骨髓间充质干细胞移植对烟雾吸入性损伤炎症反应及组织修复的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨分离、体外培养、鉴定及体外标记兔骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells, MSCs)的方法,为进一步的实验研究打下基础。
     方法:选择健康幼龄新西兰大耳白兔,于双侧髂后上嵴及胫骨上端内侧部行骨髓穿刺提取骨髓。采用全骨髓培养法(直接贴壁法)分离培养MSCs,对第2、3、4、5、6代MSCs应用MTT法测定生长曲线,分析MSCs的生长规律。对MSCs进行形态学观察,通过流式细胞术对CD34、CD44、CD45、CD105四种MSCs表面抗原进行鉴定,证明所培养的细胞为MSCs。采用5-溴脱氧尿嘧啶核苷(5-Bromo-2-deoxyuridine, BrdU)体外标记兔MSCs,检测不同标记时间和标记浓度的标记阳性率。
     结果:全骨髓培养法培养的原代MSCs接种4天后可以被观察到,形态均匀成梭形,生长增殖迅速,符合MSCs生长的特性,7-8天MSCs融合接近80%,传代培养生长良好。MSCs生长曲线呈S型,由生长曲线分析可知,MSCs在培养第4-8天为高速生长期,MSCs在第3-5代生长最为旺盛。经流式细胞术鉴定,CD34 (-)、CD45 (-)、CD44 (+)、CD105(+),证明所培养的细胞为较纯的MSCs。BrdU体外标记兔MSCs的阳性率达到85-90%,40μmol/L、标记72h为最佳标记浓度和标记时间。
     结论:应用本实验方法,可以分离、纯化培养兔骨髓间充质干细胞且操作简便,效率高,经济实用。所培养的MSCs体外生长稳定、增殖速度快、贴壁率高、可连续传代,可用于MSCs功能及应用的进一步研究。应用BrdU体外标记兔MSCs是安全可靠的。
     目的:建立兔烟雾吸入性损伤模型。
     方法:采用自制烟雾吸入性损伤致伤仪致伤。以干燥的松木屑及煤油为发烟材料,在密闭环境使兔自行吸入烟雾10min,间隔2min再次致伤10min。伤后观察兔临床表现、各时点血气及伤后24h肺组织切片观察。
     结果:(1)伤后兔呼吸频率明显加快,呼吸困难明显,肺部可及干啰音,24h后呼吸症状改善。(2)血气示PaO2由伤前90.20±18.44mmHg分别降至伤后10min 63.48±12.90mmHg、伤后2h 56.96±10.23mmHg及伤后4h 65.76±12.55mmHg,与伤前比较差异有显著性(P<0.05)。至伤后24h基本恢复正常;PaCO2由伤前32.10±5.48mmHg分别升至伤后10min 41.72±6.33mmHg、伤后2h 43.12±5.42mmHg及伤后4h 39.11±6.91mmHg与伤前比较差异有显著性(P<0.05)。至伤后24h基本恢复正常。(3)组织病理学观察:大体观见伤肺苍白,包膜紧张,大片出血灶;光镜下见血管内充血、肺泡水肿和出血、间质水肿及炎性细胞浸润等肺损伤改变。
     结论:本文推荐的兔烟雾吸入性损伤模型是一种简便、实用、稳定、经济、重复性好的烟雾吸入性损伤模型,适于烟雾吸入性损伤的研究。
     目的:探讨骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells, MSCs)移植对烟雾吸入性损伤兔炎症反应的影响,评价MSCs移植的治疗效果,初步揭示MSCs移植对烟雾吸入性损伤影响的可能机制。
     方法:64健康新西兰大耳白兔随机数字表法分为2组:烟雾吸入性损伤组(S组)和MSCs治疗组(M组),每组各32只动物。另取8只动物做正常对照组测基础值。正常对照组不致伤,仅经耳缘静脉注入10ml PBS液;S组致伤后立即经耳缘静脉注入10ml PBS液;M组致伤后立即经耳缘静脉注入内含1×107个第三代兔MSCs的PBS液10ml。S组和M组伤后分为2h、4h、6h、24h观察,每个时间点8只动物,主要观察指标和方法:①采用ELISA法检测正常对照值、S组和M组伤后2h、4h、6h外周血以及肺组织中TNF-α、IL-1β、IL-6、IL-10、血管内皮生长因子(Vascular endothelial growth factor, VEGF)含量并作比较。②采用RT-PCR法检测S组和M组伤后2h、4h、6h肺组织TNF-α、IL-1β、IL-6、IL-10 mRNA的表达并作比较。③检测正常对照组、S组和M组伤后6h和24h肺水质量分数并作比较。④大体和光镜下分别观察正常对照组、S组和M组伤后2h、4h、6h、24h肺组织和支气管组织的变化。
     结果:(1)促炎因子:实验开始后2h、4h、6h,M组外周血和肺组织中主要促炎因子IL-1β、IL-6以及TNF-α含量与相应S组对应时间点值相比均显著降低(P<0.05)。S组外周血和肺组织中主要促炎因子IL-1β、IL-6以及TNF-α含量与相应组内正常对照值相比均显著升高(P<0.05)。M组外周血和肺组织中IL-1β含量与组内正常对照值相比无显著差异(P>0.05),M组外周血和肺组织中TNF-α含量与组内正常对照值相比显著升高(P<0.05),与组内正常对照值相比,肺组织中IL-6含量显著升高(P<0.05)而外周血IL-6含量无显著差异(P>0.05)。(2)抗炎因子:实验开始后2h、4h、6h,M组外周血主要抗炎因子IL-10含量与相应S组对应时间点值相比均显著升高(P<0.05),M组和S组2h、4h、6h含量较各自正常对照值均显著升高(P<0.05);M组肺组织中IL-10含量与相应S组对应时间点值相比,4h和6h显著升高(P<0.05)而2h升高不显著(P>0.05)。组内比较,S组2h、4h、6h IL-10含量较正常对照值差异不显著(P>0.05),M组4h和6h显著升高(P<0.05)而2h升高不显著(P>0.05)。(3)VEGF水平:S组和M组外周血与肺组织中VEGF水平伤后2h、4h、6h迅速升高,与正常对照值比较均显著升高(P<0.05)。M组外周血伤后各时间点VEGF水平与S组对应时间点相比,VEGF值却显著下降(P<0.05);而M组肺组织伤后各时间点VEGF水平与S组对应时间点相比VEGF值却显著升高(P<0.05)。(4)主要炎症因子的mRNA表达:TNF-α,IL-1β、IL-6 mRNA相对表达量在M组4h和6h显著低于S组相应时间点TNF-α,IL-1β、IL-6 mRNA相对表达量(P<0.05),仅M组2h IL-6 mRNA相对表达量与相应时间点比较无显著差异(P>0.05);M组各时间点IL-10 mRNA相对表达量均显著高于S组相应时间点IL-10 mRNA相对表达量(P<0.05)。(5)处置后6h和24h,M组实验结束后肺水质量分数较S组均显著降低(P<0.05)。S组和M组6h和24h与正常对照值比较均显著升高(P<0.05)。(6)病理学观察:大体观察:从色泽、包膜紧张度、光滑度、充血状况、出血坏死灶大小、分泌物等指标综合观察,M组各时间点较S组改善明显,正常对照组和U组未见异常。组织病理学观察:从上皮脱落、充血、出血、渗出、肺泡隔情况、肺水肿、肺不张、肺气肿、炎症细胞浸润、成纤维细胞增生等指标综合观察,M组各时间点支气管和肺组织较S组改善明显,正常对照组结构正常。
     结论:MSCs静脉移植至烟雾吸入性损伤兔体内,能显著降低其全身和局部主要促炎因子水平,升高其全身和局部抗炎因子水平,减少其血管外肺水,改善肺和气管组织损伤程度,对烟雾吸入性损伤具有抗炎保护作用。抗炎-免疫调节作用是MSCs移植对烟雾吸入性损伤治疗作用的另一主要机制。
     目的:探讨骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells, MSCs)移植对烟雾吸入性损伤兔组织修复的影响。
     方法:32健康新西兰大耳白兔随机数字表法分为4组:正常对照组(C组)、正常对照+MSCs治疗组(U组)、烟雾吸入性损伤组(S组)和MSCs治疗组(M组),每组8只实验动物。C组不致伤,仅经耳缘静脉注入10ml PBS液;U组也不致伤,仅经耳缘静脉注入内含1×107个BrdU标记的第三代兔MSCs的PBS液10ml;S组致伤后立即经耳缘静脉注入10ml PBS液;M组致伤后立即经耳缘静脉注入内含1×107个BrdU标记的第三代兔MSCs的PBS液10ml。4组分为7d和28d两个时间点观察,每个观察点4只动物,主要观察指标和方法:①大体和光镜下分别观察4组伤后7d和28d肺组织和支气管组织的变化。②采用免疫组化技术观察4组处置后7dMSCs体内“归巢”情况;采用免疫组化双染色技术观察4组处置后28dMSCs体内分化情况。
     结果:①大体观察:从色泽、包膜紧张度、光滑度、充血状况、出血坏死灶大小、分泌物等指标综合观察,M组7d和28d较S组改善明显,C组和U组未见异常。组织病理学观察:从上皮脱落、充血、出血、渗出、肺泡隔情况、肺水肿、肺不张、肺气肿、炎症细胞浸润、成纤维细胞增生等指标综合观察,M组7d和28d支气管和肺组织较S组改善明显,C组和U组结构正常。②免疫组织化学染色显示M组BrdU标记的MSCs伤后7天能在支气管组织和肺组织中大量“归巢”,而C组、S组及U组未见或者极少见“归巢”。③免疫组化双染色显示M组可见水通道蛋白-5(AQP-5)和BrdU双染阳性细胞,说明MSCs在肺内能分化为肺泡Ⅰ型上皮细胞;可见碱性磷酸酶(AKP)和BrdU双染阳性细胞,说明MSCs在肺内能分化为肺泡Ⅱ型上皮细胞;可见CD34和BrdU双染阳性细胞,说明MSCs在肺内能分化为肺血管内皮细胞。C组、U组、S组均未见上述双染色阳性细胞。
     结论:经静脉移植至烟雾吸入性损伤兔体内的MSCs均能“归巢”至损伤和炎症反应明显的肺组织和支气管组织区域并分化为肺泡Ⅰ型上皮细胞、肺泡Ⅱ型上皮细胞以及肺血管内皮细胞,减轻肺组织损伤,可能参与并加快了烟雾吸入性损伤的组织修复过程。
Objective:To explore a method of isolation, purification and culture of bone marrow-derived mesenchymal stem cells (MSCs) of rabbits in vitro for the sake of a further study.
     Methods:Bone marrow tissue was harvested from bilateral posterior iliac crest and tibias bone of young New Zealand white rabbits. MSCs were isolated and proliferated by the method of whole marrow culture. Growth curve of 2nd、3rd、4th、5th、6th generation MSCs were drawn by MTT method. CD34, CD44, CD45, CD 105 antigen of MSCs were identified by flow cytometry.The purified MSCs were labelled with BrdU and Immunohistochemistry was performed to calculate and evaluate the labeling rate and determine the optimal labeling time and labeling concentration.
     Results:Primary cultured MSCs start adhering to plates 12 hours after seeding and spindle-shaped MSCs were observed under microscopy and growing at a rapid speed.Confluence of MSCs reach to 80% 7-8days after seeding. From the MSCs growth curve, which was S shape, it was known that MSCs grew in a rapid stage at 4th-8th day after seeding, and MSCs of 3rd-5th generation possess higher activity. CD34(-), CD45(-) and CD44(+), CD105(+) were detected by flow cytometry, which confirmed finally that the cells we cultured was MSCs. The positive rate of MSCs labeled by BrdU was 85-90%.40μmol/L and 72h were the optimal labeling time and labeling concentration respectively.
     Conclusion:In this study, by our culture protocol which is characteristic of simple operation, high efficiency and is economic and practical, MSCs were isolated and proliferated stably and rapidly.Cultured MSCs possessed high activity of growing and amplification and were appropriate for further research. Application of BrdU labeling for MSCs in vitro is safe and reliable.
     Objective:To establish model of smoke inhalation injury in rabbit.
     Methods:Model was established by using of home-made smoke inhalation injury generator. Desiccated pine wood chip and kerosene were used to produce smoke. Rabbits inhaled smoke in air tight container for 10 min and repeated at 2 min interval. After injury, clinical manifestation was observed and blood gas at every time point was recorded. After 24h, rabbits were killed and Lung histopathologic slide was analyzed and evaluated.
     Results:(1) After injury, breath frequency of rabbits increased obviously and appeared dyspnea and distressed. Dry rales in lung could be heared. After 24h, breath was improved. (2) PaO2 decreased from pre-injury 90.20±18.44mmHg to 63.48±12.90mmHg,56.96±10.23mmHg and 65.76±12.55mmHg at post-injury 10min,2h and 4h respectively and the difference is significant (P<0.05). At post-injury 24h, PaO2 returned to normal; PaO2 increased from pre-injury 32.10±5.48mmHg to 41.72±6.33mmHg,43.12±5.42mmHg and 39.11±6.91mmHg at post-injury 10min,2h and 4h respectively and the difference is significant (P<0.05). At post-injury 24h, PaCO2 returned to normal. (3) Histopathology observation: Morphologically, injuried lung seemed to be pale and coated tension and large hemorrhage could be observed. Histopathologically, congestion in pulmonary blood vessel, edema and hemorrhage in alveoli, interstitial edema and inflammatory cell infiltration.
     Conclusion:Rabbit model of smoke inhalation injury recommended in this article is a convenient, useful, stable, economic and reduplicated animal model and refers to research of smoke inhalation injury.
     Objectives:To investigate the effect of bone marrow-derived mesenchmal stem cells engraftment on inflammatory response in smoke inhalation injury rabbits, evaluate the therapeutic effect and reveal its possible mechanism initially.
     Method:64 healthy New Zealand rabbits were divided into two groups randomly via Number table:smoke inhalation injury group (S group) and MSCs treatment group (M group). As control group, baseline was recorded in another 8 rabbits.10ml PBS was injected via ear marginal vein in control group rabbits; 10ml PBS was injected via ear marginal vein immediately on injury in S group rabbits; The third generation MSCs labeled by BrdU whose concentration was 1×107/10ml PBS was injected via ear marginal vein immediately on injury in M group rabbits. Main observation index and methods:①TNF-α, IL-1β, IL-6, IL-10 and vascular endothelial growth factor (VEGF) in peripheral blood and lung tissue were detected by ELISA at 2h,4h and 6h after injection in S group and M group and baseline in control group respectively and analyzed.②mRNA expression of TNF-α, IL-1β, IL-6, IL-10 in lung tissue were detected by RT-PCR at 2h,4h and 6h after injection respectively and analyzed in S group and M group.③Lung water mass fraction were measured at 6h and 24h after injection in S group and M group and baseline in control group respectively and analyzed.④Change of lung tissue and bronchial tissue were observed morphologically and histopathologically at 2h、4h、6h、24h after injection respectively and analyzed in three groups.
     Results:(1) Pro-inflammatory cytokines:Concentration of IL-1β, IL-6 and TNF-αin peripheral blood and lung tissue at 2h,4h and 6h after injection in M group decreased significantly when compared to values at corresponding time point in S group (P<0.05). Concentration of IL-1β, IL-6 and TNF-αin peripheral blood and lung tissue at 2h,4h and 6h after injection in S group increased significantly when compared to baseline (P<0.05). Concentration of IL-1βin peripheral blood and lungⅨ tissue at 2h,4h and 6h after injection in M group had no significance when compared to baseline (P>0.05). Concentration of TNF-αin peripheral blood and lung tissue at 2h,4h and 6h after injection in M group increased significantly when compared to baseline (P<0.05). Concentration of IL-6 in lung tissue at 2h,4h and 6h after injection in M group increased significantly when compared to baseline (P<0.05) but had no significance in peripheral blood (P>0.05). (2) Anti-inflammatory cytokines:Concentration of IL-10 in peripheral blood at 2h,4h and 6h after injection in M group increased significantly when compared to values at corresponding time point in S group (P<0.05). Concentration of IL-10 in peripheral blood at 2h,4h and 6h after injection in S group and M group increased significantly when compared to baseline (P<0.05). Concentration of IL-10 in lung tissue at 4h and 6h but 2h after injection in M group increased significantly when compared to values at corresponding time point in S group (P<0.05). Concentration of IL-10 in lung tissue at 2h,4h and 6h after injection in M group had no significance when compared to baseline (P>0.05). Concentration of IL-10 in lung tissue at 4h and 6h but 2h after injection in M group increased significantly when compared to baseline (P<0.05). (3) VEGF:Concentration of VEGF in peripheral blood and lung tissue at 2h,4h and 6h after injury in S group increased significantly compared to baseline (P<0.05). Concentration of VEGF in peripheral blood at 2h,4h,6h after injury appeared increase trend (compared to value at Oh, P<0.05) in M group but decreased obviously compared to values at corresponding time point in S group (P<0.05) meanwhile Concentration of VEGF in lung tissue at 2h,4h,6h after injury appeared decrease trend (compared to baseline, P<0.05) in M group but increased obviously compared to values at corresponding time point in S group (P<0.05). (4) mRNA expression of main cytokines:mRNA relative expression of TNF-α、IL-1β、IL-6 at 4h and 6h in M group were less significantly than values at corresponding time point in S group (P<0.05), but there was no significance when mRNA relative expression of IL-6 at 2h in M group compared to value at corresponding time point in S group (P>0.05); mRNA relative expression of IL-10 at every time point in M group were more significantly than that at corresponding time point in S group (P<0.05). (5) Lung water mass fraction in M group decreased significantly compared to value in S group at 6h and 24h after injection (P<0.05). Values at 6h and 24h in S group and M group increased significantly when compared to baseline (P<0.05). (6) Histopathological observation:Morphologically, comprehensive observation from several aspects including color, coated tension, smoothness, congestive condition, the size of hemorrhage and necrosis and secretions etc. showed that lung and bronchus improved significantly at every time points in M group compared to those in S group meanwhile lung and bronchus were normal in control group and U group. Histopathologically, comprehensive observation from several aspects including epithelial loss, congestion, hemorrhage, exudation, alveolar septa case, pulmonary edema, atelectasis, emphysema,inflammatory cell infiltration, fibroblast proliferation etc. showed that lung and bronchus improved significantly at every time points in M group compared to those in S group meanwhile structure of lung and bronchus were normal in control group and U group.
     Conclusion:MSCs engraftment intravenously into smoke inhalation injury could significantly decrease systematic and local pro-inflammatory cytokines and increase systematic and local anti-inflammatory cytokines, decrease extravascular lung water, improve systematic inflammatory response and alleviate lung and bronchial injury, which could show protective effect on smoke inhalation injury. Effect of anti-inflammatory and immunomodulation could be another mechanism of MSCs engraftment on therapeutic effect of smoke inhalation injury.
     Objectives:To investigate the effect of bone marrow-derived mesenchmal stem cells engraftment on tissue repair in smoke inhalation injury rabbits.
     Method:32 healthy New Zealand rabbits were divided into four groups randomly via Number table:control group (C group), control group+MSCs treatment group (U group), smoke inhalation injury group (S group) and MSCs treatment group (M group). There were 8 rabbits in every group.10ml PBS was injected via ear marginal vein in C group rabbits; 10ml PBS was injected via ear marginal vein immediately on injury in S group rabbits; The third generation MSCs labeled by BrdU whose concentration was 1×107/10ml PBS was injected via ear marginal vein immediately on injury in M group rabbits. The third generation MSCs labeled by BrdU whose concentration was 1×107/10ml PBS was injected via ear marginal vein in U group rabbits. There were two observation points:7th day and 28th day and 4 rabbits in every observation point. Main observation index and methods:①Change of lung tissue and bronchial tissue were observed morphologically and histopathologically at 7th day and 28th day after injection respectively and analyzed in four groups.②Homing of MSCs in vivo was observed at 7th days after injection by immunohistochemistry in four groups; Differentiation of MSCs in lung tissue and bronchial tissue observed at 28th days after injection by immunohistochemical double staining in four groups.
     Results:①Results from immunohistochemistry showed that MSCs labeled by BrdU in M group could migrate into and locate within injuried lung and bronchial tissue meanwhile MSCs labeled by BrdU in C group, U group and S group could not or rare to be detected.②Results from immunohistochemical double staining showed that there were positive cells of aquaporin-5 (AQP-5) and BrdU, which could suggest that MSCs could differentiate to become alveolar epithelial cells typeⅠin lung; there were positive cells of alkaline phosphatase (AKP) and BrdU, which could suggest that MSCs could differentiate to become alveolar epithelial cells typeⅡin lung; there were positive cells of CD34 and BrdU, which could suggest that MSCs could differentiate to become pulmonary vascular endothelial cells in lung. However, there was no above-mentioned positive cells in C group, U group and S group.
     Conclusion:MSCs which were engrafted into smoke inhalation injury rabbits could migrate to homing or accumulate within the inflammatory and injuried site and differentiate to alveolar epithelial cells typeⅠandⅡand pulmonary vascular endothelial cells, reduce tissue injury, which suggested MSCs engraftment could participate in and accelerate the process of tissue repair of smoke inhalation injury.
引文
[1]Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis[J]. J Mol Cell Cardiol,2007,42(1):88-97.
    [2]Semedo P, Wang PM, Andreucci TH, et al. Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury [J]. Transplant Proc, 2007,39(2):421-423.
    [3]Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure[J]. PLoS ONE,2007,2(9):e941.
    [4]Gerdoni E, Gallo B, Casazza S, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis[J]. Ann Neurol,2007,61(3):219-227.
    [5]Rasulov MF, Vasilenko VT, Zaidenov VA, et al. Cell transplantation inhibits inflammatory reaction and stimulates repair processes in burn wound[J]. Bull Exp Biol Med,2006,142(1):112-115.
    [6]Iyer SS, Co C, Ro jas M. Mesenchymal stem cells and inflammatory lung disease [J]. Panminerva Med,2009,51(1):5-16.
    [7]Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung[J]. Am J Respir Cell Mol Biol,2005,33(2):145-152.
    [8]Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice[J]. J Immunol,2007,179(3):1855-1863.
    [9]Neuringer IP, Randell SH. Stem cells and the repair of lung injury [J]. Respir Res,2004,5(1):6.
    [10]Kotton DN, Ma BY, Cardoso WV, et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium[J]. Development,2001,128(24):5181-5188.
    [11]Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its f ibrotic effect[J]. Proc Natl Acad Sci USA,2003,100(14):8407-8411.
    [12]Yamada M, Kubo H, Kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury [J]. J Immunol,2004,172(2):1266-1272.
    [13]都义日,付小兵,李存保.骨髓间充质干细胞的研究进展[J].中国危重病急救医学,2004,16(8):499-501.
    [14]Lin HT, Tarng YW, Chen YC, et al. Using human plasma supplemented medium to cultivate human bone marrow-derived mesenchymal stem cell and evaluation of its multiple-lineage potential [J]. Transplant Proc,2005,37 (10):4504-4505.
    [15]Huang Q, Wang YD, Wu T, et al. Preliminary separation of the growth factors in platelet-rich plasma:effects on the proliferation of human marrow-derived mesenchymal stem cells[J]. Chin Med J (Engl),2009,122(1):83-87.
    [16]倪玉霞,李澎,李贻奎,等.大鼠骨髓间充质干细胞的分离、培养和鉴定[J].广西医科大学学报,2009,26(1):10-13.
    [17]杨志明.细胞示踪技术.见:杨志明,主编.组织工程.第1版.北京:化学工业出版社,2002.203-213.
    [18]张德强,王晓东.人骨髓间充质干多细胞生长特性及碱性成纤维细胞生长因子对其增殖的影响.中国组织工程研究与临床康复,2007,11(20):3976-3979.
    [19]Park SH, Sim WY, Park SW, et al. An electromagnetic compressive force by cell exciter stimulates chondrogenic diferentiation of bone marrow-derived Mesenchymal stem cells[J]. Tissue Eng,2006,12(11):3107-3117.
    [20]王峻,吕文辉,刘红云.密度梯度离心与贴壁法分离培养兔骨髓间充质干细胞及其生物学特性观察[J].中国组织工程研究与临床康复,2008,12(34):6631-6634.
    [21]叶发刚,夏长所,张卫兵,等.兔骨髓间充质干细胞的分离、培养与鉴定[J].青岛大学医学院学报,2006,42(4):330-332.
    [22]邢承忠,洪晶,顾绍峰,等.兔骨髓间充质干细胞的分离、培养和鉴定[J].中国医科大学学报,2008,37(1):4-5.
    [23]Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinet,1987,20(3):263-272.
    [24]刘庆阳,史毅,王惠东,等.兔骨髓间充质干细胞的分离和培养与鉴定[J].组织工程与重建外科杂志,2008,4(2):69-72.
    [25]徐青镭,吴海山,周维江.兔骨髓间充质干细胞的提取与体外培养[J].第二军医大学学报,2000,21(3):242-245.
    [26]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8(4):315-317.
    [27]Lee JW, Gupta N, Serikov V, et al. Potential application of mesenchymal stem cells in acute lung injury[J]. Expert Opin Biol Ther,2009,9(10):1259-1270.
    [28]Kruyt MC, De Bruijn J, Veenhof M, et al. Application and limitations of chloromethylbenza-midodialkylcarbocyanine for tracing cell used in bone tissue engineering[J]. Tissue Eng,2003,9(1):105-115.
    [29]Ding WM, Bai JZ, Zhang JM, et al. Tracking of implanted stem cells using radio-labeled transferrin scintigraphy[J]. Nucl Med Biol,2004,31(6):719-725.
    [30]Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats[J]. World J Gastroenterol, 2005,11(22):3431-3440.
    [31]Anderson SA, Shukaliak-Quandt J, Jordan EK, et al. Magnetic resonance model of multiple sclerosis[J]. Ann Neurol,2004,55(5):654-659.
    [32]Kraitvchman DL, heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction[J]. Circulation,2003, 107(18):2290-2293.
    [33]Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology,2003,228(2):480-487.
    [34]冯善伟,姚晓黎,李中,等.BrdU体外标记大鼠骨髓间充质干细胞的研究[J].第一军医大学学报,2005,25(2):184-186.
    [35]安静,黎鳌,杨宗城,等.家兔烟雾吸入伤模型的制[J].第三军医大学学报,1987,9(1):71-73.
    [36]王年云,刘德伍,李国辉,等.介绍一种新的控温控压蒸气烫伤实验仪[J].江西医学院学报,2000,40(1):8-11.
    [37]Lee AS, Mellins RB. Lung injury from smoke inhalation[J]. Paeditric Respiratory Reviews,2006,7(2):123-128.
    [38]Brenner M, Kreuter K, Ju J, et al. In vivo optical coherence tomography detection of differences in regional large airway smoke inhalation induced injury in a rabbit model[J]. J Biomed Opt,2008,13(3):034001.
    [39]Bidani A, Hawkins HK, Wang CZ, et al. Dose dependence and time course of smoke inhalation injury in a rabbit model [J]. Lung,1999,177(2):111-122.
    [40]Laffon M, Pittet JF, Modelska K, et al. Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits[J]. Am J Respir Crit Care Med,1999,160(5 Pt 1):1441-1442.
    [41]蔡华荣,向小勇.炎性反应与急性肺损伤的关系研究进展[J].中国体外循环杂志,2006,4(2):125-128.
    [42]钱桂生.全身炎症反应综合征、急性肺损伤与急性呼吸窘迫综合征[J].医师进修杂志,2005,28(2):9-11.
    [43]Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells:novel concept for future therapies [J]. Expert Opin Biol Ther,2008,8(5):569-581.
    [44]刘伟,金发光.烟雾吸入性急性肺损伤/急性呼吸窘迫综合征的研究进展[J].国际呼吸杂志,2007,27(4):307-310.
    [45]Wright MJ, Murphy J T. Smoke inhalation enhances early alveolar leukocyte responsiveness to endotoxin[J]. J Trauma,2005,59(1):64-70.
    [46]杨天德,杨宗城,罗奇志.烟雾吸入伤大鼠肺组织白介素-6和α-干扰素的变化及意义[J].重庆医学,2004,3(11):1614-1615,1618.
    [47]Ware LB, Matthay MA. The acute respiratory distress syndrome[J]. N Engl J Med, 2000,342(18):1334-1349.
    [48]Garcia-Castro J, Trigueros C, Madrenas J, et al. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool[J]. J Cell Mol Med,2008,12 (6B):2552-2565.
    [49]常颖,齐欣,卜丽莎,等.成人骨髓间充质干细胞体外多向分化潜能特性的研究[J].中国危重病急救医学,2005,17(2):95-97.
    [50]陈莉娜,王颖,张艳艳,等.间充质干细胞的免疫调节作用[J].中国组织工程研究与临床康复,2007,11(28):5626-5629.
    [51]Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells[J]. Blood,2007,110(10):3499-3506.
    [52]Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience[J]. J Intern Med,2007,262(5):509-525.
    [53]Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J]. Exp Haematol,2003,31(10):890-896.
    [54]Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[J]. Cell Stem cell, 2008,2 (2):141-150.
    [55]Lam CF, Liu YC, Hsu JK, et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits[J]. Anesthesiology, 2008,108(3):392-401.
    [56]蔡存良,文仲光,周岗,等.骨髓间充质干细胞移植对急性肺损伤大鼠血浆TNF-α、IL-6水平的影响[J].感染、炎症、修复,2006,7(2):98-101.
    [57]Morrison DF, Foss DL, Murtaugh MP. Interleukin-10 gene therapy mediated amelioration of baeterial pneumonia[J]. Infect Immun,2000,68(8):47-52.
    [58]Hammer J. Acute lung injury:pathophysiology, assessment and eurrent therapy[J]. Paediatr Respir Rev,2001,2(1):10-21.
    [59]杨宗城.吸入性损伤[M].//杨宗城主编.烧伤治疗学.第3版.北京:人民卫生出版社,2006:349-368.
    [60]Kosmidou I, Karmpaliotis D, Kirtane AJ, et al. Vascular endothelial growth factors in pulmonary edema:an update[J]. J Thromb Thrombolysis,2008,25(3): 259-264.
    [61]陈玉君,刘唐威,陈克正.血.管内皮生长因子在急性肺损伤中的促炎作用[J].中国小儿急救医学,2006,13(5):480-481.
    [62]Ito Y, Betsuyaku T, Nagai K, et al. Expression of pulmonary VEGF family declines with age and is further down-regulated in lipopolysaccharide (LPS)-induced lung injury[J]. Exp Gerontol,2005,40(4):315-323.
    [63]Maitre B, Boussat S, Jean D, et al. Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury[J]. Eur Respir J,2001,18(1):100-106.
    [64]Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J]. Cell,2001,105(3): 369-377.
    [65]陈楠楠,黄世林.间质干细胞与免疫调节[J].中国组织工程研究与临床康复,2007,11(33):6670-6675.
    [66]Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal s tem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy[J]. Blood, 2005,106(5):1755-1761.
    [67]Klyushnenkova E, Mosca JD, Zemetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells:immunogenicity, tolerance, and suppression[J]. J Biomed Sci,2005,12(1):47-57.
    [68]Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells[J]. J Biomed Sci,2003,10(2):228-241.
    [69]李文军,杨宗城,杨晓东,等.烟雾吸入伤大鼠肺组织细胞凋亡及凋亡调控基因表达的变化[J].解放军医学杂志,2002,27(2):142-144.
    [70]Jian GY, Jaha G, Reinhardt RL. Pluripotency of mesenchymal stem cells derived from adult marrow [J]. Nature,2002,418(6893):41-49.
    [71]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [56]Poulsom R, Alison MR, Forbes SJ, et al. Adult stem cells plasticity[J]. J Pathol, 2002,197(4):441-456.
    [72]Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury[J]. Proc Natl Acad Sci USA,2007,104(26):11002-11007.
    [73]Kahler CM, Wechselberger J, Hilbe W, et al. Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury[J]. Respir Res,2007,8:50.
    [74]Xu J, Mora A, Shim, H, et al. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis[J]. Am J Respir Cell Mol Biol,2007,37(3):291-299.
    [75]Liebler JM, Lutzko C, Banfalvi A, et al. Retention of human bone marrow-derived cells in murine lungs following bleomycin-induced lung injury [J]. Am J Physiol Lung Cell Mol Physiol,2008,295(2):L285-L292.
    [76]赵峰,李圣青,张宇飞,等.骨髓间充质干细胞在肺损伤大鼠肺组织的分化[J].解放军医学杂志,2007,32(2):131-133.
    [77]Yang B. The human aquaporin gene family [J].Current Genomics,2000,1(1): 91-102.
    [78]Verkman AS. Physiological importance of aquaporin water channels [J]. Ann Med, 2002,34(3):192-200.
    [79]Hatakeyama S, Yoshida Y, Tani T, et al. Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum[J]. Biochem Biophys Res Commun, 2001,287(4):814-819.
    [80]Verkman AS. Applications of aquaporin inhibitors [J]. Drug News Perspect,2003, 14(7):412-420.
    [81]胡利群,丁建中.水通道蛋白与肺部疾病研究进展[J].长江大学学报(自然科学版),2008,5(4):83-86.
    [82]杨宝学,赵雪俭.水通道蛋白研究进展[J].中国病理生理杂志,2005,21(8):1619-1622.
    [83]Song Y, Jayaraman S, Yang B, et al. Role of aquaporin water channels in airway fluid transport, humidif ication, and surface liquid hydration[J]. J Gen Physiol, 2001,117(6):573-582.
    [84]Raina S, Preston GM, Guggino WB, et al. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues [J]. J Biol Chem,1995,270(4):1908-1912.
    [85]Newman GR, Campbell L, von Ruhland C, et al. Caveolin and its cellular and subcellular immunolocalisation in lung alveolar epithelium:implications for alveolar epithelial type Ⅰ cell function[J]. Cell Tissue Res,1999,295(1): 111-120.
    [86]Gonzalez RF, Dobbs LG. Purification and analysis of RTI40, a type I alveolar epithelial cell apical membrane protein[J]. Biochim Biophys Acta,1998,1429 (1):208-216.
    [87]Borok Z, Danto SI, Lubman RL, et al. Modulation of tlalpha expression with alveolar epithelial cell phenotype in vitro[J]. Am J Physiol,1998,275 (1 Pt 1):L155-L164.
    [88]Chen Z, Jin N, Narasaraju T, et al. Identification of two novel markers for alveolar epithelial type Ⅰ and Ⅱ cells[J]. Biochem Biophys Res Commun,2004, 319(3):774-780.
    [89]Nielsen N, King LS, Christensen BM, et al. Aquaporins in complex tissues. Ⅱ. Subcellular distribution in respiratory and glandular tissues of the rat[J]. Am J Physiol Cell Physiol,1997,273(5 Pt 1):C1549-C1561.
    [90]Borok Z, Li X, Fernandes VF, et al. Differential regulation of rat aquaporin-5 promoter/enhancer activities in lung and salivary epithelial cells[J]. J Biol Chem,2000,275(34):26507-26514.
    [91]周莉,金克炜.肺泡Ⅱ型上皮细胞及其分离鉴定与原代培养[J].中国肺癌杂志,2003,6(3):236-238.
    [92]郝嘉,李永旺,肖颖彬.大鼠肺泡Ⅱ型上皮细胞体外培养和鉴定[J].第三军医大学学报,2000,22(5):500-501.
    [93]郑加永,谢炳寿,陈萍,等.小鼠肺微血管内皮细胞培养及鉴定[J].温州医学院学报,2005,35(4):328-329。
    [94]Magee JC, Stone AE, Oldham KT, et al. Isolation, culture, and characterization of rat lung microvascular endothelial cells[J]. Am J physiol,1994,267(4 Pt 1): L433-L441.
    [95]Medhora M, Daniels J, Mundey K, et al. Epoxygenase-driven angiogenesis inhuman lung microvascular endothelial cells[J]. Am J Physiol Heart Circ Physiol,2003, 284(1):H215-H224.
    [96]王新红,殷莲华,金惠铭.VEGF高表达的胶质瘤细胞C6对共培养微血管内皮细胞表达Flk21及Flt21的影响[J].中国病理生理杂志,2002,18(11):1365-1369.
    [97]徐顺贵,吴国明,徐智,等.组织块法培养大鼠肺微血管内皮细胞的综合鉴定[J].第三军医大学学报,2007,29(1):39-42.
    [98]崔凤梅,苏世标,聂继华,等.大鼠气管-支气管上皮细胞的分离、鉴定和培养[J].中国辐射卫生,2005,14(4):246-247.
    [99]孙磊,王小明.急性肺损伤干细胞修复的进展[J].国际呼吸杂志,2007,27(10):782-786.
    [100]白小东,付小兵.骨髓间充质干细胞诱导增殖分化信号的研究进展[J].中国危重病急救医学,2004,16(5):318-320.
    [101]Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med,2009, 15(1):42-49.
    [102]Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[J]. PLoS One,2008,3(4):e1886.
    [103]Sanchez-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood[J]. J Neurosci res,2002,69(6):880-893.
    [104]Hess DC, Hill WD, Carroll JE, et al. Do bone marrow cells generate neurons [J]. Arch Neurol,2004,61(4):483-485.
    [1]Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury[J]. N Engl J Med,2005,353(16):1685-1693.
    [2]Patel SA, Sherman L, Munoz J, et al. Immunological properties of mesenchymal stem cells and clinical implications[J]. Arch Immunol Ther Exp,2008,56(1):1-8.
    [3]朱舜明,郭卫平,田琼.骨髓间充质干细胞的研究进展[J].实用医学杂志,2007,23(19):3116-3118.
    [4]Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis[J]. J Mol Cell Cardiol,2007,42(1):88-97.
    [5]Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA, et al. Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury[J]. Transplant Proc,2007,39(2):421-423.
    [6]Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure[J]. PLoS ONE, 2007,2(9):e941.
    [7]Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis[J]. Ann Neurol,2007,61(3):219-227.
    [8]Rasulov MF, Vasilenko VT, Zaidenov VA, Onishchenko NA. Cell transplantation inhibits inflammatory reaction and stimulates repair processes in burn wound[J]. Bull Exp Biol Med, 2006,142(1):112-115.
    [9]Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in the repair of injured lung[J]. Am J Respir Cell Mol Biol,2005,33(2):145-152.
    [10]Kahler CM, Wechselberger J, Hilbe W, et al. Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury[J]. Respir Res,2007,8:50.
    [11]Xu J, Mora A, Shim, H, et al. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis[J]. Am J Respir Cell Mol Biol,2007,37(3):291-299.
    [12]Liebler JM, Lutzko C, Banfalvi A, et al. Retention of human bone marrow-derived cells in murine lungs following bleomycin-induced lung injury[J]. Am J Physiol Lung Cell Mol Physiol,2008,295(2):L285-L292.
    [13]Neuringer IP, Randell SH. Stem cells and the repair of lung injury[J]. Respir Res,2004,5(1): 6.
    [14]Kotton DN, Ma BY, Cardoso WV, et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium[J]. Development,2001,128(24):5181-5188.
    [15]Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effect[J]. Proc Natl Acad Sci USA,2003,100(14):8407-8411.
    [16]Yamada M, Kubo H, Kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury[J]. J Immunol,2004, 172(2):1266-1272.
    [17]白小东,付小兵.骨髓间充质干细胞诱导增殖分化信号的研究进展[J].中国危重病急救医学,2004,16(5):318-320.
    [18]Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med,2009,15(1):42-49.
    [19]Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[J]. PLoS One,2008, 3(4):e1886.
    [20]Sanchez-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood[J]. J Neurosci res,2002,69(6):880-893.
    [21]Hess DC, Hill WD, Carroll JE, et al. Do bone marrow cells generate neurons[J]. Arch Neurol,2004,61(4):483-485.
    [22]蔡华荣,向小勇.炎性反应与急性肺损伤的关系研究进展[J].中国体外循环杂志,2006, 4(2):125-128.
    [23]钱桂生.全身炎症反应综合征、急性肺损伤与急性呼吸窘迫综合征[J].医师进修杂志,2005,28(2):9-11.
    [24]Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells:novel concept for future therapies [J]. Expert Opin Biol Ther,2008,8(5):569-581.
    [25]Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis[J]. J Mol Cell Cardiol,2007,42(1):88-97.
    [26]Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice[J]. J Immunol,2007,179(3):1855-1863.
    [27]蔡存良,文仲光,周岗,等.骨髓间充质干细胞移植对急性肺损伤大鼠血浆TNF-α、IL-6水平的影响[J].感染、炎症、修复,2006,7(2):98-101.
    [28]Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury[J]. Proc Natl Acad Sci USA,2007,104(26):11002-11007.
    [29]Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J]. Cell,2001,105(3):369-377.
    [30]陈楠楠,黄世林.间质干细胞与免疫调节[J].中国组织工程研究与临床康复,2007,11(33):6670-6675.
    [31]Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal s tem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy[J]. Blood,2005,106(5):1755-1761.
    [32]Klyushnenkova E, Mosca JD, Zemetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells:immunogenicity, tolerance, and suppression[J]. J Biomed Sci,2005, 12(1):47-57.
    [33]Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells[J]. J Biomed Sci,2003, 10(2):228-241.
    [34]Lee JW, Gupta N, Serikov V, et al. Potential application of mesenchymal stem cells in acute lung injury[J]. Expert Opin Biol Ther,2009,9(10):1259-1270.
    [35]淦鑫,郭光华,王年云.烟雾吸入性损伤修复模型IL-1β和PGE-2的动态变化分析[J].第四军医大学学报,2009,30(15):1371-1374.
    [36]朱峰,胡贞贞,郭光华.肺外成体干细胞移植治疗急性肺损伤研究进展[J].第二军医大学学报,2009,30(6):713-716.
    [37]McCarter SD, Mei SH, Lai PF, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury[J]. Am J Respir Crit Care Med,2007,175(10):1014-1026.
    [38]Xu J, Qu J, Cao L, et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice[J]. J Pathol,2008,214(4):472-481.
    [1]Bernard GR. Acute respiratory distress syndrome:a historical perspective[J]. Am J Respir Crit Care Med,2005,172(7):798-806.
    [2]蔡华荣,向小勇.炎性反应与急性肺损伤的关系研究进展[J].中国体外循环杂志,2006,4(2):125-128.
    [3]钱桂生.全身炎症反应综合征、急性肺损伤与急性呼吸窘迫综合征[J].医师进修杂志,2005,28(2):9-11.
    [4]Garcia-Castro J, Trigueros C, Madrenas J, et al. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool[J]. J Cell Mol Med,2008,12(6B): 2552-2565.
    [5]常颖,齐欣,卜丽莎,等.成人骨髓间充质干细胞体外多向分化潜能特性的研究[J].中国危重病急救医学,2005,17(2):95-97.
    [6]陈莉娜,王颖,张艳艳,关伟军.间充质干细胞的免疫调节作用[J].中国组织工程研究与临床康复,2007,11(28):5626-5629.
    [7]Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells[J]. Blood, 2007,110(10):3499-3506.
    [8]Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis[J]. J Mol Cell Cardiol,2007,42(1):88-97.
    [9]Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA, et al. Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury[J]. Transplant Proc,2007,39(2):421-423.
    [10]Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure[J]. PLoS ONE, 2007,2(9):e941.
    [11]Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis[J]. Ann Neurol,2007,61(3):219-227.
    [12]Rasulov MF, Vasilenko VT, Zaidenov VA, Onishchenko NA. Cell transplantation inhibits inflammatory reaction and stimulates repair processes in burn wound[J]. Bull Exp Biol Med, 2006,142(1):112-115.
    [13]Iyer SS, Co C, Rojas M. Mesenchymal stem cells and inflammatory lung disease[J]. Panminerva Med.2009,51(1):5-16.
    [14]都义日,付小兵,李存保.骨髓间充质干细胞的研究进展[J].中国危重病急救医学,2004,16(8):499-501.
    [15]白晓东,付小兵.骨髓间充质干细胞诱导增殖分化信号的研究进展[J].中国危重病急救医学,2004,16(5):318-310.
    [16]Patel SA, Sherman L, Munoz J, et al. Immunological properties of mesenchymal stem cells and clinical implications[J]. Arch Immunol Ther Exp.2008,56(1):1-8.
    [17]朱舜明,郭卫平,田琼.骨髓间充质干细胞的研究进展[J].实用医学杂志,2007,23(19):3116-3118.
    [18]Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience[J]. J Intern Med,2007,262(5):509-525.
    [19]Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J]. Exp Haematol,2003, 31(10):890-896.
    [20]Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[J]. Cell Stem cell,2008,2(2): 141-150.
    [21]Ware LB, Matthay MA. The acute respiratory distress syndrome[J].N Engl J Med,2000, 342(18):1334-1349.
    [22]Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung[J]. Am J Respir Cell Mol Biol,2005,33(2):145-152.
    [23]Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells:novel concept for future therapies [J]. Expert Opin Biol Ther,2008,8(5):569-581.
    [24]Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice[J]. J Immunol,2007,179(3):1855-1863.
    [25]Lam CF, Liu YC, Hsu JK, et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits[J]. Anesthesiology,2008,108(3):392-401.
    [26]蔡存良,文仲光,周岗,等.骨髓间充质干细胞移植对急性肺损伤大鼠血浆TNF-α、IL-6水平的影响[J].感染、炎症、修复,2006,7(2):98-101.
    [27]Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci USA,2003,100(14):8407-8411.
    [28]Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury[J]. Proc Natl Acad Sci USA,2007,104(26):11002-11007.
    [29]Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J]. Cell,2001,105(3):369-377.
    [30]陈楠楠,黄世林.间质干细胞与免疫调节[J].中国组织工程研究与临床康复,2007,11(33):6670-6675.
    [31]Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal s tem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy[J]. Blood,2005,106(5):1755-1761.
    [32]Klyushnenkova E, Mosca JD, Zemetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells:immunogenicity, tolerance, and suppression[J]. J Biomed Sci,2005, 12(1):47-57.
    [33]Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells[J]. J Biomed Sci,2003, 10(2):228-241.
    [34]胡占升.稳定表达血管生成素1的骨髓间充质干细胞对内毒素诱导急性肺损伤干预作用的研究进展[J].中国危重病急救医学,2008 20(10):627-629.
    [35]McCarter SD, Mei SH, Lai PF, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury[J]. Am J Respir Crit Care Med,2007,175(10):1014-1026.
    [36]Xu J, Qu J, Cao L, et al. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice[J]. J Pathol,2008,214(4):472-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700