结直肠癌黏膜下浸润和无黏膜下浸润的差异蛋白鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,饮食习惯的改变,结直肠癌的发病率在我国呈上升态势,越来越多的研究者将注意力转向这种疾病。结直肠癌的临床治疗效果与早期发现密切相关。早期结直肠癌的5年生存率超过90%,甚至部分病人可达到长期无瘤状态。随着纤维结肠镜检查的逐渐普及,内镜微创治疗成为治疗结直肠癌的快捷有效的方法。然而内镜粘膜下剥离术(ESD)或内镜下黏膜切除术(EMR)等内镜微创治疗并非对所有的早癌均适合,对于黏膜下层结直肠癌,由于黏膜下层有丰富的淋巴管和血管,即使内镜完全切除,也仍有29%左右的病例已发生了淋巴结转移,所以这部分病人更适合手术治疗给予淋巴结清扫。
     病理学分型是指导临床治疗结直肠癌的最可观的标准。目前修订的Vienna病理学分型修订方案是一种能比较准确地提供结直肠癌诊断和相应处理方式的病理学分类方式。Vienna病理学分型对结直肠癌的分类主要依据肠镜钳取的组织活检标本,但是通过肠镜获取的标本通常比较表浅,很难到达黏膜肌层,通常的结肠镜活检标本不能确定结直肠癌细胞是否有黏膜下浸润,更不能确定是否有淋巴结转移,无法明确诊断出结直肠癌是否已经浸润到黏膜下。即内镜活检材料与外科病理手术切除标本不同,前者钳取的组织较少,位置表浅,在判断肿瘤细胞的恶性生物学行为方面(如癌细胞浸润)存在局限,无法准确判断是否能是通过内镜黏膜切除就可以彻底治疗,还是需要手术切除并清扫淋巴结。
     本实验通过蛋白质组学的方法,鉴定出在Vienna病理学分型中出现黏膜下浸润和无黏膜下浸润的差异蛋白,为结直肠癌病理学分型寻找蛋白标志物;为结直肠癌选择是通过肠镜微创切除还是手术给予淋巴结清扫提供客观参考依据;并可进一步为结直肠癌的生物学治疗寻找新的靶点。
     本实验首先利用n-甲基-n-亚硝基脲(MNU)诱导出结直肠癌近交系大鼠动物模型;再通过维也纳病理学诊断标准将大鼠结直肠癌的组织标本鉴别出有黏膜下浸润和无黏膜下浸润的两类;应用荧光差异定量双向电泳技术( DIGE )和基质辅助激光解吸/电离-飞行时间质谱(MALDI-TOF-MS)鉴定出这两类大鼠结直肠癌组织的差异蛋白;并应用分子生物学的方法对部分差异蛋白在转录和翻译水平的表达进行进一步观察。
     DIGE是定量蛋白质组学方面的一个进步,与传统2DE相比,DIGE可以提供更为准确的定性和定量分析。利用DIGE技术分析我们得到了结直肠癌有黏膜下浸润和无黏膜下浸润的1640-1880个蛋白差异点;在T-test Value<0.001和Average Ratio>2.0的条件下,实验最后得到黏膜浸润与无黏膜浸润的差异蛋白5个,这些蛋白均与正常结直肠黏膜组织有显著差异,且黏膜浸润与无黏膜浸润癌组织的显著差异的5个蛋白与正常组织相比较其表达趋势相一致仅仅是表达的程度不同。经过MALDI-TOF-MS鉴定,有黏膜下浸润比较无黏膜下浸润的大鼠结直肠癌组织表达显著上调的蛋白有3个:胶转蛋白(Transgelin)、肽基脯氨酰异构酶A (Peptidylprolyl isomerase A)和Tropomyosin1, alpha isoform d;显著下调的蛋白有2个,为碳酸脱羧酶2(carbonic anhydrase 2,CAⅡ)和一种没有命名的蛋白质。
     对于应用蛋白质组学方法鉴定出的5种差异蛋白,本实验继续选择了两种分别在黏膜下浸润中表达减少和增多的CAⅡ和Transgelin,应用分子生物学的方法给以进一步研究。结果显示,在结直肠癌有黏膜下浸润时,CAⅡ和Transgelin的转录水平和翻译水平的表达,与蛋白质组学的结果相一致。
     本实验结果说明近交系大鼠结直肠癌无黏膜下浸润和黏膜下浸润至少存在Transgelin、Peptidylprolyl isomerase A、Tropomyosin1、CAⅡ等5种差异表达的蛋白;可以作为鉴别结直肠癌是否出现黏膜下浸润的标记物。
With the improvement of people's living standard and the change of diet habit, the incidence of colorectal cancer(CRC) trend to ascend straightly in our country. The good therapeutic effect and early detection are closely related to this cancer. Survival rate in 5 years of early CRC was over 90% if was given immediate and appropriate treatment, some patients could have long-time survival. With rapid development and the increasing popularity of colonoscopies,endoscopic minimally invasive treatment has become a quick and effective way to treat early CRC. Endoscopic invasive treatments such as endoscopic submucosal dissection (ESD) or endoscopic mucosal resection (EMR) are ideal methods, but not appropriate in all patients. When CRC with invasive submucosa, because submucosa was rich of lymphatic and blood vessels, even with endoscopic complete resection, there were still at least 29% cases with metastasis to lymphonodus. These cases were especially suitable for operation with lymph-node dissection.
     Pathology classification is the guide of CRC treatment. Recently Vienna classification has variously categories provide a good basis for differentiated recommendations on how to be further diagnostic and therapeutic measures. This pathologic diagnosis is depend on tissues by endoscopic biopsy. However, those biopsy tissues by biopsy forceps were usually not deep enough to reach the submucusa., so it was not easy to diagnose whether the tumor had invaded submucosa. Judging whether CRC had submucosal invasion obtained by endoscopic biopsy, whether had metastatic lymphonodus, it was not able to known whether CRC had invaded the submucosa. That means these tissues obtained by endoscopic biopsy and by surgical excision were different, the former was less and superficial, these little tissues were not provided evidence with the diagnose of CRC invasion, were unable to provide recommendations of endoscopic mucosal resection or surgical excision with lymph-node dissection.
     In our study using proteomic technology, we analyzed differentially expressed proteins in CRC with or without submucosal invasion, and so as to find some biomarker of CRC pathological classification. We hope it can give a reference to select a better treatment using endoscopic mucosal resection or surgical excision. And even provide some new theraputic targets in futrue biotherapy.
     Animal models were made by N-methyl-N-nitrosourea (MNU) enema; then these rars were randomly divided into two groups by Vienna revised classification: submucosal invasion and no submucosal invasion; Using two - dimensional fluorescence difference gel electrophoresis(DIGE) and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) we selected some different proteins between submucosal invasion and without submucosal invasion group; and gave further study by molecular biological methods on these different expressing proteins’transcription and translation.
     DIGE is a progress in quantitative proteomics. Compared with traditional 2DE, DIGE could provide more accurate qualitative and quantitative analyses. We got 1640-1880 differently expressed proteins by DIGE in CRC of submucosal invasion and no submucosal invasion. The condition of T-test Value<0.001 and Average Ratio>2.0, there were 5 proteins between submucosal invasion and no submucosal invasion. These 5 proteins were all significantly different with normal colorectal mucosa, and similar increasing and decreasing tendency with different expression. We found there were 3 upregulated expression proteins in submucosal invasion compared with non-submucosal invasion: Transgelin、Peptidylprolyl isomerase A and Tropomyosin1, alpha isoform d;2 downregulated expression proteins in submucosal invasion: carbonic anhydrase 2 and an unnamed protein identified by MALDI-TOF-MS,
     We selected 2 proteins from the 5 proteins identified from proteomics, they were CAⅡand Transgelin which were downregulated and upregulated in submucosa invasion, and gave them a further study by molecular biology. The results showed that: in the CRC with submucosa invasion, CAⅡa nd Transgelin in transcription and translation were similar with the results of proteomics.
     Our studies showed that there were at least 5 proteins in the inbret strain rats model of CRC with submucosa invasion and non-submucosa invasion: Transgelin、Peptidylprolyl isomerase A、Tropomyosin1、CAⅡet al. These proteins could be specific biomarker to identify submucosal invasion in the judgement of early CRC.
引文
1 Peto J. Cancer epidemiology in the last century and the next decade. Nature 2001;411:390-395
    2 Tsukuma H, Ajiki W. Descriptive epidemiology of colorectal cancer international comparison. Nippon Rinsho 2003,61:25-30
    3 Jemal A,Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ; American Cancer Society. Cancer statistics, 2004. CA Cancer J Clin. 2004;54:8-29
    4 Zheng S, Cai SR. Colorectal cancer epidemiology and prevention study in china. The Chinese- German J Clinical Oncology 2003;2:72-75
    5 Banks BE, Dllnil MJ, Hochstrasser DF,et a1. Proteomics:new perspectives,new biomedical opportunities.Lancet 2000;356:l749-1756
    6 Fearon, E. R. Colorectal cancer: molecular genetic studies and their future clinical applications. Med. Pediatr. Oncol. Suppl. (1996)1, 35-40
    7 Molloy MP . Two-dimensional eletrophoresis of membrane proteins using immobilized pH gradients.Ana1. Biochem 2000;280:l-l0
    8 Gorg A, Postel W,Gunther S.The current state of two-dimensional eletrophoresis with immobilised pH gradients.Eletrophoresis,2000;21:1037-1053
    9 Weatbrook JA,Yan JK,Wait R,eta1.Zooming-in on the proteome:very narrow-range immobilized pH gradients reveal more protein species and isoforms.Eletrophoresis.2001,22:2865-2871
    10 Cordwell SJ,Nouwens AS,Verrills NM,et a1.Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional eletrophoresis gels.Electrophoresis,2000;2l:l094-1110
    11 Stulik J, Hemychova L, Porkertova S,et a1.Proteome study of colorectal carcinogenesis.Eletrophoresis 2001;22:3019-3025
    12 Jungblut PR. Zimny-Amdt U,Zeindl-Eberhart E,et a1.Proteomics in human disease: cancer, heart and infectious diseases.Eletrophoresis l999;20:2l00-2ll0
    13 Schlemper RJ, Kato Y, Stolte M. Review of histological classifications of gastrointestinal epithelial neoplasia: differences in diagnosis of early carcinomas between Japanese and Western pathologists.JGastroenterol. 2001;36(7):445-56
    14 Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsey SM, Dixon MF, Fenoglio-Preiser CM, Flejou JF, Geboes K, Hattori T, Hirota T, Itabashi M, Iwafuchi M, Iwashita A, Kim YI, Kirchner T, Klimpfinger M, Koike M, Lauwers GY, Lewin KJ, Oberhuber G, Offner F, Price AB, Rubio CA, Shimizu M, Shimoda T, Sipponen P, Solcia E, Stolte M, Watanabe H, Yamabe H. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000;47(2):251-255
    15 Kyzer S, Begin LR, Gordon PH, Mitmaker B. The care of patients with colorectal polyps that contain invasive adenocarcinoma. Endoscopic polypectomy or colectomy? Cancer 1992;70 (8);2044-2050
    11 Watanabe T,Sawada T,Saito Y,Sunouchi K, Masaki T, Ando H, Muto T. Endoscopic treatment of colorectal cancer. Gan To Kagaku Ryoho 1995;22(2):202-208
    16 Sugai T, Habano W, Uesugi N, Jiao YF, Nakamura S, Sato K, Chiba T, Ishii M. Molecular Validation of the Modified Vienna Classification of Colorectal Tumors. J Mol Diagn 2002, 4:191–200
    17 Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res, 1991;51:3075-3079
    18 Kern SE, Fearon ER, Tersmette KWF. Allelilc loss in colorectal carcinoma. JAMA, 1989;261:3099-3103
    19 Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell, 1996;87:159-170
    1 Schlemper RJ, Riddell RH, Kato Y, et al. The Vienna classification of gastrointestinal epithelial neoplasia.Gut. 2000,47(2):251-255
    2 Rubio CA, Nesi G, Messerini L, Zampi GC, Mandai K, Itabashi M, Takubo K. The Vienna classification applied to colorectal adenomas. J Gastroenterol Hepatol. 2006, 21(11):1697-1703
    3 Hock D. Virtual colonoscopy: a new hope of colorectal cancer screening. Rev Med Liege,2003,58(5):338-345
    4 Corpet DE, Pierre F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur J Cancer. 2005;41(13):1911-1922
    5 Nakagama H, Nakanishi M, Ochiai M. Modeling human colon cancer in rodents using a food-borne carcinogen, PhIP. Cancer Sci. 2005;96(10):627-636
    6 Corpet DE, Pierre F. Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomarker Prev. 2003;12(5):391-400
    7 Bruce WR. Counterpoint: From animal models to prevention of colon cancer. Criteria for proceedingfrom preclinical studies and choice of models for prevention studies. Cancer Epidemiol Biomarker Prev. 2003 May;12(5):401-404
    8 Kobaek-Larsen M, Thorup I, Diederichsen A, et al. Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans.Comp Med. 2000 Feb;50(1):16-26
    9 Pitot HC, Hikita H, Dragan Y, et al. Review article: the stages of gastrointestinal carcinogenesis--application of rodent models to human disease. Aliment Pharmacol Ther. 2000,14 Suppl 1:153-160
    10阎哓初.二甲肼诱发大鼠结直肠癌的粘液组织化学研究.第三军医大学学报,1993,15(6):496-497
    11王强.甲基亚硝基脲诱导小鼠结直肠癌动物模型.中国肛肠病杂志,1995,2:63-64
    12耿宝琴.甲基硝基亚硝基胍诱发大白鼠结直肠癌的实验报告.浙江医科大学学报1980;9(2):61-62
    13 Rideout WM , Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990, 14;249(4974):1288-1290
    14刘红耀,李晓东,米振国,等. N-甲基亚硝基脲的制备及其诱导膀胱肿瘤的作用.中华实验外科杂志2000,17:548-549.
    15 Hiratak A , Itah H ,Nagate N , Kuroda Y, Ohsato K. Experimental carcinogenesis in the rat intestine induced by two different carcinogens evaluation of carcinogenic action and its effect on ornithine decarboylase activity. J UOEH. 1994,16(2):153-166
    16 Zhao JX, Yang LP, Wang YF, Qin LP, Liu DQ, Bai CX, Nan X, Shi SS, Pei XJ. Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells. Eur J Neurol. 2007;14(5):510-516
    17 Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 2007;67(3):1378-1384
    18 Lu H, Li B, Kang Y, Jiang W, Huang Q, Chen Q, Li L, Xu C. Paclitaxel nanoparticle inhibits growth of ovarian cancer xenografts and enhances lymphatic targeting.Cancer Chemother Pharmacol. 2007;59(2):175-181
    19 Roughan JV, Flecknell PA, Davies BR. Behavioural assessment of the effects of tumour growth in rats and the influence of the analgesics carprofen and meloxicam. Lab Anim. 2004;38(3):286-296
    20 Matsumura A, Zhang T, Yamamoto T, Yoshida F, Sakurai Y, Shimojo N, Nose T. In vivo gadolinium neutron capture therapy using a potentially effective compound (Gd-BOPTA). Anticancer Res. 2003;23(3B):2451-2456
    21王剑,王吉耀,沈锡中等.幽门螺杆菌感染Balb/c小鼠模型的建立及对N-甲基-N-亚硝基脲诱发胃癌的影响中华消化杂志2005;25 (3):146-149
    22 Hirata K, Itoh H, Nagata N, et al. Experimental carcinogenesis in the rat intestine induced by two different carcinogens--evaluation of carcinogenic action and its effect on ornithine decarboxylase activity. J UOEH. 1994;16(2):153-166
    23. Hardy RG, Meltzer SJ, Jankowski JA. ABC of colorectal cancer. BMJ. 2000; 321(7265):886-889.
    24. Lcalie A, Carey FA, Pratt NR, et al. The colorectal adenoma-carcinoma sequence. British Journal of Surgery 2002; 89(7): 845-860
    25喻德洪,曲乐丰.结直肠癌流行病学现状.中国普外基础与临床杂志1998,5:30-31.
    26王颢,金国祥.结直肠癌普查方法近况.消化外科2003;2:388-391.
    27柳忠美王文娜680例结直肠癌病理分型,分期与预后相关性研究实用肿瘤学杂志1999;13(2):84-85
    28沈俊,张召珍,莫善兢等.早期大肠癌内镜下的诊断和治疗中华消化内镜杂志1998;15:297-298
    29吕愈敏,顾芳,李改英等.早期大肠癌的内镜治疗中华消化内镜杂志2000;27:134-136
    30张亚历.早期大肠癌内镜活检诊断标准的建议.中华消化内镜杂志2001;18:135-138.
    1 Schlemper RJ, Kato Y, Stolte M. Review of histological classifications of gastrointestinal epithelial neoplasia: differences in diagnosis of early carcinomas between Japanese and Western pathologists. J Gastroenterol. 2001;36(7):445-456
    2 Schlemper RJ, Riddell RH, Kato Y, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000;47(2):251-255
    3 Stolte M. The new Vienna classification of epithelial neoplasia of the gastrointestinal tract: advantages and disadvantages Virchows Arch. 2003;442(2):99-106
    4 Stolte M. The new "Vienna Classification" for epithelial neoplasia of the gastrointestinal tract. Pros or cons? Pathologe. 2001 Jan;22(1):4-12
    5 Dunn MJ, Corbett JM. 2-dimensional polyacrylamide gel electrophoresis. Methods Enzymol 1996, 271,177-203
    6 Santoni V, Kieffer S, Desclaux D, et al. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis. 2000 Oct;21(16):3329-3344
    7 Rabilloud T, Adessi C, Giraudel A, Lunardi J. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis. 1997;18(3-4):307-316
    8 Birkenkamp-Demtroder K, Christensen LL, Olesen SH, et al.Gene expression in colorectal cancer. Cancer Res. 2002;62(15):4352-4363
    9 Morin PJ, Sparks AB, Korinek V, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997 Mar 21;275(5307):1787-1790
    10 Muro S, Takemasa I, Oba S, et al. Identification of expressed genes linked to malignancy of quantitative expression data, Genome Biol, 2003;4(3):R21
    11 Stremmel C, Wein A, Hohenberger W, et al.DNA microarrays:a new diagnostic tool and itsimplications in colorectal cancer, Int J Colorectal Dis, 2002;17(3):131-136
    12 Chen G, Gharib TG, Huang CC,et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1(4):304-313
    13 Lawrie LC, Fothergill JE, Murray GI.Spot the differences:proteomics in cancer research,Lancet Oncol 2001 May;2(5):270-277
    14 Pei H, Zhu H, Zeng S, et al. Proteome Analysis and Tissue Microarray for Profiling Protein Markers Associated with Lymph Node Metastasis in Colorectal Cancer. J Proteome Res. 2007;6(7):2495-2501
    15 de Noo ME, Tollenaar RA, Deelder AM, et al. Current status and prospects of clinical proteomics studies on detection of colorectal cancer: hopes and fears. World J Gastroenterol. 2006;12(41):6594-6601
    16 Rodriguez-Pineiro AM, Rodriguez-Berrocal FJ, Paez de la Cadena M. Improvements in the search for potential biomarkers by proteomics: application of principal component and discriminant analyses for two-dimensional maps evaluation. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;849(1-2):251-260
    17 Tjalsma H, Pluk W, van den Heuvel LP, et al. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface. Biochim Biophys Acta. 2006;1764(10):1607-1617
    18 Kolkman A, Dirksen EH, Slijper M, et al. Double standards in quantitative proteomics: direct comparative assessment of difference in gel electrophoresis and metabolic stable isotope labeling. Mol Cell Proteomics 2005,4(3),255-266
    19 Van den Bergh G, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 2004,15 (1):38-43.
    20 Yan JX, Devenish AT, Wait R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2002,2(12):1682-1698
    21 Zhou G, Li H, DeCamp D, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 2002;1(2):117-124
    22 Friedman DB, Hill S, Keller JW,et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 2004 ,4(3):793-811.
    23 Anazawa Y, Nakagawa H, Furihara M, et al. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET. Cancer Res 2005,65(11): 4578-4586
    24 Yu KH, Rustgi AK,Blair IA. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res 2005;4(5):1742-1751
    25喻德洪,曲乐丰。结直肠癌流行病学现状中国普外基础与临床杂志,1998,5(1):30-31。
    26王颜,金国祥。结直肠癌普查方法近况消化外科2003,2(6):388-391.
    27 Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited.Gut,2002,51(1):130-131
    28 Rugge M,Correa P,Dixon MF, et al. Gastric dysplasia.The Padova international classification. Am J Surg pathol,2000,24(2):167-176
    29 Shapland C, Hsuan JJ, Totty NF,et al. Purification and properties of transgelin: a transformation andshape change sensitive actin-gelling protein. J Cell Biol,1993,121(5):1065-1173
    30 Kobayashi R, Kubota T, Hidaka H. Purification, characterization, and partial sequence analysis of a new 25-kDa actin-binding protein from bovine aorta: a SM22 homolog. Biochem Biophys Res Commun. 1994,198(3): 1275-1280
    31 Li L, Liu Z, Mercer B, et al. Evidence for serum response factor-mediated regulatory networks governing SM22 alpha transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol.1997,187(2):311-321
    32 Lawson D, Harrison M, and Shapland C. Fibroblast transgelin and smooth muscle SM22 alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motil Cytoskeleton. 1997;38(3):250-257
    33 Camoretti-Mercado B, Forsythe SM, LeBeau MM,et al. Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics 1998,49(3):452-457
    34 Yeo M, Kim DK, Park HJ et al. Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis.Proteomics. 2006;6(4):1158-1165
    35 Shi YY, Wang HC, Yin YH,et al. Identification and analysis of tumour-associated antigens in hepatocellular carcinoma. Br J Cancer. 2005,14;92(5):929-934.
    36 The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci. 2003 ;18(4):505-509
    37 Leverson JD, Ness SA. Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Mol Cell. 1998;1(2):203-211
    38 Schmid FX. Protein folding. Prolyl isomerases join the fold. Curr Biol, 1995;5(9):993-994.
    39 Gamble TR, Vajdos FF, Yoo S,et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell, 1996;87(7):1285-1294
    40 Rahfeld JU, Rucknagel KP, Schelbert B, et al. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett. 1994;352(2):180-184
    41 Yaffe MB, Schutkowski M, Shen M,et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science,1997;278(5345):1957-1960.
    42 Miglarese MR,Richardson AF, Aziz N, et al. Differential regulation of c-Myb-induced transcription activation by a phosphorylation site in the negative regulatory domain. J Biol Chem, 1996;271(37):22697-22705
    43 Dash AB,Orrico FC, Ness SA. The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb. Genes Dev,1996;10(15):1858-1869
    44 Kowenz-Leutz E, Herr P, Niss K, Leutz A. The homeobox gene GBX2, a target of the myb oncogene, mediates autocrine growth and monocyte differentiation.Cell. 1997;91(2):185-195
    45 Yang WM, Inouye CJ, Seto E. Cyclophilin A and FKBP12 interact with YY1 and alter its transcriptional activity. J Biol Chem. 1995;270(25):15187-15193
    46 Kuramochi J, Arai T, Ikeda S, et al. High Pin1 expression is associated with tumor progression in colorectal cancer. J Surg Oncol. 2006;94(2):155-160
    47 Obama K, Kato T, Hasegawa S, et al. Overexpression of peptidyl-prolyl isomerase-like 1 isassociated with the growth of colon cancer cells. Clin Cancer Res. 2006 Jan 1;12(1):70-76
    48 Olesen SH, Christensen LL, Sorensen FB, et al. Human FK506 binding protein 65 is associated with colorectal cancer. Mol Cell Proteomics. 2005 Apr;4(4):534-544
    49 Lu H, Goodell V, Disis ML. Targeting serum antibody for cancer diagnosis: a focus on colorectal cancer. Expert Opin Ther Targets. 2007 Feb;11(2):235-244
    50 Lin JL, Geng X, Bhattacharya SD, et al. Isolation and sequencing of a novel tropomyosin isoform preferentially associated with colon cancer. Gastroenterology. 2002,123(1):152-162
    51 Prasad GL, Meissner S, Sheer DG, et al. A cDNA encoding a muscle-type tropomyosin cloned from a human epithelial cell line: identity with human fibroblast tropomyosin TM1. Biochem Biophys Res Commun. 1991;177(3):1068-1075
    52母生梅.CAII和CAIV家族最重要的两大成员.国外医学(生理、病理科学与临床分册),2001,21(3):161-163
    53 Selander K, Lehenkari P, Vaananen HK. The effects of bisphosphonates on the resorption cycle of isolated osteoclasts. Calcif Tissue Int. 1994;55(5):368-375
    54 Kaunisto K, Parkkila S, Parkkila AK, et al. Expression of carbonic anhydrase isoenzymes IV and II in rat epididymal duct. Biol Reprod. 1995;52(6):1350-1357
    55 Nishimori I,FujikawaAdachi K,Onishi S,et al.Carbonic anhydrase in human pancreas: hypotheses for the pathophysiological roles of CA isozymes. Ann N Y Acad Sci. 1999,30;880:5-16. Review.
    56 Vince JW, Reithmeier RA. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J Biol Chem. 1998 Oct 23;273(43):28430-28437.
    57白雪,李世拥,安萍等。结直肠癌原发灶和肝转移灶组织中蛋白质组差异表达及临床意义。中华医学杂志2005,85(30):1228-1231
    58 Breikers G, van Breda SG, Bouwman FG, et al.Potential protein markers for nutritional health effects on colorectal cancer in the mouse as revealed by proteomics analysis. Proteomics.2006;6(9):2844-2852
    59 Kivela AJ, Saarnio J, Karttunen TJ,et al.Differential expression of cytoplasmic carbonic anhydrases, CA I and II, and membrane-associated isozymes, CA IX and XII, in normal mucosa of large intestine and in colorectal tumors. Dig Dis Sci. 2001 Oct;46(10):2179-2186
    60 Bekku S, Mochizuki H, Yamamoto T,et al.Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepatogastroenterology. 2000;47(34):998-1001.
    61 Galdiero M, de l'Ero GC, Marcatili A. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun. 1997 Feb;65(2):699-707.
    1 Minamoto T. Detection and characterization of oncogene mutations in preneoplastic and early neoplastic lesions. Methods Mol Bio1 2005; 291:263-278
    2 Robbins DH, Itzkowitz SH. The molecular and genetic basis of colon cancer. Med Clin North Am 2002; 86(6):1467-1495
    3 Pollock CB, Shirasawa S, Sasazuki T, Kolch W, Dhillon AS. Oncogenic K-RAS is required tomaintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res 2005; 65(4):1244-1250
    4 Irby RB, Mao W, Coppola D et al. Activating SRC :mutation in a subset of advanced human colon cancers. Nat Genet 1999; 21:187-190.
    5 Russello SV, Shore SK. SRC in human carcinogenesis. Front Biosci 2004;9:139-144.
    6 Hadija MP, Kapitanovic S, Radosevic S, Cacev T, Mirt M, Kovacevic D, Cacev T, Hadzija M, Spaventi R, Pavelic K. Loss of heterozygosity of DPC4 tumor suppressor gene in human sporadic colon cancer. J Mol Med 2001; 79(2):128-132.
    7 Tachibana M, Kawamata H, Fujimori T, et al. Dysfunction of p53 pathway in human colorectal cancer: analysis of p53 gene mutation and the expression of the p53-associated factors p14ARF, p33INGl, p21WAF1 and MDM2. Int J Oncol 2004 Oct; 25(4):913-920
    8 Schlemper RJ, Kato Y, Stolte M. Review of histological classifications of gastrointestinal epithelial neoplasia: differences in diagnosis of early carcinomas between Japanese and Western pathologists. J Gastroenterol. 2001;36(7):445-56
    9 Schlemper RJ, Riddell RH, Kato Y, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000;47(2):251-255
    10 Stolte M. The new Vienna classification of epithelial neoplasia of the gastrointestinal tract: advantages and disadvantages Virchows Arch 2003;442(2):99-106
    11 Stolte M. The new "Vienna Classification" for epithelial neoplasia of the gastrointestinal tract. Pros or cons? Pathologe. 2001 Jan;22(1):4-12
    12 Xia DY, Sanders A, Shah M, et al. Real-time PCR analysis reveals an evolution of cytokine mRNA production in allograft acceptor mice. Transplantation 2001;72(5):907-914
    13 Mattern J, Koomagi R, Volm M. Coexpression of VEGF and bFGF in human epidermoid lung carcinoma is associated with increased vessel density. Anticancer Res 1997;17(3C):2249-52
    14 Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004; 10(3):190-212
    15 Ding C, Cantor CR. Quantitative analysis of nucleic acids--the last few years of progress. J Biochem Mol Biol 2004;37(1):1-10.
    16 Cashion AK, Driscoll CJ, Sabek O. Emerging genetic technologies in clinical and research settings. Biol Res Nurs 2004; 5(3):159-167
    17 Wilhelm J, Pingoud A. Real-time polymerise chain reaction. Chembiochem. 2003; 4(11):1120-1128
    18 Mocellin S, Rossi CR, Marincola FM. Quantitative real-time PCR in cancer research. Arch Immunol Ther Exp (Warsz). 2003; 51(5):301-313
    19 Mocellin S, Rossi CR, Pilati P, Nitti D, Marincola FM. Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol Med. 2003 May; 9(5):189-195
    20 Livak KJ, Flood SJ, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995; 4(6):357-362
    21 Bonapace G, Iuliano F, Molica S, et al. Cytosolic carbonic anhydrase activity in chronic myeloid disorders with different clinical phenotype. Biochim Biophys Acta 2004;1689 (3) : 179-181
    22 Kuo WH, ChiangWL , Yang SF, et al. The differential expression of cytosolic carbonic anhydrase in human hepatocellar. Life Sci 2003;73 (17) : 2211-2223
    23 Yokoyama S, Shatney CH, Mochizuki, et al. The potential role of fecal carbonic anhydraseⅡin screening for colorectal cancer. Am Surg 1997;63(7): 243-246
    24何其勇.结肠癌发生发展及转移与含锌金属酶-CAⅡ表达的关系中国误诊学杂志2005,5(17):3269-3270
    25 Peter Buchler, Howard A. Reber , Manuela Büchler , et al . Hypoxia Inducible Factor 1 Regulates Vascular Endot helial Growth Factor Expression in Human Pancreatic Cancer. Pancreas, 2003, 26 (1): 56-64
    26 Abbruscato T J , Davis T P. Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia : influence of astrocyte contact. Brain Res 1999;842 (2):277-286
    27 Semenza G. Signal transduction to Hypoxia-Inducible Factor-1. Biochen Pharmacol 2002;64 (5): 993-998
    28 Lawson, D, Harrison, M, and Shapland, C. Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines Cell Mot Cytoskel 1997;38(3): 250-257
    29 Prinjha RK, Shapland CE, Hsuan JJ, et al. Cloning and sequencing of cDNAs encoding the actin cross-linking protein transgelin defines a new family of actin-associated proteins, Cell Motility and the Cytoskeleton 1994;28(3):243-255
    30 Shapland C, Lowings P, Lawson D. Identification of new actin-associated polypeptides that are modified by viral transformation and changes in cell shape. J.Cell Biol 1988; 107(1):153-161
    31 Shapland C, Hsuan JJ, Totty NF, et al. Purification and properties of transgelin: A transformation and shape change sensitive actin-gelling protein., J Cell Biol 1993;121(5):1065-1073
    32 Shields JM, Roger-Graham K, Der CJ. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J.Biol.Chem 2002;277(12): 9790-9799
    33 Mikuriya K, Kuramitsu Y, Ryozawa S,et al. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol. 2007;30(4):849-55
    34 Sheffer Y, Leon O, Pinthus JH, Nagler A, et al.Inhibition of fibroblast to myofibroblast transition by halofuginone contributes to the chemotherapy-mediated antitumoral effect. Mol Cancer Ther. 2007;6(2):570-577
    35 Shields JM, Rogers-Graham K, Der CJ. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J Biol Chem. 2002;277(12):9790-9799
    36 Yang Z, Chang YJ, Miyamoto H, et al. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth Mol Endocrinol. 2007;21(2):343-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700