三峡水库小江回水区藻类集群季节演替特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡工程举世瞩目,是跨世纪的特大型水利枢纽工程,具有航运、防洪和发电等多重功能,在给我国带来巨大经济效益的同时,也将极大改变长江三峡区域的生态环境,并将对长江流域的生态环境产生深远影响。本研究以三峡水库较具代表性的小江流域回水区段对其富营养化过程与水华现象展开为期1年的野外定位跟踪观测,分析藻类集群结构的季节变化特征,并引入目前藻类功能分组的研究成果,揭示小江回水区优势藻与藻类功能组的季节演替特征,研究优势藻、藻类功能组同环境要素间的相互关系,为建立藻类集群演替的生态模型与三峡水库支流水华预警预报系统,提供重要的研究基础,为三峡水库支流水华防控提供有力依据。
     2008年5月至2009年5月研究期间,小江回水区5个采样断面间的藻类细胞密度、藻类生物量和Chla的季节变化过程同步,且藻类细胞密度(CellD)和Chla、藻类生物量(BioM)和叶绿素a(Chla)之间均呈极显著的正相关关系。研究期间小江回水区共鉴定出藻类7门,98属,259种(包括变种),其中绿藻门52属123种,占47.5%;硅藻门20属77种,占29.7%;蓝藻门15属33种,占12.7%;最常见的10个藻属分别是:隐藻、小环藻、蓝隐藻、衣藻、纤维藻、小球藻、栅藻、脆杆藻、针杆藻、浮鞘丝藻;各藻门的演替情况:甲藻门、蓝藻门→绿藻门→硅藻门→蓝藻门、甲藻门。
     观测期间小江回水区各采样点的优势藻表现出明显的季节演替现象,其中星杆藻、直链藻、小环藻、针杆藻、空球藻、鱼腥藻、微囊藻、浮鞘丝藻、色球藻、平裂藻、角甲藻、多甲藻和隐藻等13个藻属是小江回水区不同季节出现频次最大的优势藻。观测期间,小江回水区暴发了大小四次水华:2008年5月以角甲藻和多甲藻为主的甲藻水华;2008年7~9月的针杆藻水华;2009年3月的星杆藻水华;以及2009年4~5月以鱼腥藻为主要优势藻的固氮型蓝藻水华。对藻类与各影响因子的相关性分析发现,藻类总生物量和总细胞密度与各影响因子的相关性明显高于各优势藻属与影响因子的相关性。
     本研究根据Reynolds的功能分组结果,对研究期间小江回水区的藻类功能组进行了界定,研究期间藻类功能组在小江回水区的演替过程如下:LO、LM→LO、LM、B、G、Y、J、X1、H1→LO、LM、D→P、D、B、Y、F、J→B、C、P、Y→H1→B、G、Y、LM。藻类功能组与环境因子的CCA分析结果显示:温度(Temp)是对各藻类功能组在小江回水区的分布影响较为显著的环境因子,其次是pH、SiO2、透明度(SD)和磷酸盐(SRP);而环境因子NH4+-N、TN、TP和TN/TP对藻类功能组的分布影响比较小。
The worldwide famous project, Three Gorges Reservoir, which has the ability of navigation, flood control and power. The project changed the entironment of Three Gorges Area greately while the large benefit to the country, and will greatly affect the entironment of Yangtse River Basin persistently. Our group has been observing the area of Xiaojiang Backwater Area of the Three Gorges Reservoir regularly for one year. The study analysed the structure of alga community and its seasonal variation; imported the concept of algal functional groups which gradually arised in the ecological research presently, in order to receal the seasonal variation of the dominant algae and alga functional groups; and studied the correlationes between dominant algae and environmental factors, and alga functional groups and environmental factors. The purpose of the sdudy is to offer basis for establishing the succession model of alga community and the forecast system of alga bloom in the Three Gorges Reservoir.
     In the studing period from May 2008 to May 2009, the seasonal variation of algal cell density (CellD), algal biomass(BioM) and Chla in Xiaojiang Backwater Area are Consistent. And correlativity between CellD and Chla,BioM and Chla are distinct positive. In general, 7 phyla, 98 genera and 259 species (including varieties) of phytoplankton community on the backwaters of Xiaojiang River were identified. The proportion of the community composition was: Chlorophyta, 47.5%, includes 52 genera 123 species; Bacillariophyta, 29.7%, includes 20 genera 77 species; Cyanophyta, 12.7%, includes 15 genera 33 species. The 10 generas: Cryptomonas, Cyclotella, Chlamydomonas, Ankistrodesmus, Chlorella, Scenedesmus, Fragilaria, Synedra,Planktolyngbya , are the most common algae. And the seasonal succession of the phyla is: Dinophyta, Cyanophyta→Chlorophta→Bacillariophyta→Cyanophyta, Dinophyta.
     In the studing period, the seasonal succession of the dominant algae in Xiaojiang Backwater Area is quite obvious. And the 13 generas: Asterionnella, Aulacoseira, Cyclotella, Synedra, Eudorina, Anabaena, Microcystis, Planktolyngbya, Chroococcus, Merismopedia, Ceratium, Peridinium, Cryptomonas, are the most dominant algae. There are 4 blooms breaked out in the studing period in Xiaojiang Backwater Area: May 2008 Ceratium bloom, July to September 2008 Synedra bloom, March 2009 Asterionnella bloom,and April to May 2009 Anabaena bloom. The analysis of the correlation between alga and the environment factors showed that the correlation coefficient between tatle alga and environment factors was much higher than the correlation coefficient between each dominant alga and environment factors.
     According to the function classification of Reynolds, the study defined the alga function groups in Xiaojiang Backwater Area. The seasonal succession of function groups is: LO、LM→LO、LM、B、G、Y、J、X1、H1→LO、LM、D→P、D、B、Y、F、J→B、C、P、Y→H1→B、G、Y、LM. The result of the CCA of function groups and environment factors showed that Temp is the most influential factor for the distribution of the alga function group in Xiaojiang Backwater Area, and than are the factors of pH, SiO2, SD and SRP. However, the factors of NH4+-N, TN, TP and TN/TP affected little.
引文
B.福迪著,罗迪安译. 1980.藻类学[M].上海:上海科学技术出版社, 11-360.
    蔡庆华,胡征宇. 2006.三峡水库富营养化问题与对策研究[J].水生生物学报. 30(1):7-11.
    长江水利委员会长江勘测规划设计研究院编. 2004.三峡库区小江(澎溪河)流域生态环境综合整治工程可行性研究报告[R].武汉:长江水利委员会长江勘测规划设计研究院. 57–85.
    曹承进,秦延文,郑丙辉等. 2008.三峡水库主要入库河流磷营养盐特征及其来源分析[J]. 29(2):310-315.
    陈伟民,黄祥飞,周万平等. 2005.湖泊生态系统观测方法[M].北京:中国环境科学出版社.
    陈永川,汤利,张德刚等. 2008.滇池叶绿素a的时空变化及水体磷对藻类生长的影响[J].农业环境科学学报. 27(4):1555-1560.
    陈宇炜,李朋富, Martin DOKULIL. 2003.浮游藻类三个常见属颤藻属直链硅藻属和针杆藻属学名变更的解释[J].湖泊科学. 15(1):85-94.
    重庆气象网.重庆市气候与气象灾害[EB/OL]. 2007. http://www.121.cq.cn/ service/ cqweather.htm#one.
    杜桂森等. 2004.官厅水库水体营养状况分析[J].湖泊科学. 277-281.
    方芳,李哲,田光等. 2009三峡小江回水区磷素赋存形态季节变化特征及其来源分析[J].环境科学. 12(30):3488~3493.
    国家环保局《水和废水监测分析方法》编委会. 1997.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社. 243-285.
    郭怀成,孙延枫. 2002.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展. 9(21) :500 - 505.
    郭劲松,陈杰,李哲等. 2008. 156 m蓄水后三峡水库小江回水区春季浮游植物调查及多样性评价[J].环境科学. 10(29):2711~2715.
    郭劲松,张超,方芳等. 2008.三峡水库小江回水区水华高发期浮游植物群落结构特征研究[J]. 科技导报. 26(17):70~75.
    韩德举,胡菊香,高少波等. 2005.三峡水库135 m蓄水过程坝前水域浮游生物变化的研究[J]. 水利渔业. 25(5):55~59.
    韩霜,王欢,蔡庆华等. 2006.香溪河库湾春季水华期间悬浮颗粒物粒度动态的初步研究[J]. 水生生物报. 30(1):123-125.
    胡鸿钧,李尧英,魏印心等. 1980.中国淡水藻类[ M] .上海:上海科学技术出版社. 9-490.
    胡鸿钧,魏印心. 2006.中国淡水藻类——系统、分类及生态[M].科学出版社.
    胡晓镭. 2009.湖、库富营养化机理研究综述[J].水资源保护. 25(4):44-47.
    黄祥飞. 2000.湖泊生态调查观测与分析[M].北京:中国标准出版社出版[M]. 142-144.
    姜欣欣. 2009.荧光光度法测定地表水叶绿素a的探讨[J].现代科学仪器. 1:79~80.
    焦世珺,钟成华,邓春光. 2006.浅谈流速对三峡库区藻类生长的影响[J].微量元素与健康研究. 23(2):48~50.
    孔繁翔,高光. 2005.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报. 25(3):589-595.
    况琪军,周广杰,胡征宇. 2007.三峡库区藻类种群结构与密度变化及其与氮磷浓度的相关性分析[J].长江流域资源与环境. 16(2):231~235.
    李哲,方芳,郭劲松等. 2009.三峡小江回水区段2007年春季水华与营养盐特征[J].湖泊科学. 21(1):36~44.
    李哲,郭劲松,方芳等. 2010.三峡小江回水区蓝藻季节变化及其与主要环境因素的相互关系[J].环境科学. 2(31):301~309.
    李哲,郭劲松,方芳等. 2009.三峡小江回水区氮素赋存形态与季节变化特点[J].环境科学. 6(30):1588~1594.
    李哲,郭劲松,方芳等. 2009.三峡水库小江回水区不同TN/TP水平下氮素形态分布和循环特点[J].湖泊科学. 21(4):509~517.
    林少君,贺立静,黄沛生. 2005.浮游植物中叶绿素a提取方法的比较与改进[J].生态科学. 24(1):9~11.
    刘波,崔莉凤,刘载文. 2008.北京市城区地表水体叶绿素a与藻密度相关性研究[J].环境科学与技术. 8(31):29~33.
    刘春光,金相灿,孙凌等. 2006.水体pH和曝气方式对藻类生长的影响[J].环境污染与防治. 28(3):161-163.
    刘佳,黄清辉,李建华. 2009.崇明北湖叶绿素a浓度与环境因子的GAM回归分析[J].中国环境科学. 29(12):1291~1295.
    刘静玲,盛连喜,候瑞珍. 1994.不同温度下铜绿微囊藻生长特性的初步研究[J].农业与技术, 2:21-24.
    刘信安,湛敏,马艳娥. 2005.三峡库区流域藻类生长与营养盐吸收关系[J].环境科学. 26(4):96~100.
    栾青杉,孙军,宋书群等. 2007.长江口夏季浮游植物群落与环境因子的典范对应分析[J].植物生态学报. 31(3):445~450.
    彭近新,陈慧君. 1988.水质富营养化与防治(第一版)[M].北京:中国环境科学出版社. 24.
    沈会涛,刘存歧, 2008.白洋淀浮游植物群落及其与环境因子的典范对应分析[J].湖泊科学. 20(1):773-779.
    沈韫芬,章宗涉,龚循矩等. 1990.微型生物监测新技术[M].北京:中国建筑工业出版社.
    沈治蕊,卞小红,赵燕等. 1997.南京熙园太平湖富营养化及其防治[J].湖泊科学. 9(4):377-380.
    石晓丹,阮晓红,邢雅囡等. 2008.苏州平原河网区浅水湖泊冬夏季浮游植物群落与环境[J]. 环境科学. 29(11):2999-3008.
    隋战鹰. 2002.浮游藻类与水质污染监测[J].生物学通报. 37(8):49.
    谭啸,孔繁翔,曹焕生等. 2006.利用流式细胞仪研究温度对两种藻竞争的影响[J].湖泊科学. 18(4):419-424.
    汤宏波,刘国祥,胡征宇等. 2006.三峡库区高岚河甲藻水华的初步研究[J].水生生物学报. 30(1):47~51.
    王焕校. 2000.污染生态学[M].北京:高等教育出版社.
    王岚,蔡庆华,张敏等. 2009.三峡水库香溪河库湾夏季藻类水华的时空动态及其影响因素[J]. 应用生态学报. 20(8):1940-1946.
    吴生才等. 2004.太湖藻类抗逆性的初步研究[J].生态环境. 13(4):500-502.
    徐敏,程凯. 2001.环境因子对衣藻水华消长影响的初步研究[J].华中师范大学学报:自然科学版. 35(3):322-325.
    徐宁,陈菊芳,王朝晖. 2001.广东大亚湾藻类水华的动力学分析[J].海洋环境科学. 20(2):1-6.
    徐宁,陈菊芳,王朝晖等. 2001.广东大亚湾藻类水华的动力学分析[J].环境科学学报. 21(4):400-404.
    徐耀阳,蔡庆华,黎道丰等. 2008.三峡水库香溪河库湾拟多甲藻昼夜垂直分布初步研究[J]. 武汉植物学研究. 26(6): 608~612.
    章宗涉,黄祥飞. 1991.淡水浮游植物研究方法[M].北京:科学出版社. 338-347.
    张金屯. 2004.数量生态学[M].科学出版社.
    张军. 2005.水库中藻类生长与其影响因素的研究[J].黑龙江水专学报. 32(1):63-65.
    张晟,李崇明,付永川等. 2007.三峡库区成库后支流库湾营养状态及营养盐输出[J].环境科学. 28(3):500-505.
    张晟,李崇明,郑丙辉等. 2007.三峡库区次级河流营养状态及营养盐输出影响[J].环境科学. 28(3):500-505.
    张晟,李崇明,郑坚等. 2009.三峡水库支流回水区营养状态季节变化[J].环境科学. 30(1):65-70.
    张晟,刘景红,黎莉莉等. 2006.三峡水库成库初期营养盐与浮游植物分布特征[J].环境科学. 27(6): 1056-1061.
    赵文. 2005.水生生物学[M].北京:中国农业出版社.
    郑丙辉,曹承进,秦延文等. 2008.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学. 29(1):1-6.
    朱爱民,吴广兵,梁银铨等. 2009. 156m蓄水后三峡水库支流童庄河河口段浮游植物群落的时空动态[J].水生态学杂志. 2(2):101-106.
    Anitha Naira, Shubha Sathyendranathb, Trevor Plattc, et al. 2008. Remote sensing of phytoplankton functional types[J]. Remote Sensing of Environment. 8(15):3366~3375.
    Borges PAF, Train S, Rodrigues LC. 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs[J]. HYDROBIOLOGIA. 607:63-74.
    Cajo J. Eter Braak, and Piet E M.Verdonschot. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology[J]. Aquatic Sciences. 57(3):255-289.
    C. Boutin and P.A. Keddy. 1993. A functional classification of wetland plants[J]. J. Veg. Sci. 4:591–600.
    C. S. Reynolds. 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status [J]? Hydrobiologia. 369(370): 11–26.
    COLIN S. REYNOLDS, VERA HUSZAR, CARLA KRUK, LUIGI, et al. 2002. Towards a functional classification of the freshwater phytoplankton [J]. JOURNAL OF PLANKTON RESEARCH. 417-428.
    Elif Neyran Soylu, Arif G?nülo. 2010. Functional Classification and Composition of Phytoplankton in Liman Lake [J]. Turkish Journal of Fisheries and Aquatic Sciences. 10: 53-60.
    Fryshore. 1984. The bacitracins: properties, biosynthesis and fermentation [J]. In Vandamme EF(ed), Biotechnology of Industrial Antibiotics. Marcel Dekker, Inc Basel. 655-694.
    Haslam S. M., Sinker C. A., and Wolseley P. A.. 1975. British water plants [J]. Field Studies. 4: 243–351.
    Horne A. J., Goldman C. R.. 1994. Limnology (Second Edition) [M]. New York:McGraw-Hill, Inc. Jan Leps, Petr Smilauer. 2003. Multivariate Analysis of Ecological Data using CANOCO [M]. Cambridge University.
    J. M. Hills, et al. 1994. A method for classifying European riverine wetland ecosystems using functional vegetation groups [J]. Funct. Ecol. 8:242–252.
    Jorgensen. 1983. Application of Ecology in Environmental Management [Z]. Judit Padisák, Luciane O. Crossetti, Luigi Naselli-Flores. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates [J]. Hydrobiologia. 621(1):1-19.
    Kruk C, Mazzeo N, Lacerot G, Reynolds CS. 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement [J]. JOURNAL OF PLANKTON RESEARCH. 24(9):901-912.
    Lamon E C, Kenneth H R, Karl E H. 1996. Using generalized additivemodels for prediction ofchlorophyll a in Lake Okeechobee, Florida [J]. Lakes and Reservoirs:Research and Management. 2:37-46.
    Lavorel S., McIntyre S., Landsberg J., and Forbes T. D. A.. 1997. Plantfunctional classifications: from general groups to specific groupsbaseon response to disturbance [J]. Trends Ecol. Evol. 12: 474–478.
    Liver R L and Ganf G G. 2000. Freshwater blooms, In: Whitton, B. A. andM. Pottseds [J]. The Ecology of Cyanobacteria, The Netherlands: Kluwer A cadem ic Publishers. 149- 194.
    Nico Salmaso Judit Padisa′k. 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany) [J]. Hydrobiologia. 578:97–112.
    OECD. 1982. Eutrop ication of Waters. Monitoring , Assessm ent and Control [R]. Final Report, OECD Cooperative Program on Monitoring of Inland Waters (Eutroph ication Contro l) , Environment Directorate, OECD, Paris. 154.
    Olirik,K. 1980. Succession of phytoplankton in response to environmental factors in Lake Arreso, North Zealand, Denmark [J]. Scheiz. Z. Hydrol. 43:6-19.
    Padisák J, Crossetti L O. Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates [J]. Hydrobiologia. 621:1-19.
    Reynolds. 2006. Ecology of Phytoplankton [M]. Cambridge: Cambrige university press.
    Reynolds CS, Irish AE. 1997.Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates [J]. HYDROBIOLOGIA. 349:5-17.
    Shap iro J. 1972. Blue&green algae: why they become dom inant [J]. S cience. 179: 382-384.
    Semina, H. J. 1972. The size of phytoplankton cells in the Pacific Ocean [J]. Int, Revue. Ges. Hydrobiol. 57:177-205.
    Smith V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-greem algal biomass in lake phuplankton [J]. Science. 221:669-671.
    Smith V. H., 1992. Effects of nitrogen and phosphorus ratios on nitrogen fixation in agricultural and pastoral ecosystems [J]. Biochenistry. 18:19-35.
    Somlyody L, 1998. Eutrophication modeling, management and decision making: the Kis-Balaton case [J]. Water Science and Technology. 37(3): 165-175.
    Sommer U. , Gliwicz, Lampert W. and Duncan A., 1986. The PEG-model of easonal succession of planktonic events in freshwaters [J]. Arch. Hydrobiol. 106: 422-477.
    Ten Brink B. J. E., Hosper, S. H. and Colijn F. 1991. A quantitative method for description and assessment of ecosystems—the Amoeba approach [J]. Marine Pollution Bulletin. 23: 265–270.
    Tüxen, R. 1955. Das Systeme der nordwestdeutschen Pflanzengesellschaf [J]. Mitt. Florist-soziol. Arbeitsgemeinsch. 5:1–119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700