黑龙江省老柞山金矿床的成因与成矿地质模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老柞山金矿床区域上位于兴蒙造山带东段佳木斯地块的中北部,由近北东向等间距分布的东矿带、中矿带和西矿带组成。矿区内出露的地质体主要为基底地层麻山群、晚古生代华力西期花岗岩、中生代燕山期闪长玢岩、花岗斑岩、斜长花岗岩等中酸性岩脉;矿区构造主要发育NW、NWW及NE三组断裂,NW、NWW的张性断裂是矿区主要的控矿构造。
     该矿床的东矿带和中矿带的成因类型为矽卡岩型(铁)金矿床,矿体主要赋存在北西向、北西西向的张性断裂及花岗岩和钙质大理岩、钙质片麻岩的接触构造带内,成矿与矽卡岩密切伴生;西矿带矿体类型为热液脉型金铜矿床,主要赋存在花岗岩内部的北西向、北西西向的张扭性断裂中,金矿化集中发育在东矿带和中矿带。矿石矿物主要有磁黄铁矿、黄铁矿、毒砂、黄铜矿,其次是方铅矿、闪锌矿等,脉石矿物主要为石榴子石、透辉石、绿帘石、绿泥石、石英、方解石等;围岩蚀变类型繁多,以硅化、钾化、绢云母化、矽卡岩化、阳起石与透闪石化、绿帘石、绿泥石化、碳酸盐化为主。
     野外矿床地质、室内矿相学与流体包裹体特征揭示,流体包裹体的均一温度范围为520-57℃,盐度范围为1.73-39.68%,密度范围为0.19-1.11g/cm-3,压力变化范围为5.6-79Mpa,成矿深度变化范围在2.47-7.25km。成矿过程有五个阶段:从早到晚依次为:(Ⅰ)石榴子石-透辉石阶段(早期矽卡岩阶段),流体包裹体均一温度:520℃-470℃,盐度:1.73-8.9%,密度:0.19-0.47g/cm-3;(Ⅱ)绿帘石-阳起石阶段(晚期矽卡岩阶段),流体包裹体均一温度:470℃-410℃,盐度:4.6-34.8%,密度:0.3-1.1g/cm-3;(Ⅲ)磁黄铁矿-毒砂-黄铁矿-石英脉阶段(早期石英硫化物阶段),流体包裹体均一温度:410-300℃,盐度:3.37-38.64%,密度:0.43-1.11g/cm-3;(Ⅳ)石英-多金属硫化物阶段(晚期石英硫化物阶段),流体包裹体均一温度:300℃-150℃;盐度:1.73-39.68%,密度:0.78-1.08g/cm-3;(Ⅴ)石英-方解石阶段,流体包裹体均一温度<150℃:盐度:3.03-8.67%,密度:0.93-1.04g/cm3。成矿流体气相成分以CO2-CH4-H2O为主,具有岩浆热液流体属性,成矿晚阶段有大气水的加入。整体与国内典型矽卡岩型金矿床的成矿特征基本一致,初步确定为矽卡岩型金矿床。
     通过赋矿围岩花岗岩、穿切矿体的闪长玢岩脉的LA-ICPMS U-Pb测定,获得年龄分别为262.6±3.9Ma、105Ma,西矿带蚀变矿物绢云母40Ar/39Ar坪年龄为108.76±0.70Ma,结合前人对中矿带的黄铁矿Rb-Sr等时线的测年结果(239±34Ma),确定该矿床有两个内生成矿期,矽卡岩型矿化发生在(262Ma)、叠加热液型矿化发生在(109Ma),早期成矿发生在古亚洲洋向佳木斯地块俯冲消减的末期,与华力西期中二叠世晚期岩浆活动有关,晚期矿化适值晚中生代太平洋板块俯冲的大陆边缘环境,与中酸性岩浆作用有关。
     上述研究成果进一步得出该矿床金的成矿主要是由古生代花岗岩就位过程与接触的钙质岩系发生交代,在干矽卡岩、湿矽卡岩交代作用的基础上形成,中生代构造岩浆作用对早期成矿影响较小。
Laozuoshan gold deposit, which is located in the central-north part of Jiamusimassif,the east section of xing'anling-mongolian orogenic belt,is divided into threeore belts:east belt, middle belt and west belt.outcrop geological bodies in mining areamainly is Mashan Group, Hercynian period granite and Yanshanian intermediate aciddike, such as diorite porphyrite, granite porphyry,plagioclase granite and so on. faultstructure are composed entirely of NW、NWW and NE, while NW and NWW faultare ore-controlling fracture.
     Study on geological characteristics of the three ore belts can further determinethe genetic type of the east and middle ore belts to be skarn type gold (iron) deposit,the orebody is mainly hosted in NW-NWW tensional fracture, or in the structuralcontact zone of granite and calcareous marble or gneiss, mineralization is closelyassociated with skarn; while the type of the west ore belt is hydrothermal vein typegold-copper deposit, the orebody is also hosted in NW-NWW tension-torsionalfracture, gold mineralization is concentrated in the east and middle ore belts. Themain metallic mineral are pyrrhotite, pyrite, arsenopyrite, chalcopyrite,sphalerite,galena etc. and gangue mineral are garnet, diopside, epidote, chlorite, quartz, calciteetc. wall rock alteration includes silicification, potassic alteration, sericitization,skarnization, actinolitization, epidotization, chloritization and carbonation etc.
     Study on fluid inclusion and H-O isotopes show that the fluid inclusion fromLaozuoshan gold deposit from with a homogenization temperature520℃to57℃,salinity w (NaCl eq) from1.73%to39.68%. Among them, early skarn stage has aore-forming temperature of520℃to470℃, salinityfrom1.73%to8.9%, late skarnstage has a ore-forming temperature of470℃to410℃, salinity from4.6%to34.8%, early stage of quartz-sulfide with ore-forming temperature of410℃to300℃,salinity from3.37%to38.64%,late quartz-sulfide stage with ore-forming temperatureof300℃to150℃, salinity from1.73%to39.68%, stage of quartz-calcite with a ore-forming temperature of150℃to57℃, salinity from3.03%to8.67%. Theore-forming fluid in the mass is a CO2-CH4-H2O system, with characteristics ofmoderate-high salinity and moderate-low density, and early ore-forming fluids aremainly mantle fluids, late are mainly atmospheric water.
     Zircon LA-ICPMS U-Pb dating of ore-hosting granite and dioritic porphyritedike that cut gold lodes are262.6±3.9Ma and105Ma separately. The plateau age of40Ar/39Ar of alteration phlogopite from west ore belt is108.76±0.70Ma, togetherwith the Rb-Sr isochron dating results of pyrite from the middle belt,which is239+34Ma, we holds that the deposit has two endogenetic mineralization periods, the skarnmineralization stage occured in239±34Ma, while hydrothermal superimpositionstage occured in102Ma, the early mineralization occurred during subduction ofPaleo-Asian Ocean to Jiamusi massif, and consistent with Hercynian magmatismactivities in late middle Permian, while the late mineralization environment iscontinental marginis, caused by Pacific Plate subducted in Late Mesozoic, and isrelated with intermediate-acid magmatism activitiesc.
     Based on the study mentioned above, we can come to the conclusion that goldmineralization happens on the base of dry skarn and wet skarn metasomatism ofPaleozoic granites and calcareous rock series and tectonic magmatism.
引文
[1] Ali Asghar Calagari. Fluid inclusion studies in quartz veinlets in the porphyrycopper deposit at Sungun, East-Azarbaidjan, Iran[J].Journal of Asian EarthSciences,2004,23:179–189
    [2] Chen YJ,Pirajno F,Sui YH.2005. Geology and D-O-C isotope syslematics ofthe Tieluping silver deposit.Hen,China: Implication for ore genesis[J].actaGeologica Sinica,79:106-119
    [3] Donald M. Burt. Skarn deposit-Histprical bibliography thruugh1970[J].Economic GeoloRy,1982,77(4):755-763
    [4] Driesner T, Heinrich C A. The system H2O-NaCl. Part Ⅰ: Correlation formulaefor phase relations in temperatures-pressures-composition space from0to1000℃,0to5000bar,0-1X-NaCl [J].Geochimica et Cosmochimica Acta,2007,71:4880-4901.
    [5] Driesner T,Heinrich C A. The system H2O-NaCl. Part Ⅰ: Correlation formulaefor phase relations in temperatures-pressures-composition space from0to1000℃,0to5000bar,0-1X-NaCl[J]. Geochimica et Cosmochimica Acta,2007,71:4880-4901.
    [6] Einaudi M T,Meinert L D,Newberry R T. Skarn deposits[J]. Econ. Geol.,1981,75:317-391
    [7] Foley S F and Peccerillo A. Potassic and ultrapotassic magmas and theirorigin[J].Lithos,1992,28:181~196
    [8] Goldfarb R J,Groves D I,Gardoll S. Orogenic gold and geological time:a globalsunthesis[J].Ore Geology Reviews,2001,18:1-75.
    [9] Groves DI,Goldfarb RJ,Gebre Mariam M et al. Orogenic gold deposits: Aproposed classification in the context of their crustal distribution and relationshipto other gold deposits types[J].Ore Geology Review,1998,13:7-27
    [10]Hall D. L. Sterner S M. Freezing point depression of NaCl-KCl-H2O solution [J].Econ. Geology,1988,83:197-202.
    [11]Heinrich CA. The physical and chemical evolution of low-salinity magmaticfluids at the porphyry to epithermal transition: A thermodynamic study[J].Mineralium Deposita,2005,39:864-889
    [12]Helges on HC. Hydrother mal trans port an d depos ition of gold[J].Econ. Geol.,1968,63:622~635
    [13]Henley RW. Solubility of gold in hydrothermal chloride solutions[J].Chem icalGeology,1973,11:73~87
    [14]Hendenquist J W. The role of magmas in the formation of hydrothermal oredeposits[J].Nature,1994,370:519-527
    [15]Hoefs, M. J. L., Schouten, S., King, L. L., Wakeham,S. G., de Leeuw, J. W. andSinninghe Damste,J. S. Ether lipids of planktonic archaea in the marine watercolumn[J]. Applied and Environmental Microbiology1997,63:3090±3095.
    [16]Jahn BM,Wu FY,Lo CH and Tsai CH. Crust-mantle interaction induced by deepsubduction of the continental crust; Geochemical and Sr-Nd isotopic evidencefrom post-collisional mafic-ultramafic intrusions of the northern Dabiecomplex,central China[J].Chem. Geol.,1999,157:119一146
    [17]Jiang SY,Han F,Shen,JZ,Plmer MR. Chemical and Sr-Nd isolopic systematicsof tourmaline from the Dachang Sn-polymetallic ore deposit, GuanagxiProvince,China[J].Chemical Geology,1999,157:49-67
    [18]Kepez hinsk as P,M cdermott F,Defant M J,et al. Trace element and Sr-Nd-Pbis otopic constraints on a three component model of Kamchatka arc petrogenesis[J]. Geochim Cosmochim Acta,1997,61:577-600.
    [19]Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS,Hawkesworth CJ, Koloskov A, Maury RC,Bellon H. Trace element and Sr-Nd-Pbisotopic constraints on a three-component model of Kamchatka arc petrogenesis[J].Geochim Cosmochim Acta1997,61:577±600
    [20]Kerrich, R., Goldfarb. R,Groves, D.L, Garvin, S.,. Geodynamics of world-classgold deposits:characteristics,space-time and origins[J].Reviews of EconomicGeology,2000,13:501-551
    [21]Lowell J D and Guilbert J M. Lateral and vertical alteration-mineralization zoningin porphyry ore deposits[J].Economic Geology,1970,65:373-408
    [22]Manfred Schidlowski. A3800-million-year isotopic record of life from carbon insedimentary rocks[J].Nature,1988,333:313-318
    [23]McCuaig T C and Kerrich R. P-T-t deformation fluid characteristics of lode golddeposits: evidence from alteration systematics [J].Ore Geology Reviews,1998,12(6):381~453.
    [24]Ohmoto H. Systematics of sulfur and carbon isotopes in hydrot hermal oredeposits[J]. Econ. Geol.,1972,67:551~578.
    [25]Ohmoto H. Stable isotope geochemistry of ore deposits[J].Reviews in mineralogy1986,6:49l一559
    [26]PAN Y M, DONG P. The Lower Changjiang (Yangzi/Yangtze River)metallogenic belt, east central China: Intrusion and wall rock-hosted Cu-Fe-Au,Mo, Zn, Pb, Ag deposits[J].Ore Ge-ology Reviews,1999,15:177-242.
    [27]Pearce JA. Harris NB W and Tindle AG. Trace element discrimination diagramsfor the tectonic interpretation of granitic rocks[J].J. Petrol.,1984,25:956-983
    [28]Potter R.W, et al.. The volumetric properties of aqueous sodium chloridesolutions from0℃to500℃at pressures up to2000based on a regression ofavailable data in the literature. U. S. Geol [J]. Survey Bull.,1978,1421-C,36.
    [29]Radtke A S. Geology of the Carlin gold deposit[J].US Geol. Surv. Proj.,1985,1267:1-124
    [30]Ringwood A.E. Slab-mantle interactions:Petrogenesis of intraplate magmas andstructure of the upper mantle[J].Chemical Geology Volume82,1990,Pages187~207.
    [31]Sawkins F J. Massive sulfide deposits in relation to geotectonics. In: Strong DF,ed. Metallogeny and plate tectonics[J]. Geol.Assoc.Canada.Spec.Publ.,1976,14:221-242
    [32]Sillitoe R H. A plate tectonic model for the origin of porphyry copperdeposits[J].Economic Geology,1972,67:184-197
    [33]Simon A Wilde,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30(1):35-50.
    [34]Simon A. Wilde,Fuyuan Wu,Xingzhou Zhang. Late Pan-African magmatism innortheastern China: SHRIMP U–Pb zircon evidence from granitoids in theJiamusi Massif[J].Precambrian Research122(2003)311–327.
    [35]SimonA. Wilde, Helen L. Dorsett-Bain, Robert G. Lennon. Geological Settingand Controls on the Development of Graphite, Sillimanite and PhosphateMineralization within the Jiamusi Massif: An Exotic Fragment of GondwanalandLocated in North-Eastern China?[J].Gondwana Research,1999,2(1):21-46.
    [36]Taylor B E. Magmatic volatiles: Isotope variation of C, H and S. Reviews inMineralogy.In:Stable isotopes in high temperature geological process[J].Mineralogical Society of America.1986,16:185~226.
    [37]Turner S,Arnaud N,Liu J,Rogers N,Hawkesworth C,Harris N,Kelley S,Van Calsteren P, Deng W. Post–collision, shoshonitic volcanism on the TibetanPlateau: implications for convective thinning of the lithosphere and the sourceofocean island basalts[J]. J. Petrol.1996,37:45~71.
    [38]Veizer J, Holser W T, Wilgus C K. Correlation of13C/12C and34S/32Ssecular variation[J].Geochim. Cosmochim. Acta,1980,44:579~588.
    [39]Wyllie P J. Plate tectonics and magma genesis[J].Geologische Rundschau,1981.70,128-153.
    [40]Zartman R.E, Doe B.R. Plumbotectonics-the model [J]. Tectonophys,1981,75:135–162.
    [41]曹熹,张兴洲,张贻侠等.佳木斯复合地体的构成和演化[J].施央申,卢华复,马瑞士,孙岩主编,现代地质学研究文集(下)(C),南京:南京大学出版社,1994.147~153.
    [42]陈文;郭彦如;崔彬;刘新宇;张彦;张思红.基于MM1200B质谱系统的MDD模式40Ar/39Ar实验技术及其在阿尔金山中生代冷却中研究中的应用[J].质谱学报,2001,22(3):8-14.
    [43]陈衍景,陈华勇,K. ZAW4,F. PIRAJNO,张增杰.中国陆区大规模成矿的地球动力学:以矽卡岩型金矿为例[J].地学前缘(中国地质学,北京),2004,11(1):57-83.
    [44]陈衍景,秦善,李欣.中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式[J].北京大学学报(自然科学报),1997,33(4):456-466.
    [45]程家龙,赵永鑫,柳丰华.矽卡岩型矿床的成矿作用和地球化学研究综述[J].地质找矿论丛,2009,24(4):329-358.
    [46]代立东.黑龙江老柞山金多金属矿床地质地球化学初探[J].地质地球化学,2002,30(2):19-24..
    [47]董本坤.对老柞山金矿几点新的认识及找矿靶区预测[J].吉林地质,2007,26(4),25-28.
    [48]方文昌,徐公愉.吉林省新生代火山岩及其构造环境[J].吉林地质,1983,(2):25-33.
    [49]葛良胜,邓军,杨立强,张艳春,刘荫春,路彦明,肖力.中国金矿床:基于成矿时空的分类探讨[J].地质找矿论丛,2009,2(24):91-100.
    [50]何宝林.老柞山金矿田东部段矿床成因探讨[J].黄金,2002,23(7):8-12.
    [51]胡芳芳,王永,范宏瑞,郑小礼,焦鹏.鲁西沂南金场矽卡岩型金铜矿床矿化时代与成矿流体研究[J].岩石学报,2010,026(05):1503-1511.
    [52]胡受奚,孙景贵,凌洪飞,叶瑛,翟建平,方长泉.中生代苏-鲁活动大陆边缘榴辉岩、煌斑岩、金矿及富集地幔间的成因联系[J].岩石学报,2001,17(3):425-435.
    [53]黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,1(3-4):103-111.
    [54]黄映聪.佳木斯地块古生代变质作用与构造演化:博士学位论文[D].长春:吉林大学,2009.
    [55]姜宝龙.黑龙江老柞山金矿床地质特征及成矿作用[J].矿产与地质,1998,12(65):172-177.
    [56]蒋少涌,杨涛,李亮等.大西洋洋中脊TAC热液区硫化物铅和硫同位素研究[J].岩石学报,2006,22(10):2597-2602
    [57]颉颃强,苗来成,陈福坤,张福勤,刘敦一.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约[J].2008,12(27):2127-2137.
    [58]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,1-195.
    [59]李金祥,秦克章,李光明.富金斑岩型铜矿床的基本特征、成矿物质来源于成矿高氧化岩浆-流体演化[J].岩石学报,2006,022(3):678-688.
    [60]李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述[J].SCIENTIA G EOLO GICASINICA,1999,34(4):405-419。
    [61]李景春,赵爱林,金成洙,王力.金成矿多样性与矿床谱系[J].地质与资源,2002,4(11):250-252.
    [62]李伟实.老柞山式金矿床特征及成矿模式[J].地质与勘探,1986,22(3),2-10.
    [63]李晓敏,周喜文,魏存弟等.老柞山金矿床成矿时代研究[J].地质找矿论丛,2001,16(2):131-134.
    [64]李旭平,焦丽香,郑庆道,董晓,孔凡梅,宋召军.黑龙江桦南地区黑龙江杂岩锆石U-Pb定年[J].2009,025(08):1909-1916.
    [65]刘建峰,迟效国,周燕,王铁夫,金巍,周建波,董春艳.黎广荣小兴安岭东北部金林岩体全岩角闪石Rb-Sr年龄[J].吉林大学学报(地球科学版),2005,35(6):690-693。
    [66]刘静兰,佳木斯中间地块绿岩带特征及其大地构造环境浅析[J].黑龙江地质,1991,2(1):33-48.
    [67]刘蒙财.老柞山金矿成矿规律分析[J].黑龙江冶金,2009,29(4):27-29.
    [68]刘铁军.麻山群原岩恢复及古地理环境的探讨[J].黑龙江地质,1982,(2):13-25.
    [69]刘文杰,肖成东,王丽霞.金矿床成矿理论研究综述[J].现代矿业,2009,7(7):19-35.
    [70]吕古贤,林文蔚,罗元华,李晓波,倪师军,邓军,周绍东,曹志敏,张均等.构造物理化学与金矿成矿预测[M].地质出版社,1999,3-5.
    [71]罗镇宽,关康,沈明星.中国金矿床成矿构造背景探讨[J].矿床地质,1991,4(10):325-332.
    [72]孟恩,许文良,裴福萍等.佳木斯板块东南缘二叠纪火山作用:错石U一Pb年代学证据及其构造意义[J].科学通报,2008,53(8),956-965
    [73]裴志霞.黑龙江老柞山金矿田南东段矿床成因[J].黄金地质,2004,10(2),28-32.
    [74]彭玉鲸,赵成弼.古吉黑造山带的演化与陆壳的增生[J].吉林地质,2001,20(2):1-9.
    [75]任纪舜,陈廷愚,牛宝贵等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990,90-103.
    [76]邵洁连.金矿找矿矿物学[M].北京:中国地质大学出版社,1990
    [77]石英霞,李诺,杨艳.河南省栾川县三道庄钼钨矿床地质和流体包裹体研究[J].岩石学报,2009,25(10):2575-2587.
    [78]宋彪,李锦轶,牛宝贵,徐文喜.地球学报,黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].1997,18(3):306-312.
    [79]孙德有,吴福元,张艳斌.西拉木伦河一长春一延吉板块缝合带的最后闭合时间-来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),高山,2004,34(2):174-181.
    [80]孙景贵,胡受奚,叶英.苏鲁榴辉岩退变质过程的元素地球化学研究进展.中国学术期刊文摘[C].1999,5(10):1356-1357.
    [81]孙景贵,胡受奚,凌洪飞,叶瑛.胶西北两类金矿田的高钾一钾质脉岩元素地球化学与成岩作用研究[J].地球化学,2000b,2(29).
    [82]孙景贵,胡受奚,凌洪飞.胶东金矿区高钾-钾质脉岩地球化学与俯冲-壳幔作用研究[J].岩石学报,2000a,016(3).
    [83]孙景贵等,初论胶东地区金矿成矿模式[J].矿床地质2000,19(1):26-36.
    [84]孙景贵等,中国东北陆缘有色、贵金属矿床的地质特征、地球化学[M].吉林大学出版社,2006
    [85]田建涛,喻亨祥,李军等.矽卡岩成因及成矿作用研究进展综述[J].工程论坛,2005,(23):107.
    [86]田豫才.佳木斯隆起东南缘地质背景、金矿成矿地质条件及找矿方向[J].桂林工学院学报,1999,19(4):303-309.
    [87]涂光炽.中国层控矿床地球化学(第3卷)[M].北京:科学技术出版社,1984:344~364.
    [88]王泉等,黑龙江省老柞山金矿床特征及找矿方向[J].吉林地质,2006,25(2):12-27.
    [89]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-187.
    [90]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999,18(2):1-13.
    [91]吴福元,SWILDE,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [92]吴福元,林强,葛文春,孙德有.张广才岭新华屯岩体的形成时代与成因研究[J].岩石矿物学杂志,1998,17(3),226-234.
    [93]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,015(02):181-189.
    [94]吴福元,叶茂,张世红.中国满洲里—绥芬河地学断面域的地球动力模型[J].地球科学中国地质大学学报,1995,20:535~539.
    [95]肖新建,顾连兴,倪培.安徽铜陵狮子山铜金矿床流体多次沸腾及其与成矿的关系[J].中国科学,2002,32(3):199-206.
    [96]徐海.老柞山金矿成矿规律及深部找矿探讨[J].黑龙江冶金,009,29(2),53-55.
    [97]徐林刚.新疆富蕴县蒙库铁矿地质地球化学特征及成因探讨(硕士论文)[D].北京:中国地质大学(北京),2007.
    [98]姚凤良等.矿床学教程[M].地质出版社,2006.
    [99]叶慧文,张兴洲,周裕文,牡丹江地区蓝片岩中脉状青铝闪石40Ar—39Ar年龄及其地质意义[J].岩石学报,1994,24(4),369-372.
    [100]衣存昌.黑龙江老柞山金矿成矿规律及深部找矿探讨[J].矿产勘查,2010,18(4)58-61.
    [101]应汉龙.浅成低温热液金矿床的全球背景[J].贵金属地质,1999,4(8):241-250.
    [102]于恩君.佳木斯地块麻山岩群的地质特征及构造演化机制探讨[J].吉林地质,2008,27(4):16-25.
    [103]袁洪林,吴福元,高山,柳小明,徐平,孙德有.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520
    [104]张本仁,傅家谟,赵振华等.地球化学进展-微量元素地球化学研究进展
    [M].北京:化学工业出版社,2005.
    [105]张红军.老柞山金矿床成矿模式和找矿方向的探讨[J].资源.产业,2005,7(1),56-58.
    [106]张红军.老柞山金矿床地质特征及同位素地球化学特征[J].地质找矿论丛,1999,14(1):48-52.
    [107]张红军.老柞山金矿床地质特征及同位素地球化学特征[J].黄金,1999,20(12):4-7.
    [108]张景森,张静,周俊杰.矽卡岩和矽卡岩型矿床研究方法[J].河北工程大学学报(自然科学版),2009,26(1):85-89.
    [109]张立亚.黑龙江老柞山金矿床地质特征及矿化富集规律研究[D].2008,长春:吉林大学.
    [110]张兴洲,张元厚.蓝片岩与绿片岩共存:龙江岩系构造演化的新证据[J].长春地质学院学报,1991,21(3):277-348.
    [111]张彦,陈文,陈克龙,刘新宇.成岩混层(I/S)Ar_Ar年龄谱型及39Ar核反冲丢失机理研究_以浙江长兴地区P-T界线粘土岩为例[J].地质论评,2006,52(4):556-561.
    [112]赵春荆,彭玉鲸,党增欣等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996,1-186.
    [113]赵洁心.黑龙江老柞山金矿地球化学特征及成因模式[J].环境资源与工程.2006,20(59):116-120.
    [114]赵亮亮.佳木斯地块马家街群物质组成及构造属性;博士学位论文[D].长春:吉林大学,2008.
    [115]赵一鸣.环太平洋地区的矽卡岩矿床[J].矿床地质,1991,10(1):41-51.
    [116]赵一鸣,林文蔚,毕承思,张轶男.中国含金矽卡岩矿床的分布和主要地质特征[J].1997,16(3):193-203.
    [117]赵一鸣,林文蔚,张德全等.交代成矿作用及其找矿意义[M].北京:北京科学技术出版社,1992.
    [118]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [119]周建波,张兴洲,Siinon A WILDE,郑常青,金魏,陈红,韩杰.黑龙江杂岩的碎屑错石年代学及其大地构造意义[J].岩石学报,2009,025(08):1924-1936
    [120]周喜文等.黑龙江省老柞山金矿成矿模式探讨[J].地质与勘探,2002,38(2):18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700