙和平,许厚泽,周江存,等.武汉超导重力仪观测最新结果和海潮模型研究[J].地球物理学报,2005,48(2):299-307.
    [157]孙和平,徐建桥.我国GWR超导重力仪观测资料应用研究进展[J].大地测量与地球动力学,2002,22(4):106-111.
    [158]陈晓东,孙和平.一种新的重力潮汐数据预处理和分析方法[J].大地测量与地球动力学,2002,22(3):83-87.
    [159]孙和平,许厚泽,陈武,等.香港地区重力固体潮和海潮负荷特征研究[J].地球物理学报,2006,49(3):724-734.
    [160]田桂娥,孙和平,陈晓东.武汉重力固体潮长周期潮汐参数的确定[J].大地测量与地球动力学,2006,25(4):99-104.
    [161]许厚泽,陈振邦,杨怀冰.海洋潮汐对重力潮汐观测的影响[J].地球物理学报,1982,25(2):120-129.
    [162]许厚泽,张赤军.我国大地重力学和固体潮研究进展[J].地球物理学报,1997,40(1):192-205.
    [163]徐建桥,孙和平,吕纯操,等.南极地区的重力固体潮观测与研究[J].武汉大学学报:信息科学版,2003(S1).
    [164]Van Camp M, Vauterin P. Tsoft:graphical and interactive software for the analysis of time series and Earth tides[J]. Computers & Geosciences,2005,31(5):631-640.
    [165]Vauterin P, Van Camp M.TSoft Manual,version 2.1.Royal Observatory of Belgium,2011
    [166]Tamura Y, Sato T, Ooe M, et al. A procedure for tidal analysis with a Bayesian information criterion[J]. Geophysical Journal International,1991,104(3):507-516.
    [167]Venedikov A P, Arnoso J, Vieira R. VAV:a program for tidal data processing[J]. Computers & geosciences,2003,29(4):487-502.
    [168]Ishiguro, M. and Tamura Y. BAYTAP-G in TIMSAC-84[J].Computer Science Monographs, 1985,22,56-117.
    [169]Ishiguro M. A Bayesian approach to the analysis of the data of crustal movements [J]. J. Geod. Soc. Japan,1981,27:256-262.
    [170]柳林涛,许厚泽.重力潮汐参数精密确定的小波分析方法[J].中国科学:D辑,2000,30(4):442-448.
    [171]Wenzel H G. The nanogal software:Earth tide data processing package ETERNA 3.30[J]. Bull. Inf. Marees Terrestres,1996,124:9425-9439.
    [172]Wenzel H G. Earth tide analysis package ETERNA 3.0[J]. Marees terrestres,1994,118: 8719-8721.
    [173]Wenzel H G. PRETERNA. A preprocessor for digitally recorded tidal data[J]. Marees terrestres,1994,118:8722-8734.
    [174]Doodson A T. The harmonic development of the tide-generating potential[J]. Proceedings of the Royal Society of London. Series A,1921,100(704):305-329.
    [175]Cartwright D E, Tayler R J. New computations of the tide-generating potential[J]. Geophysical Journal International,1971,23(1):45-73.
    [176]Cartwright D E, Edden A C. Corrected tables of tidal harmonics[J]. Geophysical Journal International,1973,33(3):253-264.
    [177]Buellesfeld H, Schuh H. New harmonic development of the tide-generating potential, ETMB85, with application on VLBI data analysis[C]. Proc. X Internatl. Symp. on Earth Tides, R. Vieira.1986:933-942.
    [178]Tamura Y. A harmonic development of the tide-generating potential[J]. Bull. Inf. Marees Terrestres,1987,99:6813-6855.
    [179]Qinwen X. A new complete development of the tide-generating potential for the epoch J 2000.0[J]. Marees terrestres,1987 (99):6786-6812.
    [180]Roosbeek F. RATGP95:a harmonic development of the tide-generating potential using an analytical method[J]. Geophysical Journal International,1996,126(1):197-204.
    [181]Hartmann T, Wenzel H G. The HW95 tidal potential catalogue[J]. Geophysical Research Letters,1995,22(24):3553-3556.
    [182]何晓业,许少峰,汪鹏.初探地球潮汐对静力水准系统的影响[J].核技术,2012,35(6):405-408.
    [183]XU S, HE X, WANG P, et al. Analysis of tidal effects on measurement accuracy of HLS[C]. Proceedings of IPAC2013, Shanghai, China,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700