变线距光栅单色器设计及关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步辐射光源不断发展,从最初的高能物理加速装置到第四代光源自由电子激光,光源的性能不断提高。光束线作为连接光源和实验站的桥梁,需要能够充分利用光源的特性,因此对光束线的光谱分辨率、光传输效率等方面提出了更高的要求。光束线的核心是单色器,在软X-光波段中,有三种主要的单色器:定包含角球面光栅单色器(Dragon)、变包含角平面光栅单色器(SX-700类)和变线距光栅单色器。由于变线距光栅单色器中光学元件少和元件面型简单,容易实现高的光谱分辨率和达到高的传输效率,近年来得到了广泛应用。本文讨论变线距光栅单色器原理、设计及实现高光谱分辨率需要的关键技术。主要内容包括:
     1、合肥光源(NSRL)重大改造中的表面物理光束线建设。表面物理光束线从真空波荡器中引出,覆盖的能量范围为20-600eV,整个光束线的长度为19300mm。前置聚焦系统采用柱面镜垂直放置5:1聚焦到入射狭缝,采用自聚焦平面变线距光栅单色器作为分光系统,后置聚焦系统采用超环面镜在两个方向上聚焦到样品处。光束线的技术指标为:光通量5×1010photons/s@29eV,样品处光斑0.2x0.1mm2,能量分辨本领10000(E/△E)@29eV。
     2、大连化物所相干光源(DCLS)光束线建设。DCLS作为第四代同步辐射光源,具有辐射波长可调、不受电子跃迁能级的限制;频谱范围广;亮度和峰值功率极高、且可调;相干性好,又有偏振性;具有短脉冲时间结构、且时间结构可调等诸多优点。建成后的DCLS将是世界上第一台工作在极紫外波段(50-150nm)的自由电子激光器。
     同基于储存环的同步辐射光束线相比,四代光源的光束线设计将会面临新的挑战。比如光源脉冲结构与光谱分辨的关系,高瞬时功率对光学元件镀膜的影响,光源的光谱在线诊断等。DICP-FEL共建有四条分支光束线,每条分支光束线分时用光,光源点(饱和长度)在6m-12m内变化。各条光束线光学传输效率(反射率)不同,最高可达85%,最低的可达到45%,可以根据需要开展实验。利用超环面镜和平面变线距光栅构成了光谱仪,用于对光源进行在线的诊断,光谱诊断系统的分辨本领达12000。在FERMI@Elettra实验室,其光谱诊断系统的波长扫描是通过两个相互垂直的直线导轨配合工作。本方案直接将聚焦曲线拟合成圆,通过弧形导轨实现波长扫描,精度以及稳定性将会更加强,具有创新性。
     3、光栅单色器的高光谱分辨不仅与光学设计相关,同工程实施中的各项误差控制等关键技术也息息相关。掌握相应的关键技术,是保证实现光学设计的高光谱分辨率指标的基础。这些关键技术主要包括:高精度直线导轨、转角测量机构、光学元件检测技术、狭缝在线检测技术、光束线安装准直技术和单色器调试技术等。本文对这些关键技术进行了相应的研究,其中狭缝的宽度在线检测、对光学元件装夹的研究以减少装夹对元件面形的影响等都具有创新性。
     高精度直线导轨是单色器中的波长扫描机构的关键部件,它推动正弦杆转动,带动光学元件转动从而实现波长扫描。为了实现表面物理光束线的光谱分辨率,自行研制了行程150mm,分辨率30nm的高精度直线导轨。同时表面物理光束线还采用了一套角度测量机构,通过光栅尺直接测量光学元件的转动角度,该角度测量机构的分辨率可达0.05"。通过高精度直线导轨和转角测量机构配合,精确标定光学元件的转角以及对应的波长。
     光学元件的测试对象主要包括光学元件的面形误差以及光栅的刻线精度。利用长程面形干涉仪对表面物理光束线单色器中的光学元件的面形误差进行测量,结果显示光学元件的面形精度满足要求。利用实验室自建的二维线密度系统对平面光栅的刻线精度进行检测,4001/mm光栅的线密度精度为3-7×104,12001/mm光栅的刻线精度为1-3×10-5。
     在表面物理光束线中,狭缝的开口宽度比较小,最小值达131am,同时真空环境和大气环境下狭缝的开口大小会发生改变,因此需要对狭缝宽度有一个较为精确的测量。搭建了一套狭缝宽度在线系统对狭缝宽度进行测量,该测量系统的测量精度在±5μm以内。
     作为光束线的核心部件,单色器的部件离线调试和光谱分辨率直接相关。单色器的安装调试包括离轴转动参数的测试以及双轴平行性的测试、安装准直技术。离轴转动参数最终测得和理论值有所差别,但是偏离光栅中心量在0.07mm以内,对能量的影响在10-4eV以内,而双轴平行性误差在±5"以内,这些误差为实现光学系统的光谱分辨率奠定了基础。
From accelerators and storage rings for high energy physics to the free-electron laser source, the development of synchrotron radiation leads to greatly improved performance of the light source. Thus, a higher spectral resolution and higher transmission efficiency beamline, which acts as a bridge between the light source and the experimental station, is needed to ultimately exploit the advantages of the light source. Monochromator is the key part of a beamline. In soft x-ray and extreme ultraviolet wavelength range, grating monochromators are commonly used. There are three main kinds of grating monochromator in this energy range, which includes the Dragon type spherical grating monochromator, SX-700plane grating monochromator and variable-line-spacing plane grating monochromator. Because of less optical components and simple component surface shape, the variable-line-spacing plane grating monochromator is easy to achieve both high spectral resolution and high transmission efficiency. It has been extensively used in recent years at different synchrotron radiation laboratories.
     This paper discusses the principle and the design of the variable-line-spacing plane grating monochromator, and key techniques to achieve high spectral resolution. It is described in three parts.
     First is the optical design of the surface physics beamline in Hefei Light Source. The surface physics beamline, which utilizes radiation from an in-vacuum undulator, covers the energy range from20eV to600eV. Undulator radiation is horizontally deflected and vertically focused by a cylinder mirror to the entrance slit, whose focusing demagnification is5, and monochromatized by a variable-line-spacing plane grating, and then horizontally and vertically focused onto the experiment station's sample by a toroidal mirror. The total length of the beamline is19300mm. The resolving power (E/△E) is10000@29eV. Spot size at the sample is0.2(h) x0.1(V) mm2with flux of5x1010photons/s@29eV.
     Second is the optical design of the beamline in Dalian Coherent Light Source (DCLS). This is a fourth generation synchrotron radiation source, based on free-electron lasers, which is currently under construction in the northeast of China. The light source has unique features as the turntable radiation frequency, wide spectral range, high brightness and peak power, very short pulse time structure, et al. It is a user facility based on the principle of single-pass, high-gain harmonic generation (HGHG). It covers the EUV regime of50-150nm with pulse energy exceeds100μJ.
     Compare to the beamline of the synchrotron radiation, the beamline of free-electron-laser facility has new challenges, like the influence of the high peak power onto the mirror coating, and relationship between the pulse length and the spectral resolution, et al. There are four branch beamlines planed in DCLS which share beam time. The total length of the beamlines is about50m. Owing to the variations of saturation length for different wavelengths, the light source point will change at different wavelengths from6m-12m. Optical components reflective efficiency of the beamlines is from maximum of85%to45%. A key diagnostic tool in DCLS is the on-line source spectral characteristic recording during the source development, and for the definition of the experimental conditions. For this purpose, an online grazing incidence spectrometer with a toroidal mirror and a variable-line-spacing plane grating is designed. Resolving power of this spectrometer is better than12000for most of the wavelength covered. In the FERMI@Elettra facility, two orthogonal linear stages is used to scan wavelength, one is used to bring the desired wavelength on the detector center, and the other is used to change the grating-detector distance for focusing purpose. In our design, a circular stage is chosen to fit the focal curve and to realize the wavelength scanning. This scanning mechanics is simpler and stable.
     The third part is the key techniques of achieving the high spectral resolution of the monochromator. Based on the offline commissioning of the surface physics beamline, some key techniques techniques, including the high-resolution linear guide, rotation angle measurement system, online monitoring system to the opening of the slits, testing of the optical component, are developed and tested. Some of these techniques are innovative, like the online monitoring system to the opening of the slits, and the optical component clamping techniques, et al.
     A sine drive is typically used in spectrometers to convert a linear displacement to axis rotation while wavelength scanning. One high-precision linear guide, which has150mm travel with30nm resolution, is designed to meet the need of the spectral resolution. At the same time, a UHV compatible precision rotation angle measurement system is developed in this beamline to measure the rotation angle of the mirror and grating. The angle resolution of this system is0.05arcsec
     The slope error of the mirrors in surface physics beamline is examined by long trace profile. The test result shows that slope error of the optical components in monochromator meets the needs. Groove density of the variable-line-spacing plane gratings is examined by a self-built2D grating groove density measurement system. Groove density accuracy△N/N of the400lines/mm is about3-7×10-5, and1-3×10-5for the1200lines/mm.
     The opening of the slits in surface physics beamline need to be very small to achieve the required spectral resolution, and minimum opening is about13μm. Therefore, we have designed one online interference fringe monitoring system to realize online monitoring of the slit opening. The accuracy of this system is about5μm.
     Monochromator is a kernel part of the beamline. Its off-line test and alignment, which includes parameters measurement of the off-axis rotation (mirror roattion), the parallelism between the grating axis and the plane mirror axis, are related directly to the spectral resolution. At the end, the deviation WG of the reflected beam from the central spot of the grating is less than0.07mm, which makes energy shift of10-4eV, and the unparallelism of the grating axis and the plane mirror axes is within5arcsec. These errors have no significant influences on the spectral resolution and fulfill the engineering requirement of the optical system.
引文
[1]Thompson A C, Attwood D T, Gullikson E M, et al. X-Ray Data Booklet[M]. Lawrence Berkeley National Laboratory,2001.
    [2]Duke P H. Synchrotron Radiation [M]. Oxford University Press,2000.
    [3]Kim K. Characteristics of synchrotron radiation[J]. American Institute of Physics,1989.
    [4]马礼敦.同步辐射应用概论[M].复旦大学出版社,2001.
    [5]刘祖平.同步辐射光源物理引论[M].中国科学技术大学出版社,2009.
    [6]Hofmann A. The Physics of Synchrotron Radiation [M]. Cambridge University Press,2004.
    [7]Seya M. A new mounting of concave grating suitable for a spectrometer[J]. Sci of Light, 1952,2(8).
    [8]Namioka T. Design of High-Resolution Monochromator for the Vacuum Ultraviolet. An Application of Off-Plane Eagle Mounting[J]. Journal of the Optical Society Of America, 1959,49(10):961-965.
    [9]Namioka T. Theory of the Concave Grating. Ⅲ. Seya-Namioka Monochromator[J]. Journal of the optical Society Of America,1959,49(10):951-961.
    [10]Madden R P, Ederer D L. Stigmatic grazing-incidence monochromator for synchrotrons[J]. Journal of the Optical Society Of America,1972,62(5).
    [11]Mancini D C, Bissen M, Rioux D, et al. Evaluation of a new VUV soft x-ray toroidal grating monochromator with a movable exit slit[J]. Review Of Scientific Instruments, 1992,1(63).
    [12]Chen C T. Concept and design procedure for cylindrical element monochromators for synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research A, 1987:595-604.
    [13]Chen C T, Sette F. performance of the Dragon soft x-ray beamline[J]. Review of Scientific Instruments,1989,7(60):1616-1621.
    [14]Chen C T, Sette F. High Resolution Soft X-Ray Spectroscopies with the Dragon Beamline[J]. Physica Scripta,1990,T31:119-126.
    [15]Chen C T, Sette F, Smith N V. Double-headed Dragon monochromator for soft x-ray circular dichroism studies[J]. Applied Optics,1990,29(31):4535-4536.
    [16]Hall J T. Focal Properties of a Plane Grating in a Convergent Beam[J]. Applied Optics, 1966,5(6).
    [17]Schroeder D J. Scanning spectrometer of the Gillieson Type[J]. Applied Optics, 1966,5(4):545-548.
    [18]Hettrick M C, Underwood J H. Varied spacing grazing incidence gratings in high resolution scaning spectrometers:AIP Conference Proceedings,1986[C].
    [19]Hettrick M C. In-focus monochromator theory and experiment of a new grazing incidence mounting [J]. Applied Optics,1990,29(31):4531-4535.
    [20]Shafer A B, Megill L R, Droppleman. Optimization of Czerny-Turner spectrometers[J]. JOSA,1964:879-886.
    [21]Helmuth P. The plane grating and elliptical mirror:A new optical configuration for monochromators[J]. Optics Communications,1982,40(6):402-406.
    [22]Padmore H A. Optimization of soft x-ray monochromators (invited)[J]. Review of Scientific Instruments,1988,60(7).
    [23]Melpignano P, Di Fonzo S, Bianco A, et al. Optimization of spherical grating monochromators operating with variable included angle for different applications[J]. Review of Scientific Instruments,1995,66(2):2125-2128.
    [24]Fisher M V, Bissen M, Bourgeois F, et al. Precision motion and position control for the Plane Grating Monochromator at SRC:Proceeding of SPIE,1996[C].
    [25]Blyth R R, Delaunay R, Zitnik M, et al. The high resolution Gas Phase Photoemission beamline, Elettra[J]. Journal of Electron Spectroscopy And Related Phenomena, 1999,101-103:959-964.
    [26]Xu P S, Wang Q P, et al. Commissioning and operation of the beamline for photoelectron sepctroscopy in NSRL[J]. Review Of Scientific Instruments,1995,66(2):1830-1833.
    [27]Petersen H. The plane grating and ellipitcal mirror-a new optical configuration for monochromator[J]. Optics Communications,1982,40(6):402-406.
    [28]Petersen H. The high-energy plane grating monochromators at BESSY[J]. Nuclear Instruments & Methods In Physics Research Section A,1986,246(1-3):260-263.
    [29]Nyholm R, Svensson S, Nordgren J, et al. A soft X-ray monochromator for the MAX synchrotron radiation facility[J]. Nuclear Instruments & Methods In Physics Research Section A,1986,246(1-3):267-271.
    [30]Itou M, Harada T, Kita T. Soft x-ray monochromator with a varied-space plane[J]. Applied Optics,1989.
    [31]Koike M, Namioka T. Plane gratings for high resolution grazing incidence monochromators holographic grating versu mechanically ruled varied-line-spacing grating[J]. Applied Optics, 1997,36(25):6308-6318.
    [32]Francis Polack, Lagarde B, Idir M. A High Resolution Soft X-ray Monochromator Focused by the Holographic Effect of a VLS grating:Synchrotron Radiation Instrumentation:Ninth International Conference,2007[C].
    [33]Underwood J H, Gullikson E M, Koike M, et al. Beamline for metrology of x-ray EUV optics at the Advanced Light Source:Proceeding of SPIE,1997[C].
    [34]Saitoh Y, Kimura H, Suzuki Y, et al. Performance of a very high resolution soft x-ray beamline BL25SU[J]. Review of Scientific Instruments,2000:3254-3259.
    [35]Severson M, Bissen M, Reininger R, et al. First results from the new varied line spacing plane grating:Synchrotron Radiation Instrumentation:Nintu Intenational Conference, 2007[C]. AIP Conference Proceedings.
    [36]Koike M, Namioka T. High-resolution grazing incidence plane grating monochromator for undulator radiation[J]. Review of Scientific Instruments,1995,2(66):2144-2146.
    [37]Amemiya K, Ohta T. Design of a variable-included-angle Monk±Gillieson monochromator with varied-line-spacing gratings[J]. Journal of Synchrotron Radiation,2004,11:171-176.
    [38]Namioka T, Koike M. Aspheric wave-front recording optics for holographic gratings[J]. Applied Optics,1995,34(13):2180-2186.
    [39]祝绍箕.衍射光栅[M].机械工业出版社,1982.
    [40]Palmer C. Diffraction grating handbook[M]. Newport Corporation,2005.
    [41]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999.
    [42]Rowland H A. Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes[J]. Philosophical Magazine,1882,13(84):469-474.
    [43]Noda H, Namioka T, Seya M. Ray tracing through holographic gratings[J]. Journal of the Optical Society Of America,1974,64(8):1037-1042.
    [44]Noda H, Namioka T, Seya M. Design of holoraphic concave gratings for Seya-Namioka monochromators[J]. Journal of the Optical Society Of America,1974,64(8):1043-1048.
    [45]Namioka T, Seya M, Noda H. Design and Performance of Holographic Concave Grating[J]. Japan Journal Of Industrial And Applied Physics,1976.
    [46]Chrisp M P. Aberrations of holographic toroidal grating systems[J]. Applied Optics, 1983,22(10):1508-1518.
    [47]Harada T, Kita T. Mechanically ruled aberration-corrected concave gratings[J]. Applied Optics,1980,19(23):3987-3993.
    [48]Hettrick M C. Aberrations of varied line-space grazing incidence gratings in converging light beams[J]. Applied Optics,1984,23(18):3221-3235.
    [49]Beutler H G. The Theory of the Concave Gratings[J]. Journal of the Optical Society Of America,1945,35(5):311-350.
    [50]Namioka T. Theory of the Concave Grating. I[J]. Journal of the Optical Society Of America, 1959,49(5):446-460.
    [51]Namioka T. Theory of the Concave Grating. II. Application of the Theory to the Off-Plane Eagle Mounting in a Vacuum Spectrograph[J]. Journal of the Optical Society Of America, 1959,49(5):460-466.
    [52]Namioka T. Theory of the Ellipsoidal Concave Grating. I[J]. Journal of the Optical Society Of America,1961,51(1).
    [53]Namioka T. Theory of the Ellipsoidal Concave Grating. Ⅱ[J]. Journal of the Optics Society of America,1961,51(1).
    [54]Haber H. The Torus Grating[J]. Journal of the Optical Society Of America, 1950,40(3):153-165.
    [55]Noda H, Harada Y, Koike M. Holographic grating recorded using aspheric wacefronts for a Seya-Namioka monochromator[J]. Applied Optics,1989,28(20):4375-4380.
    [56]Severson M, Bissen M, Fisher M V, et al. New SRC APPLE II variable polarization beamline[J]. Nuclear Instruments & Methods In Physics Research Section A, 2011,649:55-57.
    [57]Y Y, E S, A Y. Application of a Varied-Line-Spacing Grating in a High Performance soft X-ray Monochromator[J]. Journal of Synchrotron Radiation,1998(5):246-251.
    [58]佟亚军.软x射线光栅单色器精密测试及成像光谱仪研究[D].上海:上海应用物理研究所,2010.
    [59]Dong-Liang Y, Ming-Qi C, Qiu-Ping W. Upgrade of beamline 3W1B at Beijing Synchrotron Radiation Facility[J]. Chinese Physics C,2013,37(5).
    [60]Sheng W, Zheng H, Yan D L. The design of the beamline for magnetic circular dichroism study at HNSRL[J], Nuclear Instruments & Methods In Physics Research Section A, 2000,440:222-240.
    [61]Industries S, Inc. M, Jersey N. Use of Platinum or Gold Grating Surface at Grazing Incidence[J]. Applied Optics,1963,2(4).
    [62]Henke B L, Gullikson E M, Davis J C. X-Ray Interactions Photoabsorption, Scattering, Transmission, and Reflection at E=50-30,000 eV, Z=1-92[J]. Atomic Data And Nuclear Data Tables,1993,54(2):181-342.
    [63]Franks A, Lindsey K, Bennett J M, et al. The Theory, Manufacture, Structure and Performance of N.P.L. X-Ray Gratings[J]. Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences,1975,277.
    [64]Grime G W, Beaumount J H. Holographic diffraction gratings used in normal incidence monochromators for synchrotron radiation[J]. Applied Optics,1975,14(10):2317-2318.
    [65]Loewen E G, Neviere M. Dielectric coated gratings:a curious property[J]. Applied Optics, 1977,16(11):3009-3111.
    [66]Neviere M, Flamand J. Electromagnetic theory as it applies to X-ray and XUV gratings[J]. Nuclear Instruments and Methods,1980,172(1-2):273-279.
    [67]Loewen E G, Neviere M. Efficiency optimization of rectangular groove gratings for use in the visible and IR regions[J]. Applied Optics,1979,18(13):2262-2266.
    [68]Pimpale A V, Deshpande S K. Design considerations for the rotation of a plane premirror of a monochromator for reflecting synchrotron radiation onto the same spot of the dispersing grating of the XUV beamline[J]. Applied Optics,1991,30(13).
    [69]Madey J M J. Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field[J]. Journal of Applied Physics,1971,42(5):1906-1913.
    [70]Deacon D A G, Elias F L R, Madey J M J, et al. First Operation of a Free-Electron Laser[J]. Physical Review Letters,1977,38(16).
    [71]Bergmann U, Arthur J, Bluhm H, et al. Science and Technology of Future Light Sources[R].Lawrence Berkeley National Laboratory,2009.
    [72]Orzechowski T J, Anderson B, Fawley W M, et al. Microwave radiation from a high-gain free-electron laser amplifier[J]. Physical Review Letters,1985,54(9):889-892.
    [73]Hogan M, Pellegrini C, Rosenzweig J, et al. Measurements of High Gain and Intensity Fluctuations in a Self Amplified, Spontaneous-Emission Free-Electron Laser[J]. Physical Review Letters,1998,2(80):289-292.
    [74]Ayvazyan V, Baboi N, Bohnet I, et al. A new powerful source for coherent VUV radiation Demonstration of exponential growth and saturation at the TTF free-electron laser [J]. The European Physical Journal D,2002,20:149-156.
    [75]Emma P, Akre R, Arther J, et al. First lasing and operation of an angstrom-wavelength free electron laser [J]. Nature Photonics,2010,4:641-647.
    [76]Tanaka H, Yabash M. A compact X-ray free-electron laser emitting in the sub-angstrom region[J]. Nature Photonics,2012,6:540-544.
    [77]Yu L H. Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A,1991,44(8):5179-5193.
    [78]Yu L H, Wu J. Theory of high gain harmonic generation an analytical estimate[J]. Nuclear Instruments & Methods In Physics Research Section A,2002(483):493-498.
    [79]Yu L H, DiMauro L, Doyuran A, et al. First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser[J]. Physical Review Letters,2003,7(91).
    [80]Lambert G, Carre B, Couprie M E, et al. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases,2004[C].
    [81]Doyuran A, DiMauro L, Graves W, et al. Experimental study of a high-gain harmonic-generation free-electron laser in the ultraviolet[J]. Physical Review Special Topics-Accelerators and Beams,2004,7.
    [82]Labat M, Bellaveglia M, Bougeard M, et al. High-Gain Harmonic-Generation Free-Electron Laser Seeded by Harmonics Generated in Gas[J]. Physical Review A,2011,107(22).
    [83]Allaria E. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. nature photonics,2012,6:699-704.
    [84]G L, T H, D G, et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light[J]. Nature Physics,2008,4:296-300.
    [85]Stupakov G. Using the Beam-Echo Effect for Generation of Short-Wavelength Radiation[J]. Physical Review Letters,2009,102(7):74801.
    [86]Xiang D, Colby E, Dunning M, et al. Demonstration of the Echo-Enabled Harmonic Generation Technique for Short-Wavelength Seeded Free Electron Lasers[J]. Physical Review Letters,2010,105:114801.
    [87]Xie J, Zhuang J, Huang Y, et al. The saturation of the Beijing FEL[J]. Nuclear Instruments & Methods In Physics Research Section A,1995,358:256-259.
    [88]Xie J, Zhuang J, Li Y, et al. Upgrade of Beijing IR-FEL project[J]. Nuclear Instruments & Methods In Physics Research Section A,1998,407:146-150.
    [89]Yang X, Li M, Jin X, et al. The Research of Fir-FEL in CAEP:Proceedings of FEL, BESSY,Berlin,Germany,2006[C].
    [90]Zhao Z T, Dai Z M, et al. The Shanghai high-gain harmonic generation DUV free-electron laser[J]. Nuclear Instruments & Methods In Physics Research Section A,2004,528:591-594.
    [91]Ding Y, Huang S, Zhuang J, et al. Design and optimization of IR SASE FEL at Peking University [J]. Nuclear Instruments & Methods In Physics Research Section A, 2004,528:416-428.
    [92]Zhang T, Wang D, Zhao Z, et al. Design of a wavelength continuously tunable ultraviolet coherent light sourc:Proceedings of IP AC, New Orleans. Louisiana,USA,2012[C].
    [93]Suits A G, Heimann P, Yang X, et al. A Differentially Pumped Harmonic Filter On the Chemical-Dynamics Beamline at the Advanced Light-Source[J]. Review of Scientific Instruments,1995,66(10):4841-4844.
    [94]Bizau J M, Wuilleumier F J. Redetermination of Absolute Partial Photoionization Cross Sections of He and Ne Atoms Between 20 and 300 Ev Photon Energy[J]. Journal of Electron Spectroscopy And Related Phenomena,1995(71):205-224.
    [95]Mercier B, Compin M, Prevost C, et al. Experimental and Theoretical Study of a Differentially Pumped Absorption Gas Cell Used as a Low Energy-Pass Filter in the Vacuum Ultraviolet Photon Energy Range[J]. Journal of Vacuum Science & Technology A, 2000(18):2533-2541.
    [96]Zangrando M, Abrami A, Bacescu D, et al. The Photon Analysis, Delivery, and Reduction System at the FERMI[J]. Review of Scientific Instruments,2009(80).
    [97]Arthur J, Anfinrud P, Audebert P, et al. Linac Conerent Light Source Conceptual Design Report[R].2002.
    [98]Tatchyn R. LCLS Optics:Selected Technological Issues and Scientific Opportunities[R].1993.
    [99]Tatchyn R, Arthur J, Baltay M, et al. Research and development toward a 4.5-1.5A linac coherent light source(LCLS) at SLAC[J]. Nuclear Instruments & Methods In Physics Research Section A,1996,375:274-283.
    [100]A R, Rosenberg, Smith J A, et al. Plasma cleaning of beamline optical components Contamination and gas composition effects[J]. Review of Scientific Instruments, 1992,63(1):1486-1489.
    [101]尉伟,王秋平,王勇,等.等离子体清洗同步辐射光学元件[J].真空科学与技术学报,2009,29(6):704-706.
    [102]Soufli R, Fernandez-Perea M, et al. Lifetime and damage threshold properties of reflective x-ray coatings for the LCLS free-electron laser,2011 [C]. Proceedings of SPIE.
    [103]Bocchetta C J, Abrami A. Fermi@Elettra Conceptual Design Report[R].2007.
    [104]Frassetto F, Cocco D, et al. On-Line Spectrometer for FEL Radiation at Fermi@Elettra[J]. Nuclear Instruments & Methods In Physics Research Section A,2008(593):129-131.
    [105]Svetina C, Zangrando M, Bianco A, et al. A Fixed Included Angle Monochromator for the 4Th Generation Light Source at Fermi@Elettra:Proc.of SPIE,2009[C].
    [106]Qj S, Sostero G, Daniele C. Necessity of precise in-house adjustment for synchrotron radiation monochromator,1997[C]. Proceedings of SPIE.
    [107]Krempasky J, Krempaska R, Bianco A, et al. A system for controlling the variable angle spherical grating monochromators at Elettra, BELLINGHAM,1997[C]. Proceeding of SPIE.
    [108]佟亚军,何晓业,赵屹东,等.光栅单色器中精密直线位移的测试与标定系统[J].核技术,2009,32(5).
    [109]Qian S, Arena D, Dvorak J, et al. Dynamic monitoring of grating angle at the National Synchrotron Light Source[J]. Opticsl Engineering,2009,48(11).
    [11O]Wang Q, Zhang Y. A simple method for wavelength calibration of monochromators with a sine drive [J]. Review of Scientific Instruments,1995,66(2):2284-2286.
    [111]Shu D. High Precision Mechanical System Design for Synchrotron Radiation Research[R].Advanced Photon Source Argonne National Laboratory,2008.
    [112]Fu Q, Rah S Y, Lu S, et al. Characteristics of the relation between wavelength and displacement in monochromators with a sine drive[J]. Nuclear Instruments & Methods In Physics Research Section A,2007,580:1522-1525.
    [113]F S, H L, R F, et al. A new UHV angle encoder for high resolution synchrotron radiation monochromators[J]. Journal of Synchrotron Radiation,1998,584-586.
    [114]Qian S, Takacs P, Dong Q, et al. In-situ precise angle monitoring on synchrotron radiation monochromator by use of pencil beam interferometer:8th International Conference on Synchrotron Radiation Instrumentation,2003 [C].
    [115]Renishaw非接触光栅测量系统(EB/OL]. www.renishaw.com.
    [116]Rickers K, Welter E, et al. Commissioning of the XAFS facility at beamline C[R].2006.
    [117]Rickers K, Drube W, Schulte-Schrepping H, et al. New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB,2007[C]. AIP Conference Proceedings.
    [118]Church E L. Prediction of mirror performance from laboratory measurements:X-ray/EUV Optics for Astronomy and Microscopy,1989[C]. Proceedings of SPIE.
    [119]Church E L, Takacs P Z. Specification of glancing and normal incidence x-ray mirrors[J]. Opticsl Engineering,1995,34(2):353-356.
    [120]Takacs P Z, Qian S. Metrology laboratory requirements for third-generation synchrotron radiation sources,1997[C]. Proceedings of SPIE.
    [121]Sostero G, Cocco D, Qian S N. Metrological challenges of synchrotron radiation optics, 1999[C]. Proceedings of SPIE.
    [122]Sostero G, Bianco A, Zangrando M, et al. Synchrotron radiation optics quality demands and technical achievability,2001[C]. Proceedings of SPIE.
    [123]Qian S, Jark W, Takacs P Z, et al. In-situ surface profiler for high heat load mirror measurement[J]. Optical Engineering,1995,34(2):396-402.
    [124]Qian S, Jark W, Sostero G, et al. Advantages of in-situ LTP distortion profile test on high heat load mirrors and applications,1996[C]. Proceedings of SPIE.
    [125]Qian S, Jark W, Sostero G, et al. Precise measuring method for detecting the in sit distortion profile of a high heat load mirror for synchrotron radiation by use of a pentaprism long trace profiler[J]. Applied Optics,1997,36(16):3769-3775.
    [126]Takacs P Z, Qian S. Design of a long trace surface profiler,1987[C]. Proceeding of SPIE.
    [127]Qian S, Jark W, Takacs P Z. The pentaprism LTP:A long-trace-profiler with stationary optical head and moving penta prism[J]. Review of Scientific Instruments, 1995,66(3):2562-2569.
    [128]Li H, Takacs P Z, Oversluizen T. Vertical scanning long trace profiler a tool for metrology of x-ray mirrors,1997[C]. Proceeding of SPIE.
    [129]Qian S, Takacs P, Sostero G, et al. Portable long trace profiler Concept and solution[J]. Review of Scientific Instruments,2001,72(8):3198-3204.
    [130]Takacs P Z, Qian S. Accuracy limitations in long-trace profilometry:8th International Conference on Synchrotron Radiation Instrumentation (SRI 2012),2003 [C].
    [131]Moriyasu S, Takacs P Z, Kato J, et al. On-machine Metrology with LTP(Long Trace Profiler),2003[C]. Proceedings of SPIE.
    [132]Qian S, Wang Q, Hang Y, et al. Multiple Functions Long Trace Profiler (LTP-MF) for National Synchrotron Radiation Laboratory of China,2005[C]. Proceedings of SPIE.
    [133]刘斌.变曲率光栅的成像特性研究及相关测试技术[D].中国科学技术大学,2006.
    [134]Korotkov VI, Pulkin S A, Vitushkin A L, et al. Laser interferometric diffractometry for measurements of diffraction grating spacing[J]. Applied Optics,1996,35(24):2786-4782.
    [135]Yoon T H, Eom C I, Chung M S, et al. Diffractometric methods for absolute measurement of diffraction-grating spacings[J]. Optics Letters,1999,24(2):107-109.
    [136]Hu Z W, Chen Q, Yu X J, et al. Groove Density Measurements for the VLS grating by Diffraction Method:Synchrotron Radiation Instrumentation:Eight International Conference, 2004[C]. AIP Conference Proceedings.
    [137]陈锵,胡中文,余小江,等.变间距光栅刻线密度测试系统的性能评价[J].核技术,2004,27(1):9-13.
    [138]陈锵,王秋平,余小江,等.变间距光栅刻线密度的测试精度分析[J].核技术,2001,24(7):557-563.
    [139]胡中文.广义光栅方程与光栅线密度测试及二维CCD全谱光谱仪的研制[D].合肥:中国科学技术大学核技术及应用,2005.
    [140]Cocco D, Sostero G, Zangrando M. Technique for measuring the groove density of diffraction gratings using the long trace profiler [J]. Review of Scientific Instruments, 2003,75(7):3544-3548.
    [141]Cocco D, Sergo R, Sosteroa G, et al. High-precision measurements of the groove density of diffraction gratings,2000[C]. Proceedings of SPIE.
    [142]Liu B, Lou J, Fu S J, et al. Two-Dimensional Measurement of Groove Spacing for Plane VLS Gratings Using the Long Trace Profiler, Zhuhai China,2006[C]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems.
    [143]Lim J, Rah S. Technique for measuring the groove density of a diffraction grating with elimination of the eccentricity effect[J]. Review of Scientific Instruments,2004,75(3):780.
    [144]余小江,王秋平,陈锵,等.可变包含角单色器的双轴平行度误差分析和测试[J].核技术,2003,26(6):416-419.
    [145]Namioka T, Seya M. Design and Performance of Holographic Concave Gratings[J]. Japanese Journal Of Applied Physics,1976,15(7):1181-1197.
    [146]Koika M, Harada Y, Noda H. New Blazed Holographic Grating Fabricated By Using An Aspherical Recording With An Ion-Etching Method,1987[C]. SPIE.
    [147]Namioka T, Koike M. Analytical representation of spot diagrams and its application to the design of monochromators[J]. Nuclear Instruments & Methods In Physics Research Section A,1992,319(1-3):219-227.
    [148]Stavdas A, Bayvel P, Midwinter J E. Design and performance of concave holographic gratings for applications as multiplexers/demultiplexers for wavelength routed optical networks[J]. Optical Engineering,1996,35(10):2816-2823.
    [149]Frassetto F, Cacho C, Froud C A, et al. Single-grating monochromator for extreme-ultraviolet ultrashort pulses[J]. Optics Express,2011,19(20):19169-19181.
    [150]Poletto L, Frassetto F. Design of high-resolution grazing-incidence echelle monochromators[J]. Applied Optics,2009,48(28):5363-5370.
    [151]Cash W. Echelle spectrographs at grazing incidence[J]. Appled optics,1982,21(4).
    [152]McEntaffer R, DeRoo C, Schultz T, et al. First results from a next-generation off-plane X-ray diffraction grating[J]. Experimental Astronomy,2013.
    [153]Seely J F, Goray L I, Kjornrattanawanich B, et al. Efficiency of a grazing-incidence off-plane grating in the soft-x-ray region[J]. Applied Optics,2006,45(8):1680-1687.
    [154]Frassetto F, Poletto L. Efficiency measurements on gratings in the off-plane mount for a high-resolution grazing-incidence XUV monochromator,2008[C].
    [155]Webster C. Cash J. X-ray optics.2 A technique for high resolution spectroscopy[J]. Applied Optics,1991,30(13):1749-1759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700