储存环中电子自旋动力学及其在能量标定中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
束流能量是同步辐射光源电子储存环的一个重要参数,它决定了同步辐射的光子光谱分布情况。在光源的实际运行中,束流的真实能量和设计能量肯定或多或少存在差别,准确测量束流的能量是监测和了解光源运行情况必不可少的。另外,合肥光源要作为真空紫外至软X射线光谱范围内的主要辐射源标准,这要求储存电子束能量的测量精度要达到10-4以满足对光谱光子通量的精确计算。
     自旋共振退极化法标定束流能量是目前应用广泛的一种能量测量技术,它的测量精度极高,可以达到10-5~10-4量级,甚至10-6量级。这种能量测量方法已经在欧美的很多同步辐射光源储存环和对撞机储存环上取得成功应用,但是在国内还没有一个加速器实验室成功应用过该项技术。在本研究课题中,我们将应用该项技术对中国科学技术大学国家同步辐射实验室的合肥光源储存环电子束能量进行高精度标定。
     应用自旋共振退极化法标定束流能量的前提是储存环中的束流必须是极化的,由于储存环中的轻子束流可以通过发射自旋反转同步辐射而自发极化,并且极化时间常数通常在束流寿命的时间尺度之内,这使得该项测量技术得以在储存环上得到应用。然而储存环上还可能存在着很多退极化因素,这要求我们对自旋动力学有足够的了解并分析束流可能达到的平衡极化度,从而判断用退极化法标定能量的可行性。论文中,我们首先详细讲述了同步辐射对轻子束的自旋极化作用,以及辐射的随机量子特性造成的轨道扩散和自旋扩散对束流自发极化建立的影响。特别地,在发生自旋共振的情况下,辐射的随机扩散作用将使束流中各个电子的自旋方向扩散开,并造成束流的退极化。最终,辐射极化束能够达到的平衡极化度由辐射极化机制和量子扩散退极化机制共同决定,并且可以由著名的Derbenev-Kondrateko-Mane公式通过数值演算来估计这一数值。在推导了储存环中电子的自旋轨道全耦合运动方程并给出电子经过各种元件的轨道映射和自旋映射之后,我们着重分析了储存环中的各种自旋共振形式,并分别用直接跟踪方法和解析数值计算结合的方法对自旋共振和束流极化进行了研究。在对束团中的所有电子自旋进行跟踪时,通过引入泊松分布噪声来模拟随机光子发射过程,并研究了人工激励自旋共振,即扫频自旋共振退极化现象。最后,在充分掌握了自旋和轨道运动的信息后,我们将这些理论应用于合肥光源,并成功地使用自旋共振退极化法对合肥光源的电子束能量进行高精度标定。论文中详细介绍了能量标定的基本原理、实验所需的相关准备以及实验中需要注意到的问题。最终实验结果表明,在合肥光源上应用这项技术对电子束能量进行标定精度可达到10-5~10-4量级。并且,一系列能量测量数据显示,合肥光源机器运行的能量稳定度在10-3量级,与监测到的束流轨道稳定度是同一量级的。因此,我们认为磁铁电源或者高频系统的抖动是造成这一量级能量稳定度的主要原因。
Beam energy is one of the most important parameters for synchrotron radiation light source electron storage ring. It determines the distribution of photon spectrum of synchrotron radiation. In the normal operation, the beam energy of light source would have more or less some difference with the designed value, so precisely measur-ing beam energy is necessary to monitor and understand the operation status of light source. Moreover, Hefei Light Source will serve as a primary standard of radiation source in the spectrum range from vacuum ultraviolet to soft X-ray. This requires that the measurement accuracy of stored electron beams reaches the order of10-4so as to accurately calculate the spectral photon flux.
     Spin resonant depolarization method for beam energy calibration is nowadays an extensive used method to measure energy. The measurement accuracy of this method is very high and can reach the order of10-5~10-4,even10-6. This method for beam energy measurement has been successfully used in many light source storage rings and collider storage rings in European and American countries. But in China no accelerator laboratory has ever successfully used this technology. In this research project, we'll use this technology to calibrate electron beam energy with high-precision at Hefei Light Source at National Synchrotron Radiation Laboratory in University of Science and Technology of China.
     The precondition to use spin resonant depolarization for energy calibration is that the stored beam must be polarized. The measurement technology is applicable on stor-age rings due to the fact that lepton beams in the storage rings can polarize sponta-neously, within a period of time normally shorter than beam lifetime, through emit-ting spin-flip synchrotron radiation. However, there might also many depolarization factors exist in a storage ring. This normally requires adequate understanding about spin dynamics and analysis about the attainable equilibrium polarization, so as to esti-mate the feasibility of spin resonant depolarization method for energy calibration. In the paper, we first elucidated the effect of synchrotron radiation on spin polarization of lepton beams and the affect of orbit diffusion and spin diffusion, due to stochas-tic characteristic of photon emission, on the self-buildup of polarization. Specially, when the so-called "spin resonance" occurs, the stochastic diffusion effect of radia-tion will cause the spins of each electron spread out and cause the depolarization of whole beam. Ultimately, the attainable equilibrium polarization of radiative polarized beam is determined together by radiative polarization mechanism and quantum diffu-sion depolarization mechanism. And this value can be numerically estimated by the famous Derbenev-Kondrateko-Mane formula. After deriving the equation of spin-orbit fully coupling motion of electron and giving the orbit maps and spin maps when elec-tron passes through various elements in the storage ring, we concentrated on analyzing the various spin resonance formalisms and used direct tracking method and analytical-numerical combined method respectively to study about spin resonances and beam po-larization. When tracking about spins of the whole electron beam, a poisson-distributed noise was used to simulate the random photon emission and study about the artificially excited spin resonance, i.e. the phenomenon of sweeping spin resonance. At last, when the information about spin and orbit motion was known adequately, we applied these theories to Hefei Light Source and successfully used spin resonant depolariza-tion method to calibrate the electron beam energy with high precision. In the paper, the fundamental principle for energy calibration, the needed experimental preparation and notable problems during the experiment are elucidated. The experimental result showed, the accuracy of calibrated electron beam energy using this technology at Hefei Light Source can reach the order of10-5~10-4. Furthermore, a series of measure-ments showed, the energy stability during the normal operation of Hefei Light Source is of the order of10-3, having the same order with observed stability of beam orbit. Therefore, the instability of power supply of magnets and instability of high-frequency rf system were thought to be the main reason that caused the instability of beam energy.
引文
[1]刘祖平,同步辐射光源物理引论,中国科学技术大学出版社,2009年7月。
    [2]徐彭寿,潘国强,同步辐射应用基础,中国科学技术大学出版社,2009年1月。
    [3]J. D. Jackson, Classical electrodynamics. John Wiley & Sons, Inc. Third Edition (1999).
    [4]S. Y. Lee, Accelerator Physics. World Scientific Second Edition (2004).
    [5]A. A. Sokolov and I. M. Ternov, SYNCHROTRON RADIATION. Izvestiya VUZ. Fizika 10 66-82 (1967).
    [6]D. Arnold, G. Ulm, Electron storage ring BESSY as a source of calculable spec-tral photon flux in the x-ray region. Rev. Sci. Instrum.63 1539 (1992).
    [7]A. C. Melissinos, Energy measurement by resonant depolarization.
    [8]V. N. Baier and Yu. F. Orlov, Quantum Depolarization of Electrons in A Mag-netic Field. Sov. Phys. Dokl.10 1145 (1966).
    [9]B. N. Baier, RADIATIVE POLARIZATION OF ELECTRONS IN STORAGE RINGS. Sov. Phys. Usp.14 695 (1972).
    [10]LAN Jie-Qin, XU Hong-Liang, High precision calibration of electron beam en-ergy using spin resonant depolarization at HLS. Chin. Phys. Lett, submitted.
    [11]Hongliang Xu, Xiangxue Zhao, Jianfeng Zhang et al., EQUIPMENT FOR ELECTRON BEAM ENERGY CALIBRATION IN HLS. Proceedings of EPAC08, Genoa, Italy, p1326 (2008).
    [12]张剑锋,徐宏亮,王琳等,合肥光源束流能量标定装置。中国科学技术大学学报374(2007).
    [13]E.Tegeler and G. Ulm, Determination of the beam energy of an electron stor-age ring by using calibrated energy dispersive Si(Li)-detectors. Nucl. Instrum. Methods A 266 185 (1988).
    [14]S. Henderson, V. Boisvert, K. Finkelstein et al., A TECHNIQUE FOR MEA-SURING THE RELATIVE CESR BEAM ENERGY. Proceedings of the 1999 Particle Accelerator Conference, New York, USA, p2217 (1999).
    [15]I. P. Karabekov and George R. Neil, Beam energy absolute measurement using K-edge absorption spectrometers. Nucl. Instrum. Methods A 356 181 (1995).
    [16]G. Abbiendi, C. Ainsley, P. F. Akesson et al., Determination of the LEP Beam Energy using Radiative Fermion-pair Events. Phys. Lett. B 604 31 (2004).
    [17]Ian Hsu, C.-C. Chu, C.-I. Yu et al., Energy Measurement of Relativistic Elec-trons by Compton Scattering. Proceedings of the 1995 Particle Accelerator Con-ference, Dallas, TX, USA, p2634 (1995).
    [18]G. Ya. Kezerashvili and N. Yu. Muchnoi, New Technique for Absolute Beam Energy Calibration in e+e- Accelerators. Proceedings of the 1999 Particle Ac-celerator Conference, New York, USA, p2232 (1999).
    [19]R. Klein, R.Thornagel, G. Ulm et al., Beam diagnostics at the BESSY I elec-tron storage ring with Compton backscattered laser photons:Measurement of the Electron energy and related quantities. Nucl. Instrum. Methods A 384 293 (1997).
    [20]N. Yu. Muchnoi and S. V. Peleganchuk, CALIBRATION OF THE VEPP-4M COLLIDER BEAM ENERGY BY INFRARED LASER. Proceedings of the 2001 Particle Accelerator Conference, Chicago, USA, p2441 (2001).
    [21]A. A. Sokolov and I. M. Ternov, On polarization and spin effects in the theory of synchrotron radiation. Sov. Phys. Dokl.8 1203 (1964).
    [22]F. R. Elder, A. M. Gurewitsch, R. V. Langmuir et al., Radiation from Electrons in a Synchrotron. Phys. Rev.71829 (1947).
    [23]F. R. Elder, R. V. Langmuir and H. C. Pollock, Radiation from Electrons Accel-erated in a Synchrotron. Phys. Rev.74 52 (1948).
    [24]F. R. Elder, A. M. Gurewitsch, R. V. Langmuir et al., A 70 MeV Synchrotron. J. Appl.Phys.18 810(1947).
    [25]JUlIAN SCHWINGER, On the Classical Radiation of Accelerated Electrons. Phys. Rev.75 1912 (1949).
    [26]R. P. Madden and K. Codling, New Autoionizing Atomic Energy Levels in He, Ne, and Ar. Phys. Rev. Lett.10 516 (1963).
    [27]R. P. Madden and K. Codling, Characteristics of the "synchrotron light" from the NBS 180MeV machine. J. Appl. Phys.36 380 (1965).
    [28]Philip Willmott, An Introduction to Synchrotron Radiation:Techniques and Ap-plications. John Wiley & Sons, Ltd (2011).
    [29]Julian Schwinger and Wu-yang Tsai, Radiative polarization of electrons. Phys. Rev. D 9 1843 (1974).
    [30]J. D. Jackson, On understanding spin-flip synchrotron radiation and the trans-verse polarization of electrons in storage rings. Rev. Mod. Phys.48 417 (1976).
    [31]J. S. Schwinger, The Quantum Correction in the Radiation by Energetic Accel-erated Electrons. Proc. Natl. Acad. Sci.40 132 (1954).
    [32]Herbert Goldstein, Charles Poole, John Safko, Classical Mechanics. Higher Ed-ucation Press Third Edition (2002).
    [33]L. H. Thomas, The kinematics of an electron with an axis. Phil. Mag.31 (1927).
    [34]V. Bargmann, L. Michel and V. L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett.2 435 (1959).
    [35]S. R. Mane, Yu. M. Shatunov and K. Yokoya, Spin-polarized charged particle beams in high-energy accelerators. Rep. Prog. Phys.68 1997-2265 (2005).
    [36]Ya. S. Derbenev and A. M. Kondratenko, Polarization kinetics of particles in storage rings. Sov. Phys. JETP 37 968 (1973).
    [37]A. A. Sokolov and I. M. Ternov, Synchrotron Radiation. Pergamon Press (1968).
    [38]C. G. Darwin, On the Magnetic Moment of the Electron. Proc. Roy. Soc. (Lon-don) A 120 621 (1928).
    [39]D. M. Fradkin, R. H. Good, JR, Electron Polarization Operators. Rev. Mod. Phys. 3343 (1961).
    [40]H. A. Tolhoek. Electron Polarization, Theory and Experiment. Rev. Mod. Phys. 28277 (1956).
    [41]John von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quanten-mechanik. Gottinger Nachr.245-272 (1927).
    [42]J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955).
    [43]J. J. Sakurai, Modern Quantum Mechanics. Addison-Wesley Publishing Com-pany Revised Edition (2005).
    [44]U. Fano, Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Rev. Mod. Phys.29 74 (1957).
    [45]MATTHEW SANDS, THE PHYSICS OF ELECTRON STORAGE RINGS-AN INTRODUCTION. SLAC-121 (1970).
    [46]E. D. Courant and H. S. Snyder, Theory of the Alternating-Gradient Synchrotron. Ann. Phys.31-48 (1958).
    [47]A. W. Chao, Evaluation of beam distribution parameters in an electron storage ring.J. Appl. Phys.50 595 (1979).
    [48]Ya. S. DERBENEV, A. M. KONDRATENKO and A. N. SKRINSKY, RADIA-TIVE POLARIZATION AT ULTRA-HIGH ENERGIES. Particle Accelerators 9247 (1979).
    [49]Charles Y. Prescott, SUMMARY OF THE ELECTRON ACCELERATORS SESSION. SLAC-PUB-4741 (1988).
    [50]Caterina Biscari, Jean Buon, Bryan. W. Montague, DEPOLARIZING EFFECTS OF QUANTUM FLUCTUATIONS AND THE ACTION OF NON-LINEAR WIGGLERS ON EQUILIBRIUM POLARIZATION LEVEL. CERN/LEP-TH/83-8 (1983).
    [51]G. A. Voss (ed.), Polarized electron acceleration and storage. DESY-M-82-09 (1982).
    [52]J. Buon, Polarization and Depolarization of High Energy Electrons in Storage Rings. Proc. Intern. Symp. on High Energy Physics with Polarized Beams and Polarized Targets, Lausanne, p1 (1980).
    [53]S. R. Mane, Derivation of the equilibrium degree of polarization in high-energy electron storage rings. Phys. Rev. Lett.57 78 (1986).
    [54]Bryan. W. Montague, POLARIZED BEAM IN HIGH-ENERGY e+e- STOR-AGE RINGS. CERN/LEP-TH/83-23 (1983).
    [55]R. F. Schwitters, EXPERIMENTAL REVIEW OF BEAM POLARIZATION IN HIGH ENERGY e+e- STORAGE RINGS. SLAC-PUB-2258 (1979).
    [56]T. Gay, A New Polarized Electron Source and Electron Polarimeter. Proceedings of the Workshop on Photo-cathodes for Polarized Electron Sources for Acceler-ators, Stanford Linear Accelerator Center, Stanford, California, p67, (1993).
    [57]B. W. Lynn, High-precision tests of electroweak physics on the Z resonance. CERN 88-06, Polarization at LEP-Vol.l, CERN, Geneva, Switzerland, p24 (1988).
    [58]Orsay Storage Ring Group, Status Report on ACO. Proc.8th Int. Conf. on High-Energy Accelerators, Geneva, Switzerland, pl27 (1971).
    [59]S. Y. Lee, private communication (2010).
    [60]D. B. Gustavson, J. J. Murray, T. J. Phillips et al., A Backscattered Laser Po-larimeter for e+e- Storage Rings. Nucl. Instrum. Methods A 165 177 (1979).
    [61]A. S. Artamonov, S. E. Baru, A. E. Blinov et al., High precision measurements of the Upsilon-meson mass. Phys. Lett. B 118 225 (1982).
    [62]D. P. Barber, H. D. Bremer, J. Kewisch et al., First results from the DORIS polarimeter. DESY M-83-15 (1983).
    [63]D. P. Barber, H. D. Bremer, J. Kewisch et al., Polarization Measurements at PETRA. Proc.1983 Particle Accelerator Conf., Santa Fe, NM, (Piscataway, NJ: IEEE), p2710 (1983).
    [64]W. W. MacKay, J. F. Hassard, R. T. Giles et al., Measurement of the T Mass. Phys. Rev. D 29 2483 (1984).
    [65]K. Nakajima, M. Arinaga, T. Kawamoto et al., Measurement of equilibrium beam polarization in the KEK e+e- storage ring TRISTAN. Phys. Rev. Lett. 661697 (1991).
    [66]J. Badier, A. Blondel, M. Crozon et al., The commissioning of the LEP polarime-ter. Proc.1991 Particle Accelerator Conf., San Francisco, CA, USA, p1213 (1991).
    [67]R. Klein, T. Mayer, P. Kuske et al., Measurement of the electron energy and energy spread at the electron storage ring BESSY I. J. Synchrotron Radiat.5 392 (1998).
    [68]M. Baylac, E. Burtin, C. Cavata et al., First electron beam polarization measure-ments with a Compton polarimeter at Jefferson Laboratory. Phys. Lett. B 539 8 (2002).
    [69]K. Yokoya, The action angle variables of classical spin motion in circular accel-erators. DESY Report 86-57 (1986).
    [70]John M. Jowett, Introductory statistical mechanics for electron storage rings. SLAC-PUB-4033 (1986).
    [71]G. Ripken, Non-linear canonical equations of coupled synchro-betatron motion and their solution within the framework of a non-linear 6-dimensional (symplec-tic) tracking program for ultra-relativistic protons. DESY 85-84 (1985).
    [72]D. P. Barber, G. Ripken, F. Schmidt, A non-linear canonical formalism for the coupled synchro-betatron motion of protons with arbitrary energy. DESY 87-36 (1987).
    [73]D. P. Barber, K. Heinemann, G. Ripken, A canonical 8-dimensional formalism for classical spin-orbit motion in storage rings I. A new pair of canonical spin variables. Z. Phys. C 64 117 (1994).
    [74]D. P. Barber, K. Heinemann, G. Ripken, A canonical 8-dimensional formalism for classical spin-orbit motion in storage rings Ⅱ. Normal forms and the n-axis. Z. Phys. C 64143 (1994).
    [75]张素英,邓子辰,非线性动力学系统的几何积分理论及应用,西北工业大学出版社,2005年1月。
    [76]P. J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems. Nonlinearity 3 231 (1990).
    [77]Poul G. Hjorth and Nikolaj Nordkvist, Classical Mechanics and Symplectic In-tegration. Lecture Notes (2006).
    [78]ETIENNE FOREST and RONALD D. Ruth, FOURTH-ORDER SYMPLECTIC INTEGRATION. SLAC-PUB-5071 (1989).
    [79]G. Ripken, F. Schmidt, A Symplectic Six Dimensional Thin-Lens Formalism For Tracking. CERN/SL/95-12 (AP) (1995).
    [80]F. Christoph Iselin, The MAD Program Physical Methods Manual (1994).
    [81]Alex Chao, Nonlinear Dynamics in Accelerator Physics. CHINESE JOURNAL OF PHYSICS 30 1013 (1992).
    [82]A. W. Chao, Brief comments on nonlinear dynamics studies in storage rings. Ap-plied superconductivity conference, SSC-187, San Francisco, CA, USA (1988).
    [83]F. Christoph Iselin, Fast Methods for Generating Lie Algebraic Maps of Arbi-trary Degree for Combined Thick Multipoles. SL-Note-2000-001 (AP) (2000).
    [84]J. S. Berg, R. L. Warnock, R. D. Ruth et al., Construction of symplectic maps for nonlinear motion of particles in accelerators. Phys. Rev. E 49 722 (1994).
    [85]J. E. Wertz and J. R. Bolton, Electron Spin Resonance:Elementary Theory and Practical Applications. New York:McGraw-Hill (1972).
    [86]S. Y. Lee, Spin Dynamics and Snakes in Synchrotrons. Singapore:World Scien-tific (1997).
    [87]E. D. Courant, Spin resonance strength calculations. BNL-81504-2008-CP (2008).
    [88]E. D. Courant, R. D. Ruth, The Acceleration of Polarized Protons in Circular Accelerators. BNL-51270 (1980).
    [89]Georg H. Hoffstaetter and Mathias Vogt, Strength of higher-order spin-orbit res-onances. Phys. Rev. E 70 056501 (2004).
    [90]S. Y. Lee and M. Berglund, Overlapping spin synchrotron sideband resonances. Phys. Rev. E 54 806 (1996).
    [91]A. W. Chao, EVALUATION OF RADIATIVE SPIN POLARIZATION IN AN ELECTRON STORAGE RING. Nucl. Instrum. Methods 180 29 (1981).
    [92]A. W. Chao, POLARIZATION OF A STORED ELECTRON BEAM. SLAC-PUB-2781 (1981).
    [93]A. W. Chao, SLIM-a formalism for linear coupled systems. Chin. Phys. C 33 Suppl.Ⅱ:115 (2009).
    [94]A. W. Chao, private communication (2009).
    [95]Lan Jieqin, Xu Hongliang, Sun Yucong et al., Beam Polarization Theory and its Application to HLS Storage Ring. Proceedings of IPAC‘’10, Kyoto, Japan, 1405-1407 (2010).
    [96]Lan Jie-Qin and Xu Hong-Liang, Numerical simulation study on spin resonant depolarization due to spin—orbit coupling. Chin. Phys. B 21084501 (2012).
    [97]D. P. Barber, K. Heinemann, H. Mais et al., A Fokker-Planck Treatment of Stochastic Particle Motion within the Framework of a Fully Coupled 6-dimensional Formalism for Electron-Positron Storage Rings including Classical Spin Motion in Linear Approximation. DESY 91-146 (1991).
    [98]Dawn Griffiths著,李芳译,深入浅出统计学,电子工业出版社,2012年。
    [99]C. Steier, J. Byrd, P. Kuske, ENERGY CALIBRATION OF THE ELECTRON BEAM OF THE ALS USING RESONANT DEPOLARISATION. Proceedings of 7th European Particle Accelerator Conference, Vienna, Austria, June 26-30, pl566 (2000).
    [100]S. C. Leemann, M. Boge, M. Dehler et al., PRECISE BEAM ENERGY CALI-BRATION AT THE SLS STORAGE RING. Proceedings of EPAC 2002, Pairs, France, p662 (2002).
    [101]P. Kuske, R. Goergen, R. Klein et al, HIGH PRECISION DETERMINATION OF THE ENERGY AT BESSY Ⅱ. Proceedings of EPAC 2000, Vienna, Austria, p1771 (2000).
    [102]J. Zhang, L. Cassinari, M. Labat et al., Precise beam energy measurement using resonant spin depolarization in the SOLEIL storage ring. Nucl. Instrum. Methods A 697 1 (2013).
    [103]K. P. Wootton, M. J. Boland, W. J. Corbett et al., Storage ring lattice calibra-tion using resonant spin depolarization. Phys. Rev. ST Accel. Beams 16 074001 (2013).
    [104]L. Arnaudon, B. Dehning, P. Grosse-Wiesmann et al., Accurate determination of the LEP beam energy by resonant depolarization. Z. Phys. C 66 45 (1995).
    [105]A. Bogomyagkov, S. Nikitin, I. Nikolaev et al., CENTRAL MASS ENERGY DETERMINATION IN HIGH PRECISION EXPERIMENTS ON VEPP-4M. Proceedings of PAC07, Albuquerque, New Mexico, USA, p63 (2007).
    [106]G. W. Ford, and C. J. Mullin, Scattering of Polarized Dirac Particles on Elec-trons. Phys. Rev.108 477 (1957).
    [107]W. T. Ford, A. K. Mann, T. Y. Ling, BEAM POIARIZATION EFFECTS IN HIGH ENERGY ELECTRON-POSITRON STORAGE RINGS. SLAC Report 158 (1972).
    [108]Tae-Yeon Lee, Jinhyuk Choi, H. S. Kang, Simple determination of Touschek and beam-gas scattering lifetimes from a measured beam lifetime. Nucl. Instrum. Methods A 554 85 (2005).
    [109]A. Wrulich, Single-beam lifetime..Proceedings of the CERN Accelerator School Fifth General Accelerator Physics Course 94-01, p409 (1994).
    [110]Helmut Wiedemann, Particle Accelerator Physics. Springer Third Edition (2007).
    [111]张剑锋,中国科学技术大学博士学位论文,2010年11月。
    [112]孙玉聪,中国科学技术大学硕士学位论文,2011年6月。
    [113]S. Y. Lee, Spin resonance strength of a localized rf magnetic field. Phys. Rev. ST Accel. Beams 9 074001 (2006).
    [114]Ya. S. Derbenev and V. A. Anferov, rf driven stable spin-flipping motion of a stored polarized beam. Phys. Rev. ST Accel. Beams 3 094001 (2000).
    [115]M. A. Leonova, V. S. Morozov, A. D. Krisch, et al. Unexpected enhancements and reductions of rf spin resonance strengths. Phys. Rev. ST Accel. Beams 9 051001 (2006).
    [116]S. R. Mane, Comment on "Unexpected reduction of rf spin resonance strength for stored deuteron beams". Phys. Rev. ST Accel. Beams 11069001 (2008).
    [117]V. S. Morozov, V. A. Anferov, B. B. Blinov et al., Spin-flipping polarized elec-trons. Phys. Rev. ST Accel. Beams 4 104002 (2001).
    [118]KAORU YOKOYA, SPIN CHROMATICITY FOR HIGHER-ORDER SYN-CHROTRON RESONANCES. Particle Accelerators 13 85 (1983).
    [119]S. R. Mane SYNCHROTRON SIDEBAND SPIN RESONANCES IN HIGH ENERGY ELECTRON STORAGE RINGS. AGS/AD/Tech. Note No.333 (1989).
    [120]S. R. Mane, Synchrotron oscillation effects for spin resonances driven by a lo-calized oscillating rf magnetic field. Nucl. Instrum. Methods A 726 104 (2013).
    [121]M. Froissart and R. Stora, Depolarisation d'un faiceau de protons polarises dans un synchrotron. Nucl. Instrum. Methods 7 297 (1960).
    [122]A. W. Chao, M. Tigner (ed.), Handbook of Accelerator Physics and Engineering. World Scientific Publishing Co. Pte. Ltd. p150 (1999).
    [123]D. P. Barber, Siberian Snakes and spin rotators in the acceleration and storage of high energy spin polarized beams. Nuclear Physics A A663 & 664 1045c (2000).
    [124]S. R. Mane, Yu M. Shatunov and K. Yokoya, Siberian Snakes in high-energy accelerators. J. Phys. G:Nucl. Part. Phys.31 R151-R209 (2005).
    [125]Ya. S. Derbenev and A. M. Kondratenko, Acceleration of polarized particles. Sov. Phys. Doklady 20 562 (1976).
    [126]Ya. S. Derbenev, A. M. Kondratenko, S. I. Serednyakov et al., Radiative polar-ization:obtaining, control, using. Particle Accelerator 8 115 (1978).
    [127]Y. Cho, W. Kubischta, B. W. Montague et al, Report of working group on ac-celerator problems. AIP Conf.Proc.42 41 (1978).
    [128]S. Y. Lee and S. Tepikian, Resonance due to Local Spin Rotator in High-Energy Accelerators. Phys. Rev. Lett.56 1635 (1986).
    [129]R. A. Phelps, V. A. Anferov, B. B. Blinov et al., First Observation of a Snake Depolarizing Resonance. Phys. Rev. Lett.78 2772 (1997).
    [130]V. H. Ranjbar, S. Y. Lee, H. Huang et al., Observation of Higher-Order Snake Resonances in Polarized Proton Acceleration in RHIC. Phys. Rev. Lett.91 034801 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700