淮南地区新元古代九里桥组沉积环境变化及其生物学响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮南地区新元古代九里桥组主要由泥质、砂质灰岩和白云质灰岩构成,厚度40—70m。该组地层出露完整、沉积类型多样,含有丰富的叠层石礁体、宏体藻类和疑源类化石,并有宏体蠕虫状化石发现,是研究地球早期生命演化、生物与环境相互关系的理想对象。
     本研究通过对九里桥组事件沉积、露头层序地层、古生物、叠层石礁体和沉积地球化学等的研究,深入探讨该组沉积期环境的变化及其生物学响应特征,为丰富新元古代古生物学、地球早期生命探索、沉积学和环境科学理论提供新的证据和信息。
     根据九里桥组的岩性特征、事件沉积特征、古生物化石的产出特征以及不同露头的对比等,将该组划分为下部含臼齿脉体泥质、砂质灰岩段(厚13—18m)、中部叠层石灰岩段(厚19—62m)和上部含宏体化石砂质灰岩段(厚7—10m)三部分,为该组的其它相关研究奠定了基础。
     不同沉积类型的产出特征表明,该组沉积期经历了早期较强的地震活动、中期频繁发生的海洋风暴活动和最大海泛事件、晚期的环境突变事件和海平面下降等。该组沉积早期,强烈的地震活动对造叠层石生物的生长发育具有毁灭性破坏作用。风暴沉积类型的变化特征表明,该组沉积期风暴活动的发展过程经历了沉积早期的风暴偶发期、沉积中期的风暴频发期、减弱期和沉积晚期的风暴平静期四个阶段,在剖面上可划分出5个特征明显的风暴沉积旋回。风暴活动由盛到衰的过程与该组叠层石礁体由小变大、微体浮游生物和宏体化石记录由少增多的过程相对应,这种现象表明频繁发生的风暴活动对这一时期区域性生物的发展具有较为明显的负面影响,但对造叠层石生物的影响远比对其它类型的宏体和微体生物的影响要弱。
     采用浸解法,辅助以切片的分析方法,首次从该组中上段碳酸盐岩样品中收集发现了数量众多的疑源类化石,包括Acanthomorphitae(棘刺亚类)、Herkomorphitae(网面亚类)、Pteromorphitae(翼环亚类)、Nematomorphitae(线形亚类)、Sphaeromorphitae(球形亚类)和多细胞植物碎片等在内,共17个形态属、15个种和13个未定种。这些疑源类化石具有青白口纪—震旦纪过渡时期的特征,生物地层意义突出。对比研究表明,该组沉积期微体浮游生物生长发育非常繁盛,反映了微体浮游生物发展新阶段的到来。
     宏体古生物化石的埋藏、分布状况、叠层石礁体的产出特征、疑源类化石的分布特征表明,大量的宏体生物、微体浮游生物和造叠层石生物共同组成了该组沉积时期较为复杂的生物群落。不同类型的生物之间存在较为明显的生存竞争现象,并可能导致了食物链的中断,从而在九里桥组上段出现了含宏体生物化石层与含疑源类化石层间隔分布的特征。
     该组自下而上,叠层石单体形态的变化趋势为:块茎状、破碎且具分叉的短柱状——完整且不具分叉的长柱状——基本完整的短柱状、块茎状;叠层石礁体的变化趋势为:透镜状、小型丘状——大型丘状——透镜状。根据这些特征将该组沉积期叠层石礁体划分为
    
    风暴环境型礁体、海进环境型礁体和海退环境型礁体三种类型,区分出8个叠层石造礁旋
    回,指示了造叠层石生物对不同环境的适应过程。风暴活动对造叠层石生物的造礁活动具
    有破坏和促进的双重影响作用,海进过程对造叠层石生物的造礁活动较为有利,但海水的
    突然加深则对其具有较大的影响并终止其造礁活动,海退过程对造叠层石生物的造礁活动
    总体上较为不利。
     九里桥组碳酸盐岩酸不溶物、元素含量变化特征表明,该组沉积期淮南地区处于浅海
    环境,并经历了海水由浅—深—浅的变化过程。进一步分析表明,宏体生物比较适合
    在陆源碎屑供给充足的较浅水域生存繁衍,造叠层石生物能够在潮汐带深度不同的水域生
    存繁衍,其繁盛的生长活动对非碳酸盐沉积物具有明显的排斥作用,并对Mg、Sr、Ba、
    Mn、Ti等元素在沉积物中的富积具有波动性影响。
     C、O同位素分析研究表明,九里桥组碳酸盐岩为未受淡水影响的正常海相沉积,后生
    成岩作用对该组碳酸盐岩的C、O同位素组成影响较小。该组沉积时期古海水温度在6.5℃
    一22℃之间变化,与该时期古纬度分析基本吻合。该组沉积期碳酸盐岩C同位素组成变化
    特征与海平面变化具有相关关系,6’3c值具有伴随海平面升高而增大,伴随海平面下降而
    减小的变化趋势。
     该组碳酸盐岩主要形成于海水较浅的缓斜坡环境,根据风暴沉积旋回、叠层石造礁旋
    回和海绿石凝缩层沉积旋回等和其它露头层序地层特征,为该组划分出巧个副层序,它们
    分别代表了海进体系域、高水位体系域和低水位体系域的沉积,并构成一个相对完整的海
    进—海退旋回。
     在该组沉积期有大量的宏体、微体浮游生物和造叠层石生物生存繁衍,宏体后生动物
    在该组沉积晚期也开始出现,它们分别在不同的沉积环境中留下了化石记录。对化石保存
    特征以及沉积环境变化的综合研究表明,不同生物对环境变化的适应能力不同,造叠层石
    生物能对该组沉积时期的环境变化作出及时调整,其它类型的生物对环境则具有较强的选
    择性和依赖性。
    关键词:碳酸盐岩,事件沉积,叠层石礁体,生物活动,沉积环境,新元古代,九里桥组,
     淮南地区
    夕
The Neoproterozoic Jiuliqiao Formation in Huainan region is 40-70m thick, consists of sandy, silty and dolomitic limestone. It has been taken as one perfect object for the research on the life evolution, the relationship between organisms and environments during the Neoproterozoic, because of the well outcropped strata, various depositional types, abundant stromatolite reefs, macroscopic alga, acritarchs and macroscopic worm-like organisms in the Formation.The event deposits, outcrop sequence stratigraphy, paleontology, stromatolite reefs and depositional geochemistry of the carbonatites have been studied, and the environment changing process and corresponding biological responsing characters were well discussed in this paper, some new evidences and information were appended to the Neoproterozoic biology, sedimentology and environmental sciences.From bottom to top, three parts of the Formation was subvided as: the lower sandy and silty limestone part (with molar-tooth-like veins, is 13-18m thick), the mid stromatolite limestone part (is 19-62m thick) and the upper sandy limestone part(with macroscopic fossils, is 7-10m thick), based on the characters of the lithology, event deposits, paleontology and correlation of different outcrops of the Formation.Different events, such as violent earthquakes during the early period, frequent strong storms and the maximum flooding events during the middle period, the abrupt environment changes and regression during the later period of the Jiuliqiao Time, had different influences on organisms. The violent earthquakes made few organisms survive during the early period; the storm events comprised the occasional stage during the early period, the frequent stage and the decreasing stage during the middle period and the quiet stage during the later period of the Jiuliqiao Time. Five typical storm deposition cycles were identified during the Jiuliqiao Time. The process from puissant to recessionary of the storm events could be correlated with such process: the stromatolite reefs becoming bigger, the micro and macro fossil become manifolding, the phenomena indicate that frequent storm events had negative influence on the organisms in Huainan region, while the stromatolite-made cyanobacteria had better adaptability than others during the Jiuliqiao Time.Abundant acritarchs were obtained from the Jiuliqiao Formation for the first time. The acritarch assemblage, which comprises Acanthomorphitae, Herkomorphitae, Pteromorphitae, Nematomorphitae, Sphaeromorphitae and many multicellular algal fragments, has seventeen form genus, fifteen species and thirteen species indeterminate. The assemblage has important
    
    biostratigraphy significance, because of it's transitional characters from the Qingbaikou Period to the Sinian Period. The characters of acritarchs indicate that a new developing stage of the microplankton had come forth during the Jiuliqiao Time.The distribution characters of the macroscopic fossils, acritarchs and the stromatolite reefs in the Jiuliqiao Formation indicate that, the complicated biocommunity had been formed by abundant macro-organisms, micro-plankton and stromatolite-made cyanobacteria during this Time. The struggles for existence between different organisms had become obvious, and might resulted in the interbedded outcropping characters of the macroscopic fossils and acritarchs.The stromatolites in the Formation had such changing dendency: tuberosity, broken and forked shortprismatic in the lower part, complete and nonforked long-column in the mid part, tuberosity, complete forked shortprismatic in the upper part. The stromatolite reefs had such changing dendency: small scale lenticular and moundy in the lower part, large scale moundy in the mid part, and small scale lenticular in the upper part. The stromatolite reefs in the Formation were devided as the storm environment type, the transgression environment type and the regression environment type, eight reef-building cycles, which indicated the stromatolite-made cyanobacteria's adapting process to different environments, we
引文
安徽省地质矿产局区域地质调查队.1985,安徽地层志(前寒武系分册).合肥:安徽科学技术出版社:44-56
    安桐林,蓟县雾迷山组碳酸盐岩原地型风暴沉积特征及成因探讨,沉积学报,1993,11(4):30-36
    曹瑞骥,1988.末前寒武纪叠层石衰退事件的研究.古生物学报,27(6):737-753.
    曹瑞骥,1997.华南黔中震旦纪陡山沱组磷质叠层石礁和与其相关的微生物化石.古生物学报,36(3):295-312.
    曹瑞骥,袁训来,肖书海,2001.论锥叠层石群(Conophyton)的形态发生——对苏皖北部新元古代九顶山组一个似锥叠层石的剖析.古生物学报,40(3):318-329.
    曹瑞骥,赵文杰,1981.华北区前寒武纪叠层石组合序列.古生物学报,20(6):508-517.
    曹瑞骥,赵文杰,夏广胜,1985.安徽北部晚前寒武纪叠层石.中国科学院南京地质古生物研究所集刊,21:1-84.
    陈代钊,陈其英,江茂生,1995.泥盆纪海相碳酸盐岩碳同位素组成及演变.岩相古地理,15(5):22-28.
    陈建强,王鸿祯,2000.中国中、新元古界层序地层与海平面变化,见:王鸿祯等,中国层序地层研究.广州,广东科技出版社,39-98
    陈锦石,闻传芬,钟华,1995.古生代海洋碳同位素演化.地质科学,30(4):338-347
    陈晋镳,1993.叠层石研究的进展和问题.见:朱士兴等著,中国叠层石.天津:天津大学出版社,205-214.
    陈丽蓉,1994.早期成岩过程中自生海绿石的演变史.科学通报,39(9):829-831.
    陈孟莪,郑文武,1986.先伊迪卡拉期的淮南生物群.地质科学,21(3):221-231.
    陈荣坤,1994.华北地台寒武纪沉积层序中关键地层单元——海绿石质凝缩层段.岩相古地理,14(6):25-34.
    丁莲芳,李勇,胡夏嵩等,1996.震旦纪庙河生物群,北京:地质出版社.
    董文明,沈亚,周洪瑞,等,1999.层序地层学在前寒武纪地层研究中的应用——以河南省西部震旦系为例.沉积学报,17(增):742-746.
    杜汝霖,1982.冀北青白口系Chuaria等化石的发现及其意义,地质论评,28(1):1-6.
    杜汝霖,田立富,1985.燕山青白口系宏观藻类龙凤山藻属的发现和初步研究,地质学报,59(3):183-191.
    方大钧,朱志文,郭亚宾,1984.寿县、凤阳地区的古地磁特征.见:《苏皖北部上前寒武系研究》项目协作组,苏皖北部上前寒武系研究.合肥,安徽科学技术出版社:114-131
    
    符俊辉,1989a.安徽寿县晚前寒武纪淮南生物群新材料.古生物学报,28(1):72-77.
    符俊辉,1989b.淮南生物群的组合面貌及其特征.古生物学报,28(5):642-652.
    葛铭,孟祥化,陈荣坤,等,1995.海绿石凝缩层——克拉通盆地层序地层划分对比的关键.沉积学报,13(4):1-15.
    胡訴,刘泽均,1987.安徽淮南震旦系九里桥组沉积环境及风暴作用的特征.合肥工业大学学报,9(6):132-142.
    华洪,曹瑞骥,2003.新元古代十三里台期叠层石组合的地层对比意义.地层学杂志,27(1):19-25.
    华洪,邱树玉,2001.贺兰山中元古代三个叠层石组合及其地层意义.地层学杂志,25(4):307-311
    华洪,张录易,张子福等,2000.晚震旦世高家山生物群化石新材料,古生物学报,39(3):381-390.
    华洪,张录易,张子福等,2001.高家山生物群化石组合面貌及其特征,地层学杂志,25(1):13-17.
    洪天求,贾志海,尹磊明,等,2004.淮南地区新元古代九里桥组的疑源类化石组合及其生物地层学意义.古生物学报,43(3):377-387
    贾志海,洪天求,郑文武等,2003.皖北新元古代望山组震积岩的基本特征及其形成环境分析.地层学杂志,27(2):146-149.
    解广成,沈培斋,1991.陕北三叠系上统长油层中海绿石的发现及其初步研究.地质科学,26(2):129-136.
    雷振宇,周洪瑞,王自强,1996.豫西中元古代汝阳群层序地层初步研究.地球科学—中国地质大学学报,21(3):272-276
    李东明,孙镇城,彭立才,等,1996.对“指相矿物”海绿石的重新认识.岩石矿物学杂志15(4):379-315
    李明荣、王松山、裘冀,1996.京津地区铁岭组、景儿峪组海绿石40Ar—39Ar年龄,岩石学报,12(3):416-423.
    李尚湘,刘泽钧,吴照明等,1984.地球化学特征,见:《苏皖北部上前寒武系研究》项目协作组,苏皖北部上前寒武系研究.合肥,安徽科学技术出版社:58-65
    李双应,洪天求,郑文武等,2003.皖北新元古代刘老碑组滑塌沉积及其地质意义.合肥工业大学学报(自然科学版),26(6):1115-1120.
    李玉发,姜立富(主编),1997.安徽岩石地层.北京:中国地质大学出版社,9-30.
    李壮福,郭英海,徐州地区震旦系贾园组的风暴沉积,古地理学报,2000,2(2):19-27
    刘岫峰,1991.沉积岩实验室研究方法.北京:地质出版社,1-206
    刘燕学,旷红伟,蔡国印等,2003.辽南新元古代营城子组臼齿灰岩的沉积环境.地质通报,22(6):419-425.
    罗其玲,1985,安徽北部上前寒武系史家组的微古植物群及其地质意义.中国地质科学院 天津地质矿产研究所所刊,12:169-182
    梅
    
    梅冥相,李志忠,白志达,等,1998.河北兴隆中、上元古界旋回层序初步研究.地层学杂志,22(2):102-108
    梅冥相,徐德斌,1996.沉积的层旋回性记录中几个理论问题的认识——兼论“露头层序地层”的工作方法.现代地质,10(1):85-92
    孟庆任,胡健民,李文厚,豫西前寒武纪汝阳群和洛峪群中风暴沉积,地质科学,1995,30(3):240-246
    孟祥化,葛铭,M.E.Tucker,1996.中国晚寒武世长山期最大海泛事件及其全球对比意义.地质学报,70(2):108-121.
    孟祥化,乔秀夫,葛铭,1986.华北古浅海碳酸盐风暴沉积和丁家滩相序模式,沉积学报,4(2):1-18
    牛绍武,1997.狄更逊虫类化石在我国的首次发现.前寒武纪研究进展.20(3):50-55.
    牛绍武,朱士兴,2002.论淮南生物群.地层学杂志,26(1):1-8.
    钱迈平,1991.苏皖北部震旦纪叠层石及其沉积环境学意义.古生物学报,30(5):616-629
    钱迈平,2002.华北古陆东南缘新元古代生物群,南京大学博士学位论文:31-118
    钱迈平,袁训来,肖书海等,2001.苏北新元古代魏集组毫米级碳质压膜化石,江苏地质,25(1):1-5.
    钱迈平,袁训来,徐学思等,2002.徐淮地区新元古代叠层石组合.古生物学报,41(3):403-418.
    钱迈平,袁训来,汪迎平等,2000.淮北地区新元古代后生植物化石新材料.古生物学报,39(4):516-520.
    乔秀夫,2000.中国中新元古界层序地层与海平面变化.见王鸿祯等,中国层序地层研究.广州:广东科技出版社,39-98.
    乔秀夫,高励,1997.中国北方青白口系碳酸岩Pb—Pb同位素测年及意义,地球科学-中国地质大学学报,22(1)1-7.
    乔秀夫,高林志,1999.华北中新元古代及早古生代地震灾变事件及与Rodinia的关系.科学通报,44(16):1753-1757
    乔秀夫,高林志,高励,等,1995.吉林浑江流域新元古界露头层序地层.中国区域地质,(2):99-111
    乔秀夫,高林志,彭阳,2001.古郯庐带新元古界——灾变、层序、生物,北京:地质出版社,108~112.
    乔秀夫,宋天锐,李海兵等.1996.辽东半岛南部震旦系——下寒武统成因地层.北京:科学出版社,31-53
    乔秀夫,邢裕盛,高林志等,1989.皖北震旦系张渠组风暴沉积——向上变浅的碳酸盐沉积序列,地质学报,4:298-309
    邵龙义,1994.碳酸盐岩氧、碳同位素与古温度等的关系.中国矿业大学学报,23(1):39-45.
    
    陶仙聪、王宗哲、杨杰东,1989.安徽寿县倪园组地层中燧石和白云岩的Sm、Nd、Rb、Sr同位素测定。第四届全国同位素地质年代学学术会议论文(摘要)汇编,42-43.
    徐学思,王学孟,1982.论淮河系的建立——中上元古界层序讨论.中国区域地质,(1):125-130.
    汪贵翔,1982,安徽淮南晚前寒武纪环节和须腕动物化石.中国地质科学院天津地质矿产研究所所刊,(6):9-22
    汪贵翔、周本和、肖立功,1984.安徽淮南上前寒武系宏体化石及其意义.地层学杂志,8(4):271-278.
    王鸿祯,史晓颖,2000.中国层序地层与海平面变化研究概述,见:王鸿祯等,中国层序地层研究.广州,广东科技出版社,1-38
    王世杰,季宏兵,欧阳自远 等,1999.碳酸盐岩风化成土作用的初步研究.中国科学,29(5):441-449
    王翔,王战,1993.华北地块东南缘上元古界风暴沉积,沉积学报,11(2):91-98
    王训练,1999.露头层序地层学研究的几个基本理论问题.中国科学(D辑),29(1):22-30.
    王训练,2003.露头层序地层学研究中定义和识别不同级别沉积层序的标准.中国科学(D辑),33(11):1057-1068.
    邢裕盛,段承华,梁玉左等,1985,中国晚前寒武纪古生物.地质专报,地层古生物,第2号,地质出版社:1-243.
    邢裕盛,刘桂芝,1973.燕辽地区震旦纪微古植物群及其地质意义,地质学报,47(1):1-64.
    徐兆良,Awramik S.M.,2002.高于庄组古生物学.植物学报,44(5):617-627.
    阎永奎,1982.安徽凤阳地区震旦亚界刘老碑组的微古植物群,中国地质科学院南京地质矿产研究所分刊,3(1):49-69
    阎永奎,1984.微古植物(浸解法)[M].见:苏皖北部上前寒武系研究》项目协作组.1984,苏皖北部上前寒武系研究.合肥:安徽科学技术出版社,85-93.
    阎永奎,2002.江苏北部新元古界贾园组和赵圩组的微古植物群及其地层意义.江苏地质,26(1):1-6
    杨杰东,郑文武,王宗哲等,2001.Sr、C同位素对苏皖北部上前寒武系时代的界定.地层学杂志,25(1):44-47
    杨清和、张友礼、郑文武等,1980,苏皖北部震旦亚界的划分与对比.见:中国地质科学院天津地质矿产研究所主编《中国震旦亚界》.天津:天津科学技术出版社,231-265
    殷勇,范小林,高长林,等,1997.湘西北新元古界露头层序地层学研究.石油实验地质,19(3):252-260.
    尹崇玉,1985.安徽淮南地区晚前寒武纪微古植物群及其地层意义.地层古生物论文集,12:91-115
    尹磊明,1983.晚前寒武纪钓鱼台组与刘老碑组微体古生物化石研究.中国科学院南京地质 古生物研究所集刊,6:9-25.
    尹
    
    尹磊明,1999,论我国新元古代微体植物化石及其生物地层意义,古生物学报,38(2):133-146
    尹磊明,李再平,1978.西南地区前寒武系微古植物群及其地层意义,中国科学院南京地质古生物研究所集刊,10:41-102.
    袁训来,李军,陈孟莪,1995.晚前寒武纪后生植物地发展及其化石证据.古生物学报,34(1):90-105.
    袁训来,肖书海,尹磊明等,2002.陡山沱期生物群——早期动物辐射前夕的生命,合肥,中国科学技术大学出版社.
    张录易,华洪,谢从瑞,2001.新元古代末期高家山生物群研究新进展与展望,中国地质,28(9):19-24.
    张丕孚,1983.燕、辽、吉、苏皖北部的震旦系.河北地质学院学报23(3):10-22.
    张丕孚,1985.关于辽南及苏皖地区震旦系与青白口系的关系.中国地质科学院院报,11:139-148.
    张丕孚,1993.苏皖北部晚前寒武系地层层序的厘定.地层学杂志,17(1):40-51.
    张世恩,曹道夫,姚仲伯 等,1984.淮南和淮北两区地层的衔接及对比.见:《苏皖北部上前寒武系研究》项目协作组,苏皖北部上前寒武系研究.合肥,安徽科学技术出版社:25-31
    张秀莲,1985.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系.沉积学报,1985:17-30
    张忠英,1993.河北庞家堡长城系高于庄组Siphonophycus inornatum藻席的昼夜生长节律.见:朱士兴等著,中国叠层石.天津:天津大学出版社,85-91.
    赵震,1995.从氧、碳同位素组成看蓟县元古宙碳酸盐岩特征.沉积学报,13(3):46-53
    郑文武,1979.“淮南生物群”的主要特征及其在地层研究中的意义.合肥工业大学学报,7(2):97-108.
    郑文武,1980.皖北震旦系中Chuaria等化石的发现及其意义.中国地质科学院天津地质矿产研究所分刊,1(1):49-69.
    郑文武,1994.论淮南群形成时期的古海水温度及其演变规律.合肥工业大学学报(自然科学版),17(1):152-159.
    郑文武,秦正永,郑学信等,1994.淮南群地球化学特征及其地质意义.河北地质学院学报,17(1):1-17.
    郑文武,杨杰东,洪天求,等,2004.辽南与苏皖北部新元古代地层Sr和C同位素对比及年龄界定.高校地质学报,10(2):165-178.
    郑文武、穆玉英、郑学信等.1994,皖北上前寒武系史家组碳质大化石的发现及生物地层意义.古生物学报,33(4):455-471
    周洪瑞,王自强,崔新省,等,1999.华北地台南部中新元古界层序地层研究.北京:地质
    
    Veizer J., 1983a. Chemical diagenesis of carbonates: theory and application. In: Arthur M A, Aanderson T F, Kaplan IR, et al, eds . Stable Isotopes in Sedimentary Geology. SEPMS thort. Course, 10:3-100.
    Veizer J., 1983b. Trace element and isotopes in sedimentary carbonates. Rev. Mineral. 11:265 - 300.
    Walter M. R., VeeversJ. J., Calver C. R. etal., 2000. Dating the 840 - 544 MaNeoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models, Precambrian Research, 100(3): 371-433.
    Walter M.R. and Heys G.R., 1985. Links between the rise of Metazoan and the decline of stromatolite. Precambrian Res. 29: 149 - 174.
    Winston D, Rittel J. F, Funiss G, 1999. Gas bubble and expansion on molar- tooth calcite structures in the Middle Proterozoic Belt Supergroup Western Monrtana-Reply. Journal of Sedimentary Research, 69:1140-1145
    Xiao Shuhai and Andrew H. K., 2000. Phosphatized animal embryos prom the Neoproterozoic Doushantuo Formation at Weng' an, Guizhou, South China. Journal of Paleontology, 74(5): 767-788.
    Xiao Shuhai, Andrew H. K. and Yuan Xunlai, 1998a. Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the neoproterozoic Doushantuo Formation, south China. Journal of Paleontology, 72(6): 1072-1086.
    Xiao Shuhai, Andrew H. Knoll, Alan J. Kaufman et al., 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform, Precambrian Research, 84(4): 197-220.
    Xiao Shuhai, Zhang Yun and Andrew H. K. 1998b. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391(5): 553-558.
    Yang Jiedong, Sun Weiguo, Wang Zongzhe, et al., 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research, 93: 215-233
    Yang Jiedong, Chen Jun, An Zhisheng, et. al,2000. Variations in 87Sr/86Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon. Palaeogeography, palaeoclimatology, palaeoecology, 157:151 -159.
    Yin Leiming, Sun Weiguo, 1994. Microbiota from the Neoproterozoic Liulaobei Formation in the Huainan region, northern Anhui, China. Precambrian Research, 65:95-114.
    Yoshioka H, Asahara Y, Tojo B et al., 2003. Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for aglacial to interglacial transition. Precambrian Research 124: 69-85
    
    Deny L. A., Kaufman A.J. and Jacobsen S. B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta, 56:1317-1329.
    Dott R. H., Bourgeois J.,1982. Hummocky stratification: significance of its variable bedding sequences. Bull. Geol. Soc. Am, 93:663-680
    Duan Chenghua, 1982. Late Precambrian algae megafossils Chuaria and Tawuia in some areas of eastern China. Alcheringa, (6): 57-68.
    Duke W. L., Arnott R. W. C. Cheel R. J, 1991. Shelf sandstones and hummocky cross stratification: New insights on a storm debate . Geology, 19: 625~628
    Duke, W. L., 1985. Hummocky cross-stratification,tropical hurricane, and intense winter storms. Sedimentology, 32, 167-194.
    Epstein S, Mayeda T K, 1953. Recised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64: 1315-1326
    Fairchild I. J., Song Tianrui, 1997. Possible seismic origin of molar tooth structures in Neoproterozoic carbonate ramp deposit, North China. Sedimentology, 44:611-636
    Fairchild I. J., Spiro B., Herrington P. M., et al., 2000. Controls on Sr and isotope compositions of Neoproterozoic Sr-rich limestones of East Greenland and North China. In: Grotzinger, J.P. James, N.P. (Eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World, vol. 67. SEPM Spec. Publ., Tulsa, Okla.: 297-313
    Fedo C M, Cooper J D, 2001. Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern Califonia, and implications for the early evolution of the Cordilleran margin. Sedimentary Geology, 141-142: 501-522.
    F1 u gel E. , 1982. Microfacies Analysis of Limestone. Translated by K. Christerson. Springer-Verlag-Berlin-Heidelberg-New York: 416-439
    Furniss G, Rittle J.F., Winston D., 1998. Gas bubble and expansion crack origin of'molartooth" calcite structures in the Middle Proterozoic Belt Supergroup. Western Montana. Journal of Sedimentary Research, 68(1 ):104-114
    Galindo C, Casquet C, Rapela C, et al., 2004. Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: tectonic implications. Precambrian Research, 131: 55-71.
    Gehling J. G., 2000, Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia, Precambrian Research, 100(1): 65-95.
    Gorjan P., Walter M. R. and Swart R., 2003. Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotope anomaly recognised in Namibia. Journal of African Earth Sciences, 36(1-2): 89-98.
    
    Grey K., Corkeron M, 1998. Late Neoproterozoic stromatolites in glacigenic successions of the Kimberley region, Western Australia: evidence for a younger Marinoan glaciation. Precambrian Res. 92: 65 - 87
    Grotzinger J. P. , Watters W. A. , Knoll A. H. , 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group , Namibia. Paleobiology, 26(3): 334 - 359
    Haines, P.W., A late Proterozoic storm-dominated carbonate shelf sequence: theWonoka Formation in the central and southern Flinders Ranges. In: Jago, J.B., Moore, P.S. (Eds.), The evolution of a late Precambrian - Early Palaeo-zoic rift complex: the Adelaide Geosyncline, Geological Society of Australia Special Publication, 1990, 16:175-198.
    Harms J C. 1979. Premary sedimentary structures. Annual Review of Earth and Planetary Science, 7: 227~248
    Hofinann, H.J., 1994. Proterozoic carbonaceous compressions ("metaphytes" and "worms"). In Early Life on Earth. Nobel Symposium, 84, 342-357
    Horodyski R. J., 1976. Stromatolites of the upper Siyeh limestone (middle Proterozoic), Belt supergroup, Glacier national park, Montana. Precambrian Research, 3: 517-536
    Huertas M. O., Palomo I, Moresi M., etal., 1991. A mineralogical and geochemical approach to establish a sedimentary model in a passive continental margin Sabbetic Zone, Betic Cordilleras, Sepein.Clay minerals, 26:389 - 407
    Hunter R. E., Clifton H. E., 1982. Cyclic deposits and hummocky cross-stratification of probable storm origin in Upper Cretaceous rocks of the Cape Sebastian area, southwestern Oregon . Journal of Sedmentary Petrology, 52:127~143
    Jacobsen S. B., Kaufman A. J., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology 161: 37 - 57
    James, N. P., Narbonne, G M., Sherman, A.G., 1998. Molar-tooth carbonates: shallow subtidal facies of the Mid-to Late Neoproterozoic. J. Sediment. Res. 68, 716-722.
    Kaufman A J and Knoll A H,1995. Neoproterozoic variations in the C isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73: 27-49.
    Kaufman A. J., Jacobsen S. B., Knoll A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planetary Science Letters, 120:409-430.
    Keith M. H., Weber J. N., 1964. Isotopic composition and environmental classification of selected limestones and fossils. Geochimica Cosmochimica Acta, 28: 1787-1816
    Kennedy M. J., Runnegar B., Prave A. R., et al., 1998. Two or four Neoproterozoic glaciations? Geology, 26: 1059-1063.
    Kidwell S. M., 1989. Stratigraphic condensation of marine transgressive records: oriin of maior shell deposits in the Miocene of Marryland. J Geol, 97: 1-24
    
    Knoll A. H., 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet Svalbard. Journal of Paleontology, 5 8:131 -162.
    Leckie D. A., Walker R. G., 1982. Storm- and tide-dominated shorelines in Cretaceous Moosebar-Lower Gates interval-outcrop equivalents of deep basing as trap in Western Canada. Bulletin of American Association of Petroleum Geologists, 66:138-157
    Melezhik V. A., Fallick A. E., Makarikhin V. V., et al., 1997. Links between Palaeoproterozoic palaeogeography and rise and decline of stromatolites: Fennoscandian Shield. Precambrian Res. 82:311 -348.
    Montanezl. P., Banner J. L., OslegerD. A., et. al, 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater87Sr/86Sr. Geology, 24: 917-920
    Myrow P.M., Southard J.B., 1996. Tempestite deposition. Journal of Sedimentary Research, 66 (5): 875-887
    Narbonne G M., James N.P., 1996. Mesoproterozoic deep-water reefs from Border Peninsula, Arctic Canada. Sedimentology, 43: 827-848.
    Narbonne G. M., Saylor B.Z., Grotzinger J.P., 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology. 71: 953 - 967.
    Petrov P. Y. and Semikhatov M. A., 2001. Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia. Precambrian Res. 111: 257 - 281.
    Pratt, B.R., 1997. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sedimentary Geology, 117: 1-10
    Pratt, B.R. , 1998. Molar-tooth structure in Proterozoic carbonate rocks: origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment. Geol. Soc. Amer. Bull., 110 (8): 1028-1045
    Pratt, B.R., 1999. Gas bubble and expansion crack origin of molartooth calcite structures in the Middle Proterozoic Belt Supergroup, western Montana-Discussion. J. Sediment. Res. 69, 1136-1140.
    Riding R. and Sharma M., 1998. Late Palaeoproterozoic (~1800 - 1600 Ma) stromatolites, Cuddapah Basin , southern India: cyanobacterial or other bacterial microfabrics?.Precambrian Res., 92: 21 - 35.
    Ross Gerald M., Bloch John D. and Krouse H. Roy, 1995. Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate, 73(1): 71-99.
    Rossetti D.F., Goes A.M., 2000. Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codo Formation, northern Brazil. Sedimentary Geology,135: 137-156
    
    Samuelsson J., Butterfield N. J. 2001. Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications. Precambrian Research, 107(4): 235-251.
    Samuelsson J., Dawes P. R., VidalG, 1999. Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Research, 96 (1): 1-23.
    Saylor B Z, Grotzinger J P, Germs G J B, 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups(Nama Group), southwestern Namibia. Precambrian Research, 73: 153-171.
    Schopf J. W., Zhu Weiqing, Xu Zhaoliang et al., 1984. Proterozoic stromatolitic microbiotas of the 1400-1500 Ma-old Gaoyuzhuang Formation near Jixian, Northern China. Precambrian Res., 24:335-349.
    Sergeev V.N., 1994. Microfossils in cherts from the Middle Riphean (Mesoproterozoic) Avzyan Formation, southern Ural Mountains, Russian Federation. Precambrian Research. 65: 231 -254.
    Shackleton N. J., Kennett J. P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277,279 and 281. in Kennett J P, Houtz R E, et al., Initial Reports of the Deep Sea Drilling Project 29. U. S. Government Printing Office, Washington D. C., 743-755
    Sherman A.G., Narbonne G.M., James N.P., 2001. Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada. Sedimentary Geology, 139: 171-203
    Shields G A, 1999. Working towards a new stratigraphic calibration scheme for the Neoproterozoic-Cambrian. Eclogae Geologicae Helvetiae, 92: 221-233
    Song Tianrui, 1988. A probable earthquake-tsunami sequence in Precambrian carbonate strata of Ming Tombs District, Beijing. Kexue Tongbao, 33(13): 1121 ~ 1124.
    Spjeldnaes N., 1963. A new fossil (Papillomembrana sp.) from the upper Precambrian of Norway. Nature, 200: 63 - 64.
    Steiner, M., 1994: Die Neoproterozoischen Megaalgen Sudchinas. Berliner Geowiss, abh. (E), 15, pp.40-64.
    Sun Weiguo, Wang Guixiang, Zhou Benhe, 1986. Macroscopic Worm-Like body fossils from the upper Precambrian (900-700 Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance. Precambrian Research, 31(3): 377-403.
    Turner E. C, James N. P., Narbonne G M., 1997, Growth dynamics of Neoproterozoic calcimicrobial reefs, Mackenzie Mountains, northwest Canada, Journal of Sedimentary Research, 67(3): 437-450.
    Vail P. R., Audemard F., Bowman S. A., 1991. The stratigraphic signatures of tectonics, eustacy and sedimentology-An overiew. In: Einsele G?Rkcken W, Seilacher A(eds), Cycles and Events in Stratigraphy, Berlin: Springer-Verlag. 617-659
    
    Veizer J., 1983a. Chemical diagenesis of carbonates: theory and application. In: Arthur M A, Aanderson T F, Kaplan IR, et al, eds . Stable Isotopes in Sedimentary Geology. SEPMS thort. Course, 10:3-100.
    Veizer J., 1983b. Trace element and isotopes in sedimentary carbonates. Rev. Mineral. 11:265 - 300.
    Walter M. R., VeeversJ. J., Calver C. R. etal., 2000. Dating the 840 - 544 MaNeoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models, Precambrian Research, 100(3): 371-433.
    Walter M.R. and Heys G.R., 1985. Links between the rise of Metazoan and the decline of stromatolite. Precambrian Res. 29: 149 - 174.
    Winston D, Rittel J. F, Funiss G, 1999. Gas bubble and expansion on molar- tooth calcite structures in the Middle Proterozoic Belt Supergroup Western Monrtana-Reply. Journal of Sedimentary Research, 69:1140-1145
    Xiao Shuhai and Andrew H. K., 2000. Phosphatized animal embryos prom the Neoproterozoic Doushantuo Formation at Weng' an, Guizhou, South China. Journal of Paleontology, 74(5): 767-788.
    Xiao Shuhai, Andrew H. K. and Yuan Xunlai, 1998a. Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the neoproterozoic Doushantuo Formation, south China. Journal of Paleontology, 72(6): 1072-1086.
    Xiao Shuhai, Andrew H. Knoll, Alan J. Kaufman et al., 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform, Precambrian Research, 84(4): 197-220.
    Xiao Shuhai, Zhang Yun and Andrew H. K. 1998b. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391(5): 553-558.
    Yang Jiedong, Sun Weiguo, Wang Zongzhe, et al., 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research, 93: 215-233
    Yang Jiedong, Chen Jun, An Zhisheng, et. al,2000. Variations in 87Sr/86Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon. Palaeogeography, palaeoclimatology, palaeoecology, 157:151 -159.
    Yin Leiming, Sun Weiguo, 1994. Microbiota from the Neoproterozoic Liulaobei Formation in the Huainan region, northern Anhui, China. Precambrian Research, 65:95-114.
    Yoshioka H, Asahara Y, Tojo B et al., 2003. Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for aglacial to interglacial transition. Precambrian Research 124: 69-85
    
    Yuan Xunlai, Xiao Shuhai, Li Jun et al., 2000. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China, Precambrian Research, 107(3-4): 253-263.
    Zang Wenlong, 1995. Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia. Precambrian Research, 74: 119-175
    Zang Wenlong, Walter M R, 1992. Late prorterozoic and Early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central eastern China. Precambrian Research, 57:243-323.
    Zhu Shixing, 1982. An outline of studies on the Precambrian stromatolites of China. Precambrian. Res., 18: 367-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700