雄激素非依赖性前列腺癌细胞耐药机制的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌是欧美国家男性最常见的恶性肿瘤,其死亡率仅次于肺癌,居男性肿瘤的第二位。美国癌症学会估计, 2009年美国大约有19.228万名男性被诊断为前列腺癌,约有2.736万前列腺癌患者死亡[1]。目前,我国前列腺癌发病率虽远低于西方国家,但近年来随着人们生活方式的改变、寿命的延长及医疗保健和诊断水平的提高,我国前列腺癌发病率呈显著增长趋势,而且与西方国家前列腺癌发生有所不同,我国前列腺癌患者在初诊时往往已为进展期,丧失了手术良机,预后较差,生存期也较短。雄激素去势治疗是除外科手术与放射治疗外的标准前列腺癌治疗方法,然而经过中位数为18~24个月的缓解期后,雄激素依赖性前列腺癌(Androgen-Dependent Prostate Cancer,ADPC)转变为雄激素非依赖性前列腺癌(Androgen-Independent Prostate Cancer,AIPC),表现为前列腺癌细胞在缓解期过后又开始增殖,PSA进行性升高,极易发生骨转移,转变后的治疗非常棘手,死亡率极高,前列腺癌已成为危害老年男性人群健康的重大疾病。
     对AIPC的转变机制研究,是目前国内外前列腺癌研究领域的热点,主要涉及:雄激素受体(androgen receptor,AR)基因的扩增;雄激素受体突变;凋亡调控基因的异常,由于前列腺癌的生物学行为极其复杂,以上理论并不能合理地阐述AIPC的发生机制,雄激素非依赖性前列腺癌发病仍需进一步深入研究。
     建立一株能模拟临床上前列腺癌由雄激素依赖转变为雄激素非依赖过程的细胞模型,能模拟人前列腺癌发生、发展、结局的生理病理全过程,能够体现出人前列腺癌各阶段的特点,能模拟人前列腺癌基因的改变和前列腺癌对治疗的反应。采用现代细胞生物学、分子生物学以及蛋白组学和代谢组学的研究手段,进一步揭示雄激素依赖性前列腺癌向雄激素非依赖性前列腺癌转化过程中发生机制,有望为雄激素非依赖性前列腺癌的治疗提供新的理论依据。
     主要研究内容:
     1.在去雄激素的培养环境和雄激素阻断剂氟他胺作用下,诱导前列腺癌LNCaP细胞向雄激素非依赖性转化,建立雄激素非依赖性前列腺癌细胞系-LNCaP-AI细胞系和LNCaP-AI+F细胞系,鉴定雄激素非依赖性前列腺癌细胞系生物学特征变化。
     2.研究雄激素非依赖性前列腺癌细胞系-LNCaP-AI细胞系和LNCaP-AI+F细胞系的AR受体通路变化,包括目前AR受体突变分析、AR受体表达变化(mRNA和蛋白质水平);AR受体对雄激素反应性以及PSAmRNA和PSA蛋白质水平变化;细胞信号通路主要信号蛋白变化。
     3.采用PCR、Western Blot和免疫组织化学染色方法检测了RON基因表达情况,研究受体酪氨酸激酶RON在雄激素非依赖性前列腺癌细胞向雄激素非依赖性前列腺癌细胞转化过程中作用。
     4.利用Solexa高通量测序技术分别对LNCaP和LNCaP-AI+F细胞系的小分子RNA进行测序,利用生物信息学技术对所得到的大规模序列进行分析,筛选出与雄激素非依赖性前列腺癌相关的miRNA,同时可能发现一些新的miRNA,最后对感兴趣的miRNA的靶基因进行预测。
     主要结果:
     1. LNCaP-AI和LNCaP-AI+F细胞系细胞形态学发生变化:雄激素依赖性前列腺癌LNCaP细胞转化为雄激素非依赖性前列腺癌细胞- LNCaP-AI和LNCaP-AI+F细胞系,其形态学发生了变化,表现为:细胞胞体变小,呈扁平状,少见圆形或梭形,多见单个细胞独立生长,同时出现聚集生长现象;而LNCaP细胞形态呈三角形或长梭型,小部分为圆形,分布均匀。
     2. LNCaP-AI和LNCaP-AI+F细胞系细胞生长特性发生了变化:
     2.1在去雄激素环境下,LNCaP-AI和LNCaP-AI+F细胞系生长速度显著高于LNCaP细胞;氟他胺对生长抑制作用明显减弱.
     2.2 LNCaP-AI细胞系对雄激素的生长反应性明显下降,仅高浓度雄激素才刺激细胞增殖生长,而低浓度雄激素却无增殖反应性,但不同浓度雄激素对LNCaP-AI+F细胞生长均无刺激作用,说明LNCaP-AI+F细胞和LNCaP-AI对雄激素反应性也存在差异。
     2.3 LNCaP-AI和LNCaP-AI+F细胞系细胞侵袭能力和细胞迁移活性高于LNCaP细胞,特别是LNCaP-AI+F细胞系细胞迁移活性明显高于LNCaP细胞。
     3. LNCaP-AI和LNCaP-AI+F细胞系细胞AR信号通路变化:
     3.1在雄激素依赖性前列腺癌细胞向雄激素非依赖性前列腺癌细胞转化过程中,LNCaP-AI和LNCaP-AI+F细胞系细胞AR并没有发生突变,但LNCaP-AI细胞AR表达上调,而LNCaP-AI+F细胞AR表达下调。
     3.2 PSA表达在LNCaP-AI和LNCaP细胞之间无差异(P>0.05),但在LNCaP-AI+F细胞中表达明显下调(P<0.01);氟他胺、双氢睾酮和十一酸睾酮均能刺激LNCaP、LNCaP-AI和LNCaP-AI+F细胞表达和分泌PSA,但LNCaP-AI和LNCaP-AI+F细胞对双氢睾酮和十一酸睾酮反应性下降,特别是LNCaP-AI+F细胞对双氢睾酮和十一酸睾酮刺激存在PSA转录和分泌反应性和对药物浓度敏感性下降。
     4. LNCaP-AI和LNCaP-AI+F细胞受体酪氨酸激酶表达:结果发现,LNCaP-AI和LNCaP-AI+F细胞的RONmRNA、RON蛋白质均为阴性,说明RON基因在前列腺癌从雄激素依赖性向雄激素非依赖性转变过程中不起作用。
     5. LNCaP-AI+F细胞的miRNA表达谱变化:
     5.1实验组LNCaP-AI+F细胞共检测出376个miRNA,而对照组LNCaP细胞共检测出357个miRNA。存在表达差异miRNAs有94个,其中48个表达上调,46个表达下调。
     5.2预测新miRNA共有15个,其中LNCaP-AI+F细胞有9个新miRNA,而LNCaP细胞有6个新miRNA。
     主要结论:
     1.建立了雄激素非依赖性前列腺癌细胞系-LNCaP-AI和LNcaP-AI+F细胞系,其细胞生物学生长特性和对雄激素反应性与LNCaP细胞之间存在明显差异,为雄激素非依赖性前列腺癌发病机制的研究提供了良好的细胞学模型。
     2.在LNCaP细胞系转变为LNCaP-AI和LNCaP-AI+F细胞系过程中,AR均没有发生突变,但LNCaP-AI细胞的AR表达上调,而LNCaP-AI+F细胞的AR表达呈下降趋势;AR信号通路并没有被阻断,但对雄激素反应性下降。提示在长期的去雄激素环境和氟他胺抑制作用,LNCaP-AI和LNCaP-AI+F细胞的AR通路存在差异,虽然AR信号通路还是有效地,但对雄激素反应性下降。
     3.在LNCaP-AI和LNCaP-AI+F细胞系中RON基因均没有表达,提示:RON基因在LNCaP-AI和LNCaP-AI+F细胞系从ADPC转变为AIPC过程中可能不起作用。
     4.在激素依赖性前列腺癌LNCaP细胞和雄激素非依赖性前列腺癌LNCaP细胞之间存在差异表达的miRNAs,有可能在前列腺癌雄激素非依赖性转变过程中起重要的作用,为进一步研究前列腺癌的发生、发展机制提供了前期数据和基础。
Prostate cancer is the most frequently diagnosed cancer and the second-leading cause of cancer death in men in the United States and Europe. American Cancer Society estimated that in 2009 about 192,280 American men are diagnosed with prostate cancer, about 27,360 died of prostate cancer.At present, the incidence of prostate cancer, although far lower than western countries, but showed a significant growth trend in china with changing lifestyles, longer life expectancy and the improvement of diagnosis. our patients with newly diagnosed prostate cancer often have advanced, loss of opportunity for surgery and poor prognosis with compared to the West national prostate cancer. Androgen deprivation therapy is the standard methA for prostate cancer besides surgery and radiation therapy. However, after a median of 18 to 24 months, androgen dependent prostate cancer (ADPC) turned into androgen independent prostate cancer (AIPC), extremely high mortality rate of AIPC has become a major health hazard for older men.
     The studies for mechanism of AIPC pathogenesis is a hot research field, mainly: androgen receptor (AR) gene amplification; androgen receptor mutation; apoptosis gene abnormalities and so on. But the above theory can not reasonably explain the pathogenesis of AIPC because the biological behavior of prostate cancer is extremely complex.AIPC still need further study.
     To establish the cell mAel of prostate cancer from androgen dependent into androgen-independent can simulate gene changes and response to treatment in human prostate cancer. Mechanism of AIPC pathogenesis expected to be revealed by mAern cell biology, molecular biology and proteomics and metabolomics research tools and provide a new theory for AIPC treatment.
     Main contents:
     1. In the environment of free androgen hormones and androgen antagonist flutamide, prostate cancer LNCaP cells were transformed into androgen-independent cell line-LNCaP-AI cell line and LNCaP- AI + F cell line and their biological characteristics were identified.
     2. The changes of androgen receptor(AR) pathway were studied in LNCaP-AI and LNCaP-AI+F, including the AR receptor mutation, AR receptor expression (mRNA and protein level); AR receptor esponsiveness to androgen and PSA protein and PSAmRNA levels; the changes of the main protein in cell signaling pathway.
     3. The changes of the receptor tyrosine kinase RON in LNCaP-AI and LNCaP-AI+F. the RON gene expression was analysed by the methAs of PCR, Western Blot and immunohistochemical staining.
     4. Using high throughput Solexa sequencing, the profile of small RNA molecules was analysed in LNCaP-AI+F and LNCaP respectively. The miRNAs related to androgen-independent prostate cancer were screened and new miRNAs may be found.
     The main results:
     1. The morphological changes of LNCaP-AI and LNCaP-AI+F cell lines: its morphological changes as follows: the cell bAy became smaller, flat and round or spindle rare, simultaneous growth of aggregation; But LNCaP cells appeared in triangle or a long shuttle-type, the circular uniform distribution.
     2. Growth characteristics of LNCaP-AI and LNCaP-AI + F cell lines:
     2.1 In free androgen hormones environment, the growth rate of LNCaP-AI and LNCaP-AI+F cell lines were significantly higher than that of LNCaP cells; Growth inhibition of Flutamide on the LNCaP-AI and LNCaP-AI+F cell lines in vitro significantly reduced.
     2.2 The growth role of androgen responsiveness decreased in the LNCaP-AI cell lines, only the high concentration of androgen to stimulate cell growth, but in the LNCaP-AI+F cell line, different concentrations of androgen can not stimulate the cell growth. It indicated that LNCaP-AI+F might be different from LNCaP-AI cells in the cellcharacteristics.
     2.3 Cell invasion and migration activities of the LNCaP-AI and LNCaP-AI+F cell line were higher than the LNCaP cells, in particular, the activities were significantly higher in the LNCaP-AI+F cell line.
     3. The changes of AR signaling pathway in the LNCaP-AI and LNCaP-AI+F cell lines:
     3.1 AR mutation was not detected in the LNCaP-AI and LNCaP-AI+F cells, but AR expression was upregulated in LNCaP-AI cells, while downregulated in the LNCaP-AI+F cells in the transformation process of androgen dependent prostate cancer to androgen-independent prostate cancer.
     3.2 PSA expression was not difference between LNCaP-AI and LNCaP cells(p>0.05), but significantly reduced in the LNCaP-AI+F cells(p<0.01); flutamide, DHT and testosterone undecanoate can stimulat PSA expression and secretion in the LNCaP, LNCaP-AI and LNCa P-AI+F cells, but responsiveness of PSA expression to dihydrotestosterone and testosterone undecanoate in the LNCaP-AI and significantly decreased in the LNCaP-AI+F cells; the reactivity and sensitivity to the drug concentration decreased in the LNCaP-AI and LNCaP-AI+F cells. It indicated that AR signaling pathway is effective, but decreased in the responsiveness to androgen hormnones in the transformation process of androgen dependent to androgen independent.
     4. Expression of receptor tyrosine kinase RON in the LNCaP-AI and LNCaP-AI+F cells: The results showed that RONmRNA and RON protein were not detected in the LNCaP-AI and LNCaP-AI+F cells. It indicated that RON gene did not play role in the transformation process.
     5. The changes of miRNA expression profile in the LNCaP-AI+F cells:
     5.1 376 miRNAs were detected in the LNCaP-AI-F cells, while 357 miRNAs in the LNCaP cells. 94 miRNAs including 48 upregulated, 46 downregulated were differentially expressed in the LNCaP-AI-F cells compared to LNCaP cells.
     5.2 15 new miRNA were predicted, including 9 new miRNAs in the LNCaP-AI+F cells and 6 new miRNAs in the LNCaP cells.
     The main conclusions:
     1. Androgen-independent prostate cancer cell lines-LNCaP-AI and LNcaP-AI+F cell line were successfully established, their androgen responsiveness and growth characteristics significantly different from the LNCaP cells. It is a goA cellular mAel for studying the mechanisms for androgen-independent prostate cancer.
     2. In the transformation process of LNCaP cell line to LNCaP-AI and LNCaP-AI+F cell line, AR mutation was not detected and AR expression was decreasing; AR signaling pathway was not blocked, but reduced in the responsiveness to androgen.
     3. RON gene did not play role in the transformation process of LNCaP cell line to LNCaP-AI and LNCaP-AI+F cell line
     4. miRNAs might play important role in the transformation process of LNCaP cell line to LNCaP-AI and LNCaP-AI+F cell line, provided the foundation for further study of the incidence of AIPC.
引文
[1] American Cancer Society. Cancer Facts & Figures 2009[R]. Atlanta: American Cancer Society; 2009.
    [2]叶定伟,李长岭.前列腺癌发病趋势的回顾和展望[J].中国癌症杂志,2007, 3:177-180.
    [3] Sim HG, Cheng CW. Changing demography of prostate cancer in Asia[J]. Eur J Cancer, 2005, 41: 834-845.
    [4] Ian LH, Li H, Yang Y, et al. Comparisons of the incidence and pathological characteristics of prostate cancer between Chinese and Portuguese in Macau[J]. Chin Med J, 2008, 121:292-294.
    [5] SchrAer FH. Progress in Understanding Androgen-Independent Prostate Cancer (AIPC): A Review of Potential Endocrine-Mediated Mechanisms[J]. Eur Urol, 2008, 53:1129-1137.
    [6] Huggins C ,HAges CV. Studies on prostatic cancer : The effect of cast ration ,of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate[J] . CA Cancer J Clin 1972; 22:232-240
    [7]许刚毛易捷陈兵华陶志华等.氟他胺联合去雄激素环境诱导的雄激素非依赖性前列腺癌细胞模型的建立[J].细胞生物学杂志2009,31(3):373-378.
    [8] Shi XB, Ma AH, Clifford G, et al. Molecular alterations associated with LNCaP cell progression to androgen independence[J]. Prostate, 2004, 60:257-271.
    [9] Nora MN, Christophe JL, Andrew CE. MAel systems of prostate cancer: uses and limitations[J]. Cancer and metastasts reviews, 1999,17:362-371.
    [10] LU S, Tsai SY, Tsai MJ. Molecular mechanisms of androgen-independent growth of human prostate cancer LNCaP-AI cells[J]. Endocrinology, 1999,140:5054-5059.
    [11] Isaacs JT. Role of androgens in prostatic cancer[J]. Vitam Horm, 1994,49:433-502.
    [12] Berges RR, Furuya Y, Remington L, et al. Cell proliferation, DNA repair, and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation[J]. Proc Natl Acad Sci USA, 1993,90:8910-8914.
    [1] Koivisto P, Kononen J, Palmberg C, et al. Androgen receptor gene amplification:a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res, 1997,57:314–9
    [2] Linja MJ, Savinainen KJ, Saramaki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res, 2001,61:3550–5
    [3] Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet, 1995,9:401–6
    [4] Newmark JR, Hardy DO, Tonb DC, et al. Androgen receptor gene mutationsin human prostate cancer. Proc Natl Acad Sci U S A, 1992,89:6319–23
    [5] Gaddipati JP, McLeA DG, Heidenberg HB, et al. Frequent detection of cAon877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res, 1994,54:2861–4
    [6] Taplin ME, Balk SP. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem, 2003, 91:483-490
    [7] Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgenreceptor. Nat Med, 2000, 6:703-706
    [8] Wang Q, Li W, Zhang Y, et al. Androgen receptor regulates a distinct transcriptionprogram in androgen-independent prostate cancer. Cell, 2009, 138:245-256
    [9] Marcelli M, Ittmann M, Mariani S, et al. Androgen receptor mutations in prostate cancer.Cancer Res, 2000, 60:944-949
    [10] Edwards J, Krishna NS, Grigor KM , et al. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer, Br J Cancer, 2003,89 :552-556
    [11] Taplin ME , Balk SP. Androgen receptor : a key molecule in the progression of prostate cancer to hormone independence . J Cell Biochem , 2004,91:483-490
    [12] Comuzzi B, Lambrinidis L, Rogatsch H, et al. The transcriptional coactivator cAMP response element-binding protein-binding protein is expressed in prostate cancer and enhances androgen and anti-androgen-induced androgen receptor function. Am J Pathol, 2003,162:233-241
    [13] Ta - Chun Yuan , Suresh Veeram, aniMing - Fong Lin, et al. Neuroendocrine-like prostate cancer cells:neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocrine-Related Cancer, 2007,14 :531-547
    [14] Schr?der FH. Progress in understanding androgen-independent prostate cancer(AIPC): a review of potential endocrine-mediated mechanisms, Eur Urol, 2008, 53: 1129-1137
    [15]夏同礼.前列腺癌研究的现状,中华医学杂志,2003,83:1289-1291
    [16] Culig Z, Steiner H, Barstsch G, et al. Mechanisms of endocrine therapy-responsive and unresponsive prostate tumours, Endor Relat Cancer, 2005, 12:229-244
    [17] Steiner MS, Gingrich JR. Gene therapy for prostate cancer: where are we now, J Urol, 2000, 164:1121-1136
    [18] Koeneman KS, Kao C, Ko SC, et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis, World J Urol, 2000, 18: 102-110
    [19] Taplin ME, Balk SP. Androgen receptor: a key molecule in the progressionof prostate cancer to hormone independence. J Cell Biochem, 2003, 91:483-490
    [20] Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgenreceptor. Nat Med, 2000, 6:703-706
    [21] Marcelli M, Ittmann M, Mariani S, et al. Androgen receptor mutations in prostate cancer. Cancer Res, 2000, 60:944-949
    [22] Suzuki H, Sato N, Watabe Y, et al. Androgen receptor gene mutations in human prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 1993,46:759-765
    [23] Li YR, Wang LG, Zhang M, et al. LEF1 in Androgen-Independent ProstateCancer: Regulation of Androgen Receptor Expression, Prostate Cancer Growth, and Invasion. Cancer Res, 2009, 69:3332-3338
    [24] Chung S, Furihata M, Tamura K, et al. Overexpressing PKIB in prostate cancer promotes its aggressiveness By linking between PKA and Akt pathways.Oncogene, 2009, 28:2849-2859
    [25] Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. NEngl J Med, 2004,351:1488–90
    [26]陶志华,柯峰,陈晓东等.荧光定量逆转录聚合酶链反应在前列腺特异性抗原基因检测中的应用价值.中华检验医学杂志,2004, 27(3) :148-151.
    [1] Ronsin C, Muscatelli F, Mattei MG, et al. A novel putative receptor protein tyrosine kinase of the met family[J]. Oncogene, 1993, 8: 1195-1202.
    [2] Cheng HL, Liu HS, Lin YJ, et al. Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder[J]. Br J Cancer, 2005, 92: 1906-14.
    [3] Maggiora P, Lorenzato A, Fracchioli S, et al. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness[J]. Exp Cell Res, 2003,288: 382-9.
    [4] Chen YQ, Zhou YQ, Angeloni-Andreazzoli D, et al. Overexpression and activation of the RON receptor tyrosine kinase in a panel of human colorectal carcinoma cells lines[J]. Exp Cell Res, 2000,261: 229-38.
    [5] Wang MH, Kurtz AL, Chen YQ. Identification of a novel splicing prAuct of the RON receptor tyrosine kinase in human colorectal carcinoma cells[J]. Carcinogenesis, 2000,21: 1507-12.
    [6] Ian LH, Li H, Yang Y, et al. Comparisons of the incidence and pathological characteristics of prostate cancer between Chinese and Portuguese in Macau[J],Chin Med J, 2008, 121: 292-294.
    [7]叶定伟.前列腺癌的流行病学和中国的发病趋势[J],中华外科杂志,2006,44:362-364.
    [8] Thobe MN, Gurusamy D, Pathrose P, et al. The Ron receptor tyrosine kinase positively regulates angiogenic chemokine prAuction in prostate cancer cells [J]. Oncogene, 2010,29: 214-26.
    [9] Taplin ME, Balk SP. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence[J]. J Cell Biochem, 2003, 91:483-490.
    [10] Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor[J]. Nat Med, 2000, 6:703-706.
    [11] Wang Q, Li W, Zhang Y, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer[J]. Cell, 2009, 138:245-256.
    [12] Marcelli M, Ittmann M, Mariani S, et al. Androgen receptor mutations in prostate cancer[J]. Cancer Res, 2000, 60:944-949.
    [13] Chung S, Furihata M, Tamura K, et al. Overexpressing PKIB in prostate cancerpromotes its aggressiveness By linking between PKA and Akt pathways[J]. Oncogene,2009, 28:2849-2859
    [14] Gill C, Dowling C, O'Neill AJ, et al. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation[J]. Molecular Cancer, 2009, 8:39-51.
    [15] Lawson DA, Witte ON. Stem cells in prostate cancer initiation and progression[J]. J. C lin. Invest, 2007, 117:2044-2050.
    [16] Angeloni D, Duh FM, MoAy M, et al. C to A single nucleotide polymorphism in intron 18 of the human MST1R (RON) gene that maps at 3p21.3[J]. Mol Cell Probes, 2003, 17: 55-7.
    [1] Jemal A, Siegel R, Ward E, et al. Cancer statistics[J]. CA Cancer J Clin, 2007, 57(1): 43- 66
    [2] David P B. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116: 281-297.
    [3] Parkin DM, Bray F, Ferlay J, et al. Global Cancer Statistics, 2002[J]. CA Cancer J Clin, 2005, 55:74-108.
    [4] Lewis B P, Shih I H, Jones Rhoades M W, et al. Prediction of mammalian microRNA targets[J]. Cell, 2003, 115:787-789.
    [5] Y. Zeng, B.R. Cullen. Structural requirements for pre-microRNA binding andnuclear export by Exportin 5[J]. Nucleic Acids Res, 2004, 32:4776-4785.
    [6] Chen CZ. MicroRNAs as oncogenes and tumor suppressors[J]. N Engl J Med 2005, 353(17):1768-71
    [7] Hernando E. microRNAs and cancer: role in tumorigenesis, patient classification and therapy[J]. Clin Transl Oncol 2007, 9(3):155-60.
    [8] Michael MZ, SM OC, van Holst Pellekaan NG, et al. Reduced accumulationof specific microRNAs in colorectal neoplasia[J]. Mol Cancer Res 2003. 1(12):882-91.
    [9] Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma[J]. Genes Chromosomes Cancer 2004. 39(2):167-9.
    [10] Takamizawa J, Konishi H, Yanagisawa K,et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res, 2004, 64:3753.
    [11] Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA inhuman B cell lymphomas[J]. Proc Natl Acad Sci USA 2005. 102(10):3627-32.
    [12] Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res 2005. 65(14):6029-33.
    [13] Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in HAgkin, primary mediastinal and diffuse large B cell lymphomas[J].J Pathol 2005. 207(2):243-9.
    [14] Calin GA, Dumitru C D, Shimizu M, et al. Frequent deletions and down regulation of miRNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia [J ]. Proc Natl Acad Sci USA 2002, 99 (24) : 15524-15529
    [15] Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res, 2005, 65(16):7065-70.
    [16] Ciafre SA, Galardi S, Mangiola A, et al. Extensive mAulation of a set of microRNAs in primary glioblastoma[J]. Biochem Biophys Res Commun 2005, 334(4):1351-8.
    [17] Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci U SA 2006, 103(7):2257-61.
    [18] Lee YS, Kim HK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation[J]. J BiolChem 2005, 280(17):16635-41.
    [19] Kore AR, HAeib M, Hu Z. Chemical Synthesis of LNA-mCTP and its application for MicroRNA detection[J]. Nucleosides Nucleotides Nucleic Acids 2008, 27(1):1-17.
    [20] Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostatecancer growth[J]. Cancer Res 2009, 69(18):7165-9.
    [21]许刚,毛易捷,陈兵华等.氟他胺联合去雄激素环境诱导的雄激素非依赖性前列腺癌细胞模型的建立[J].细胞生物学杂志2009, 31(3): 373-378
    [22] Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J]. Curr Biol 2003, 13(9):790-5.
    [23] Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J].Proc Natl Acad Sci U S A 2004, 101(9):2999-3004.
    [24] Jiang J, Lee EJ, Gusev Y, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines[J]. Nucleic Acids Res 2005, 33(17):5394-403.
    [25] Lin SL, Chiang A, Chang D, et al. Loss of mir-146a function in hormone-refractory prostate cancer[J]. RNA 2008, 14(3): 417-24.
    [26] Shi XB, Xue L, Yang J, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells[J]. Proc Natl Acad Sci U S A 2007, 104(50): 19983-8.
    [27] Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets[J]. Cell 2003, 115(7): 787-98.
    [28] Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1[J]. J Biol Chem 2007 , 282(32): 23716-24.
    [29] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature 2007, 449(7163): 682-688.
    [30] Lund A, miR-10 in development and cancer[J]. Nature 2010, 17: 209-214
    [31]李刚. miR-10b在鼻咽癌转移中的功能和调控机制研究[D].中国博士学位论文全文数据库, 2009,(01)
    [32] Chen X, Li Q, Wang J, et al. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing[J]. Genome Biol 2009, 10(7):R78.
    [33] Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc 2009, 4(1):44-57.
    [34] Bonnet E, Wuyts J, Rouze P, et al. Evidence that microRNA precursors, unlike other non-cAing RNAs, have lower folding free energies than random sequences[J]. Bioinformatics 2004, 20(17):2911-2917.
    [1] American Cancer Society. Cancer Facts & Figures 2009[R]. Atlanta: American Cancer Society; 2009.
    [2]叶定伟,李长岭.前列腺癌发病趋势的回顾和展望[J].中国癌症杂志,2007, 3:177-180.
    [3] Sim HG, Cheng CW. Changing demography of prostate cancer in Asia[J]. Eur J Cancer, 2005, 41: 834-845.
    [4] Ian LH, Li H, Yang Y, et al. Comparisons of the incidence and pathologicalcharacteristics of prostate cancer between Chinese and Portuguese in Macau[J]. Chin Med J, 2008, 121:292-294.
    [5] SchrAer FH. Progress in Understanding Androgen-Independent Prostate Cancer (AIPC): A Review of Potential Endocrine-Mediated Mechanisms[J]. Eur Urol, 2008, 53:1129-1137.
    [6] Huggins C ,HAges CV. Studies on prostatic cancer: The effect of cast ration,of estrogen and of androgen injection on serum phosphatases in metastaticcarcinoma of the prostate[J]. Urology 1941 ,1 :293
    [7]高江平,洪宝发. PCa内分泌治疗的进展[J] .中华外科杂志,2006 ,44 (6) :393 - 395
    [8] Medical Research CouncilWorking Party Investigators Group. Immediate versus deferred treatment for advanced p rostatic cancer: initial results of the medical research council trial[J]. Br J Urol,1997, 79:235-246.
    [9] Heidenreich A,Von Knobloch R, Hofmann R. Current status of cytotoxic chemotherapy in hormone refractory prostate cancer[J]. Eur Urol, 2001, 39(2):121-130.
    [10]王希路,都吉海. PCa治疗现状[J].齐齐哈尔医学院学报,2009,30(18):2292-2294.
    [11]朱一平,叶定伟。激素抵抗性PCa新的治疗方法[J]。2008,14(3):232-235
    [12]前列腺癌内分泌治疗中的热点探讨-第二届阿斯利康前列腺癌高峰论坛纪实[J].现代泌尿生殖肿瘤杂志, 2009,1(2):128
    [13] O.L. Zegarra-Moro, L.J. Schmidt, H. Huang, et al. Disruption of androgen receptor function inhibits proliferation of androgen- refractory prostate cancer cells[J]. Cancer Res. 2002, 62(4):8-13.
    [14] J.A. Ruizeveld de Winter, J. Trapman, M. Vermey, et al.Androgen receptor expression in human tissues: an immunohistochemical study[J]. The Journal of Histochemistry and Cytochemistry, 1991,39:927–936.
    [15] Roudier MP, True LD, Higano CS, Vesselle H, EllisW, Lange P, Vessella RL. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone[J]. Hum Pathol 2003;34 (7):646–653.
    [16] Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, MacvicarGR, Varambally S, HarwoA J, Bismar TA, Kim R, RubinMA, Pienta KJ. Androgen-independent prostate cancer is a heterogeneous group of diseases: Lessons from a rapid autopsy program[J]. Cancer Res 2004; 64(24):9209–9216.
    [17] Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer[J]. Clin Cancer Res 2006;12 (6):1665–1671.
    [18] Shi X B, Ma A H, Tepper C G, Xia L, Gregg J P, Gandour2Ed2 wards R, et al . Molecular alterations associated wit h LNCaP cell progression to androgen independence [J]. Prostate, 2004 , 60 :2572271.
    [19] Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL. Molecular determinants of resistance to antiandrogen therapy[J]. Nat Med 2004;10 (1):33–39.
    [20] Kokontis JM, Hsu S, Chuu CP, Dang M, Fukuchi J, Hiipakka RA, Liao S.Role of androgen receptor in the progression of human prostate tumor cellsto androgen independence and insensitivity[J]. Prostate 2005;65 (4):287–298.
    [21] Chen-Lin Hsieh, Changmeng Cai, Ahmed Giwa,et al. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells[J]. Journal of Molecular Endocrinology, 2008; 41:13–23.
    [22] Hara T, Miyazaki J, Araki H, Yamaoka M, KanzakiN, Kusaka M, MiyamotoM. Novel mutations of androgen receptor:Apossible mechanism of bicalutamide withdrawal syndrome[J]. Cancer Res, 2003; 63 (1):149–153.
    [23] Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y, Kamoto T, Ogawa O. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft mAel derived from a bicalutamidetreated patient[J]. Cancer Res 2005;65 (21):9611–9616.
    [24] Hara T, Nakamura K, Araki H, Kusaka M, Yamaoka M. Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline[J]. CancerRes 2003;63 (17):5622–5628.
    [25] Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y, Kamoto T, Ogawa O. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft mAel derived from a bicalutamidetreated patient[J]. Cancer Res,2005; 65 (21):9611–9616.
    [26] Taplin, M E et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study [J]. J. Clin. Oncol. 21, 2673-2678 (2003).
    [27] terada n, shimizu y, yoshida t,etal.antiandrogen withdrawal syndrome and alternative antiandrogen therapy associated with the W741C mutant androgen receptor in a novel prostate cancer xenograft[J]. Prostate. 2009 Sep 29.
    [28] Sun C, Shi Y, Xu LL,et al. Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival[J]. Oncogene. 2006 Jun 29;25(28):3905-13.
    [29] McGuire, W. L., Chamness, G. C. & Fuqua, S. A. Estrogen receptor variants in clinical breast cancer[J]. Mol. Endocrinol. 1991,5:1571–1577.
    [30] M.J. Linja, K.J. Savinainen, O.R. Saramaki, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer[J]. Cancer Res 2001; 61:3550–3555.
    [31] H.G. van der Poel, et al. Mammalian target of rapamycin and 3-phosphatidylinositol 3-kinase pathway inhibition enhances growth inhibition of transforming growth factor-beta1 in prostate cancer cells[J]. J Urol. 20041; 72:1333–1337.
    [32] S.F. Shariat, A. Menesses-Diaz, I.Y. Kim, et al.Tissue expression of transforming growth factor-beta1 and its receptors: correlation with pathologic features and biochemical progression in patients undergoing radical prostatectomy[J]. Urology. 2004; 63:1191–1197.
    [33] I.Y. Kim, H.J. Ahn, D.J. Zelner, J.W. Shaw, S. Lang and M. Kato et al., Loss of expression of transforming growth factor beta type I and type II receptors correlates with tumor grade in human prostate cancer tissues[J]. ClinCancer Res. 1996; 2:1255–1261.
    [34] M.E. McMenamin, P. Soung, S. Perera, I. Kaplan, et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage[J]. Cancer Res. 1999; 59:4291-4296.
    [35] H.G. van der Poel. Androgen Receptor and TGFbeta1/Smad Signaling are Mutually Inhibitory in Prostate Cancer. European Urology, 2005, 48(6):1051-1058
    [36] C. Gennigens, C. Menetrier-Caux and J.P. Droz,et al.Insulin-Like Growth Factor (IGF) family and prostate cancer[J]. Critical Reviews in Oncology/Hematology. 2006; 58(2):124-145
    [37]张小鹏张长,IL26在前列腺癌中的作用进展[J].肿瘤防治研究. 2008; 35(6):153-155
    [38] Annet Hammacher Erik W. Thompson, Elizabeth D. Williams. Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer[J]. The International Journal of Biochemistry &Cell Biology, 2005, 37(2): 442-450
    [39] Ishikura, N et al. Establishment and Characterization of an Androgen Receptor-Dependent, Androgen-Independent Human Prostate Cancer Cell Line,LNCaP-CS10[J]. The Prostate. Published online, 2009
    [40] Malinowska K, Neuwirt H, Cavarretta IT, Bektic J, Steiner H, Dietrich H, Moser PL, Fuchs D, Hobisch A, Culig Z. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgenreceptor[J]. Endocr Relat Cancer 2009;16 (1):155–169.
    [41] Yin Sun1, Junyang Niu2 ,Jiaoti Huang. Neuroendocrine differentiation in prostate cancer[J].Am J Transl Res 2009;1(2):148-162.
    [42] S Humez, M Monet, G Legrand,et al. Epidermal growth factor-induced neuroendocrine differentiation and apoptotic resistance of androgen-independent human prostate cancer cells[J]. Endocrine-Related Cancer, 2006,13:181–195.
    [43] ch. golias,i. iliadis, d. peschos,et al. amplification and co-regulators of androgen receptor gene in prostate cancer[J]. exp oncol 2009,31(1):3–8.
    [44] Yang Z, Chang YJ, Miyamoto H, et al. Suppression of androgen receptor transactivation and prostate cancer cell growth by heterogeneous nuclear ribonucleoprotein A1 via interaction with androgen receptor coregulator ARA54[J]. Endocrinology.2007; 148: 1340–9.
    [45] Miyamoto H, Rahman M, Takatera H, et al. A dominant-negative mutant ofandrogen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth[J]. J Biol Chem 2002; 277: 4609–17.
    [46] Rahman MM, Miyamoto H, Lardy H, Chang C. Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells[J]. Proc Natl Acad Sci USA 2003; 100:5124–9.
    [47] Fujimoto N, Miyamoto H, Mizokami A, et al. Prostate cancer cells increaseandrogen sensitivity by increase in nuclear androgen receptor and androgenreceptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells[J]. Cancer Invest 2007; 25: 32–7.
    [48] Hu YC, Yeh S, Yeh SD, et al. Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer[J]. J Biol Chem 2004;279: 33438–46.
    [49] Hu YC, Yeh S, Yeh SD, et al. Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer[J]. J Biol Chem 2004;279: 33438–46.
    [50] Niu Y, Yeh S, Miyamoto H, et al. Tissue prostate-specific antigen facilitates refractory prostate tumor progression via enhancing ARA70-regulated androgen receptor transactivation[J]. Cancer Res 2008; 68: 7110–9.
    [51] Bonitsis N, Batistatou A, Karantima S, Charalabopoulos K. The role of cadherin/catenin complex in malignant melanoma[J]. Exp Oncol 2006; 28: 187–93.
    [52] Lu W, Tinsley HN, Keeton A, et al. Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation[J]. Eur J Pharmacol 2009; 602:8–14.
    [53] McDonnell TJ, Troncoso P, Brisbay SM, et al. Expression of the protooncogene bcl -2 in the prostate and its association with emergence of androgen-independent prostate Cancer[J]. Cancer Res, 1992, 52:6940-6944
    [54] Raffo AJ, Perlman H, Chen MW, et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo[J]. Cancer Res, 1995, 55:4438-4445
    [55] Gill C, Dowling C, O'Neill AJ, et al. Effects of cIAP-1, cIAP-2 and XIAPtriple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation[J]. Molecular Cancer, 2009, 8:39-51
    [56] Yu R, Mandlekar S, Ruben S,et al. Tumor necrosis factor-related apoptosis-induci- ng ligand-mediated apoptosis in androgen-independent prostate cancer cells[J]. Cancer Res, 2000, 60:2384-2389
    [57] Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prost- ate cancer stem cells[J]. Cancer Res, 2005, 65:10946-10951
    [58] Lawson DA, Witte ON. Stem cells in prostate cancer initiation and progression[J]. J. C lin. Invest, 2007, 117:2044-2050
    [59] Bui M, Reiter RE. Stem cell genes in androgen-independent prostate cancer[J]. Cancer Metast Rev, 1999, 17:391-399
    [60] Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspectsof nor- mal and abnormal prostatic growth: A stem cell mAel[J]. The Prostate,1996, 28:98-106
    [61] Kim YS, Maruvada P, Milner JA. Metabolomics in biomarker discovery: future uses for cancer prevention[J]. Future Oncology, 2008, 4:93-102
    [62] Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature, 2009, 457:910-915
    [63] Berezikov E, van Tetering G, Verheul M, et al. Many novel mam-malian microRNA c-andidates identified by extensive cloning and RAKE analysis[J].Genome Res. 2006;16: 1289–98.
    [64] Cowland JB, Hother C, Gronbaek, et al. K. MicroRNAs and cancer[J]. Apmis. 2007; 15:1090–106.
    [65] He L, Hannon GJ, et al. MicroRNAs: small RNAs with a big role in generegulation[J]. Nat Rev Genet 2004;5:522–31
    [66] Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer[J]. RNA. 2008; 14:417-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700