玉米种子萌发的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子萌发是植物生长发育过程中的早期阶段,是其个体发育中最为关键的时期。这一发育过程是一系列基因表达的综合体现,涉及到一系列复杂的生理生化代谢反应和诸多信号分子的传导。对这一过程的分子机制的探讨,一直是现代植物分子生物学研究的重要课题。蛋白质组学的出现和发展,为研究种子萌发机理提供了有效的手段。目前种子萌发的蛋白质组学研究主要集中在拟南芥、水稻等少数测序的模式植物上,作为重要的遗传学模式植物的玉米在此方面的研究还缺少相关报道。开展玉米(Zea Mays)种子萌发的蛋白质组学分析工作,不仅对探讨玉米(Zea Mays)萌发的机理,完善种子生物学研究,解决林木种子萌发难题有非常重要的意义,而且对于深入理解复杂基因组植物的分子遗传学特征及指导其育种研究也具有重要价值。另外,为没有完成或根本未进行基因组测序的重要生物进行前瞻性蛋白质组研究,进而推动其基因组研究提供新的思路和经验。
     本文从三个方面进行研究,结果如下:
     1.采取基于2-DE电泳、考马斯亮蓝染色、质谱鉴定的经典蛋白质组学的方法,对玉米种子萌发过程中胚和胚乳的蛋白质变化分别进行分析。在胚中鉴定到96个萌发中发生变化的蛋白质点,胚乳中鉴定到33个。对此分析,得到的结论是:胚的吸水对于种子的萌发是第一事件,静态的玉米种子在众多细胞发生吸胀作用后,其蛋白质组发生了巨大的变化;不同功能蛋白质的变化模式,可以反映玉米种子不同组织在萌发过程中的生化反应和代谢过程的特点;玉米种子萌发,蛋白质水平上的变化先于转录水平上的变化,而且胚的蛋白质变化模式与胚乳中存储产物的分解没有关系;胚中贮藏蛋白的降解和胚乳中的贮藏蛋白的降解具有不同的变化模式,胚中的蛋白质组的变化可能早于胚乳中的蛋白质组变化;0h到24h的快速吸水期、24h到42h的种子萌发期、48h到60h的胚根伸长后期,这3个阶段是种子萌发的关键时期。我们推测了,LEA(胚胎发生晚期丰富)蛋白在萌发前期的降解对激活干种子的新陈代谢具有重要的作用,消除种子中的ABA(脱落酸)影响是萌发中的重要事件。通过此项研究,使我们了解了玉米种子的不同组织细胞在萌发过程中的蛋白变化情况,揭示了它们在萌发过程中生理生化变化和相互间作用的分子机制。
     2.基于第一方面的研究结果,我们采用经典蛋白质组学的方法,探讨了在萌发过程中不同程度的NaCl胁迫对玉米种子胚和胚乳蛋白质变化的影响。根据不同浓度的NaCl溶液对玉米种子萌发抑制程度,确定玉米种子萌发NaCl的伤害阈值和存活阈值分别为0.1 mol/L、0.2 mol/L,分别用此浓度处理玉米种子。蛋白质组学分析表明,NaCl胁迫下种子贮存物质活化的延迟和能量代谢的紊乱是抑制种子萌发的主要原因;NaCl胁迫引起的生理干旱和离子毒害,导致许多保护蛋白和相关蛋白的表达,并参与大规模的防御代谢途径,但这些途径只在低盐浓度下(NaCl伤害阈值以下)起作用,在高盐浓度(NaCl存活阈值)这些途径也受到伤害;NaCl对种胚的蛋白质影响比胚乳大。此项研究使我们从时空变化的角度,更加深入、全面的理解盐胁迫的对玉米种子萌发伤害机制及其对盐胁迫的适应机制。
     3.为了更好的理解可逆蛋白磷酸化在种子萌发中的作用,我们研究了萌发的玉米种子胚的磷酸化蛋白质组。通过强阳离子柱结合鸟枪法共鉴定了776个蛋白质,其中包括39个磷酸激酶,16个磷酸酯酶以及含有36个体内磷酸化位点的33个磷酸化蛋白质。除了先前报道的HSP22磷酸化位点外,本试验所鉴定的其它磷酸化位点均未见文献报道。通过QRT-PCR测定,发现在种子萌发期间15个激酶基因的转录是明显上调的,萌发后4个磷酸酶基因转录是上调的。这些结果表明在玉米种子萌发过程中,可逆蛋白质磷酸化及其所调控的复杂网络系统被激活。而且在所鉴定的磷酸化蛋白中至少有三分之一是作为重要的生物学元件在此过程中发挥关键作用。例如DNA修复、基因转录、RNA剪接、蛋白质翻译等。这充分说明蛋白质磷酸化在种子萌发过程中发挥着重要的作用。据我们所知,本试验是首次在单子叶植物中进行磷酸化蛋白质组学研究,为进一步揭示种子萌发及苗期发育的分子生物学机制奠定坚实的基础。
Seed germination is the early stage of growth and development of plants and key period of individual development.This process is comprehensive expressions of genes.A series of complex physiological and biochemical responses and a number of molecular signal transductions are involved in this process.It is one of the most important issues of modern plant molecular biology to study the molecular mechanisms of seed germination.The emergence and progress of proteomics provide a good means for studying the mechanisms of seed germination.At present,few proteomic works have been performed on maize(Zea Mays) being an important food and energy crops except on model plant Arabidopsis,rice and other minority of model plants.The proteomics research work on maize seed germination has very important significant not only for exploring the mechanism of germination and improving seed biology research but also for deeply understanding characteristics of molecular genetics of complex genomic plants.It also has great value for guiding breeding research work. Furthermore,it provides new ideas and experiences for prospective proteome study and further promoting genome research of important biology which genome sequencing has not been completed or even has not been done.
     This work was carried out in three aspects and following results were obtained.
     1.The study was carried out based on classical methods of proteomics- 2-DE electrophoresis,stained Coomassie Brilliant Blue and MS identification,protein changes in embryo and endosperm were analyzed respectively during maize seed germination.96 proteins spots in embryo were detected and showed variations during seed germination.And 33 protein spots in endosperm were identified.This analysis showed that it was the first event to absorb water by seed.After many cells of static corn seeds imbibed,their proteome had undergone tremendous changes.The changes of different functional proteins could indicate reactions and metabolic characteristics of different tissues during germination.Here,the results indicated that changes of protein were in advance of the changes of transcription.Moreover the changes of protein in embryo were not related to decomposition of storage substance in endosperm. Degradation of storage protein in embryo had different patterns compared with those in the endosperm.The change of proteins in embryo could be earlier than that in endosperm.Rapid water uptake is from Oh to 24h,seed germination is from 24h to 42h and later radical elongation is from 48h to 60h.The three stages were the key periods for seed germination.It was suggested that degradation of protein LEA in early stage of germination played an important role in activating metabolism of dry seeds.It was an important event to eliminate impact of ABA in seed during germination.Therefore,this research work shows protein changes in cells of different tissues during maize seed germination it also reveals molecular mechanisms of their physiological and biochemical changes and interactions in seed germination.
     2.Based on results of first aspect,classical proteomics methods were conducted to study effect of different concentrations of NaCl on protein changes in embryo and endosperm during maize seed germination.Damage threshold and survival threshold values of NaCl were 0.1 mol/L and 0.2 mol/L according to inhibition of different concentrations of NaCl solution on maize seed germination.Seeds were treated by these concentrations respectively.Proteomics analysis showed that the delaying of storage mobilization and disorder of decomposition of the energy metabolism were the main reasons for inhibition of seed germination under NaCl stress. NaCl stress resulted in physiological drought and ion poisoning,which led to expressions of related proteins and protection proteins.These proteins were involved in large-scale defending metabolic pathways.However,these pathways could work under low NaCl concentrations (below threshold values).They would be injured under high NaCl concentrations(survival threshold values).In addition,we found that the effect of NaCl on embryo was stronger than that on endosperm.This research work made us deeply understand temporal and spatial changes of toxicological and adaptation mechanisms of maize seed to salt stress.
     3.In order to better understand the role of reversible protein phosphorylation played in seed germination,we initiated a phosphoproteomic investigation of the embryo of germinated maize seed.A total of 776 proteins including 39 kinases,16 phosphotases,and 33 phosphoproteins containing 36 precise in vivo phosphorylation sites were identified.Except for the phosphorylation site on HSP22 which was reported previously,all the phosphorylation sites identified were never documented.Assayed with QRT-PCR,the transcripts of 15 kinase genes were found to be dramatically up-regulated during seed germination and those of 4 phosphotase genes were up-regulated after germination,indicating that reversible protein phosphorylation occurs and complex regulating networks are activated during this period. Among these phosphoproteins,at least one third is key components involved in the important biological processes which are related to seed germination,such as DNA repairing,gene transcription,RNA splicing,protein translation,indicating that protein phosphorylation plays important roles in seed germination.As far as we know,this is the first phosphoproteomic study on monocot plant and it will lay a strong foundation for further study of the molecular mechanisms of seed germination and the consecutive seedling development.
引文
[1]Dove A,Proteomics:translating genomics into products ? Nature Biotechnol.1999,17:233~236
    [2]Pennington S.R.,Wilkins,M.R.,Hochstrasser,D.F.and Dunn,M.J.Proteome analysis:from protein characterization to biological function.Trends Cell Biol.1997,7:168~173
    [3]Wilkins M.R,Sanchez,J.-C,Gooley,A.A.,Appel,R.D.,Humphery-Smith,I.,Hochstrassre,D.F.and Williams,K.L.Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it.Biotechnology,1995,13:19~15
    [4]Wasinger V.C,Cordwell,S.J.,Cerpa-Poljak A,et al.Progress with gene-product mapping of the mollicutes:Mycoplasma genitalium.Electrophoresis,1995,16:1090-1094
    [5]Akhilesh Pandey,Matthias Man.Proteomics to study genes and genomes.Nature,2000,405:837~846
    [6]Potter Wickware,Paul Smaglik.Proteomics technology character references.Nature,2001,413:869~875
    [7]Anton J,Ioannis Iliopoulos,Nikos C K,Christos A O.Protein interaction maps for complete genomes based on gene fusion events.Nature,1999,402:86~90
    [8]Service Robert F.PROTEOMICS:A proteomics upstart tries to outrun the competition.Science,2001,294:2079~2080
    [9]Service Robert F.PROTEOMICS:A proteomics 2.0:The view ahead.Science,2001,294:2079~2080
    [10]Ideker Trey,Thorsson,Vesteinn,Ranish,Jeffrey A,Christmas,Rowan,Buhler,Jeremy,Eng,Jimmy K,Bumgarner,Roger,Goodlett,David R,Aebersold,Ruedi,Hood,Leroy.Integrated genomic and proteomic analyses of a systematically perturbed metabolic Network.Science,2001,292:929~934
    [11]Gerstein Mark,Lan,Ning,Jansen,Ronald.PROTEOMICS:Enhancd:Integrating interactions.Science,2002,295:284~287
    [12]Krogan,N J,Cagney,G,Yu H,Zhong G,et al.Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.Nature,2006,440:637~643
    [13]Humphery-Smith I,Cordwell S J,Blackstock,W P,Proteome research:complementarity and limitations with respect to the RNAand DNA worlds[J].Electrophoresis 1997,18(8):1217-1242
    [14]李伯良,李林,吴家睿.功能蛋白质组学.生物工程进展,1999,11:49~50
    [15]Murayama K,Fujimura T,Morita M,Shindo N.One-step subcellular fractionation of rat liver tissue using a Nycodenz density gradient prepared by freezing-thawing and twodimensional sodium dodecyl sulfate electrophoresis profiles of the main fraction of organelles[J].Electrophoresis,2001,22:2872-2880
    [16]Sylwia Wasiak.Enthoprotin:a novel clathrin associated protein identified through subcellular proteomics[J].JCB,2002,158:855-62
    [17]Catherine Navarre.Subproteomic:Identification of plasma membrane proteins from the yeast[J].Saccharomyces Cerevisiae Proteomics,2002,2:1706-1714
    [18]Davidsson P,Paulson L,Hesse C,et al.Proteome studies of human cerebrospinal fluid and brain tissue using a prearative two-dimensional electrophoresis approach prior to mass spectrometry[J].Proteomics,2001,1(3):444-452
    [19]卢义钦,刘俊凡.核仁的蛋白质组学[J].生命的化学,2003,23(4):245-247.
    [20]O'Farrell,P.H.High-Resolution Two-Dimensional Electrophoresis of Proteins.J.Biol.Chem,1975,250:4007-4021.
    [21]Gorg A,Weiss W,Dunn M J.Current two-dimensional electrophoresis technology for proteomics.Proteomics.2004,12(4):3665-3685
    [22]Unlu M,Morgan M.E,Minden JS.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.Electrophoresis.1997,18:2071-2077
    [23]RabilloudT.Detecting proteins separated by 2-D gel electrophoresis.Anal.Chem.2000,72:48A-55A
    [24]Neuhoff,V.,N.Arold,D.Taube,and W.Ehrhardt.Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250and R-250.Electrophoresis,1988,9:255-262
    [25]Candiano G,M.Bruschi,Musante,L,Santucci L,Ghiggeri G M,Carnemolla B,Orecchia P,Zardi L,Righetti PG.Blue silver:A very sensitive colloidal Coomassie G-250 staining for proteome analysis.Electrophoresis,2004,25:1327-333
    [26]Wilkins M R.Williams K L,Hchstrasser D F,et al.Proteome Research:New Frontiers in Functional Genomics.New York:Springer,1997
    [27]Wilm M,Sherchenko A,HouthaeveT,et al.Nature,1996,379::466-469
    [28]Kellner R et al.Mass spectrometric approaches for the identification of gel-separated proteins.Techniques in Protein Chemistry Ⅵ 1995,47
    [29]卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展[J].生物学杂志,2002,19(4):1-3
    [30]Fodor S P A,Rava R P,Huang X V,et al.Multiplexed biochemical assays with biological chip[J].Nature,1993,364:555-556
    [31]Kricka L J.Microchips,microassays,biochips and nanochips:personal laboratories for the 21st century[J].Clin Chim Acta,2001,307(1-2):219-223
    [32]徐丽,刘松财,张永亮.蛋白质组学的研究展.现在农业科学技术,2007,22:149-150
    [33]Guo Yi-Ming,Shen Shi-Hua,Jing Yu-Xiang,Kuang Ting-Yun.Plant proteomics in the post-genomic era[J].Act Botanica Sinica,2002,44(6):631-641
    [34]Fields S,Song O K.Anovalgenetic system to detect protein-protein in teractions[J].Nature,1989,(340):245-246
    [35]扬齐衡,李林.酵母双杂交技术及其在蛋白质研究中的应用[J].生物化学与生物物理学报,1999,31(3):221-225
    [36]张春霆.生物信息学的现状与展望[J].世界科技研究与发展,2000(6):17-20
    [37]Lefkovits I.Functional and structural proteomics:a critical appraisal[J].Journal of Chromatography B,2003,787:1-10
    [38]黄丽俊,王建华.蛋白质组研究技术及其进展[J].生物学通报,2005(8):4-6
    [39]Hagen J B.The origins ofbioinformatics[J].Nat Rev Genet,2000,1:231-236
    [40]Wasinger V C,Humphery Smith I,Williams K L,et al.Progress with gene product mapping of the molicutes:Mycoplasma genitalium.Electrophoresis,1995,16:1090-1094.
    [41]Andersen J S,Wilkinson C J,Mayor T.Proteomic characterization of the human centrosome by protein correlation profiling.Nature,2003,426:570-574
    [42]Huh W K,Falvo J V,Gerke L C.Global analysis of protein localization in budding yeast.Nature,2003,425:686-691
    [43]Rual J F,Venkatesan K,Hao T,et al.Towards a proteomescale map of the human proteinprotein interaction network.Nature,2005,437:1173-1178
    [44]Stelzl U,Worm U,Lalowski M,et al.A human proteinprotein interaction network:a resource for annotating the proteome.Cell,2005,122:957-968
    [45]He F.Human liver proteome project:plan,progress,and perspectives.Mol Cell Proteomics,2005,4:1841-1848
    [46]Kersten B,Agrawal G K,Iwahashi H,et al.Plant phosphoproteomics:a long road ahead [J].Proteomics,2006,6:5517-5528
    [47]Krupa A,Preethi G,Srinivasan N.Structural modes of stabilization of permissive phosphorylation sites in protein kinases:distinct strategies in Ser/Thr and Tyr kinases[J].Mol Biol,2004,339:1025-1039.
    [48]章晓鹏,肖志强,陈主初.用蛋白质组学方法解析磷酸化蛋白质[J].生命的化学,2005,25(3):261
    [49]Moese S,Selbach M,Zimny-Arndt U,Jungblut P R,Meyer T F,Backert S.Identification of a tyrosinephosphorylated 35kDa carboxy-terminal fragment(~(35)p CagA) of the Helicobacter pylori CagA protein in phagocytic cells:processing or breakage? proteomics, 2001,1(4):618~629
    [50]Backert S,Muller E C,Jungblut P R,Meyer T F.Tyrosine phosphorylation patterns and size modification of the Helicobaoter pylori CagA protein after translocation into gastric epithelial cells,proteomics,2001,1(4):608~617
    [51]Is' hare H,Watling D,Kerr I M.Phosphotyrosine profiling to identify novel components of interferon and interleukin 6-family cytokine signaling,proteomics,2001,1(6):767~772
    [52]Pandey A,Podtelejnikov A V,Blagoev B,Bustelo X R,Mann M,Lodish H F.Analysis of receptor signaling pathways by mass spectrometry:identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors.Proc Natl Acad Sci U S A,2000,97(1):179-184
    [53]Thomas P C,Timothy D.An enriched look at tyrosine phosphorylation[J].Nature Biotechnol,2005,23:36~37
    [54]Maguire P B,Wynne K J,Harney D F,O'Donoghue N M,Stephens G,Fitzgerald D J.Identification of the phosphotyrosine proteome from thrombin activated platelets[J]Proteomics,2002,2(6):642~648
    [55]Gronborg M,Kristiansen T Z,Stensballe A,Andersen J S,Ohara O,Mann M,Jensen O N,Pandey A.Mol Cell Proteomics,2002,1(7):517~527
    [56]Scott D P,Ruedi A,David R G.Mass spectrometry-based methods for protein identification and phosphorylation site analysis.In:Pennington S R and Dun,M J eds.Proteomics from protein sequence to function.New York:Springer-Verlag New York Inc,2001,87~130
    [57]]McLachlin D T and Chait B T.Analysis of phosphorylated proteins and peptides by mass spectrometry.Curr Opin Chem Biol.2001,5(5):591~602
    [58]Moser K,White F M.Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS.J Proteome Res,2006,5(1):98~104
    [59]Kokubu M,Ishihama Y,Sato T,et al.Specificity of immobilized metal affinity-based IMAC/C18 Tip enrichment of phosphopeptides for protein phosphorylation analysis.Anal Chem,2005,77(16):5144~5154
    [60]Wang J,Zhang Y,Jiang H,et al.Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS.Proteomics,2006,6(2):404-411
    [61]Ficarro S B,Salomon A R,Brill L M,Mason D E,Stettler Gill M,Brock A,Peters E C.Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites.Rapid Commun Mass Spectrom,2005,19(1):57~71
    [62]Oda Y,Nagasu T,Chait B T Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome.Nature.Biotech,2001,19(4):379~382
    [63]Zhou H,Watts J D,Aebersold R.A systematic approach to the analysis of protein phosphorylation.Nat Biotechnol,2001,19(4):375~378
    [64]Lansdell T A,Tepe J J.Isolation of Phosphopeptides using Solid Phase Enrichment Tetrahedron Lett,2004,45(1):91~93
    [65]Larsen M R,Sorensen G L,Fey S J,Larsen P M,Roepstorff P.Phospho-proteomics:evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis.Proteomics,2001,1(2):223~238
    [66]Liao P C,Leykam J,Andrews P C,Gage D A,Allison J.An approach to locate phosphorylation sites in a phosphoprotein:mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry.Anal Biochen,1994,219(1):9~20
    [67]Oda Y,Huang K,Cross F R,Cowburn D,Chait B T.Accurate quantitation of protein expression and sitespecific phosphorylation.Proc.Natl.Acad Sci USA,1999,96(12):6591~6596
    [68]Goshe M B,Conrads T P,Panisko E A,Veenstra T D,Smith R D.Phosphoprotein isotope coded affinitv tag approach for isolating and quantitating phosphopeptides in proteomewide analyses.Analytical Chemistry,2001,73(11):2578~2586
    [69]Goshe M B,Veenstra T D,Panisko E A,Conrads T P,AngellN H,Smith R D.Phosphoprotein isotope coded affinity tags:Application to the enrichment and identification of low abundance phosphoproteins.Analytical Chemistry,2002,74(3):607~616
    [70]Peck S C,Nthse T S,Hess D,et al.Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitor[J],The Plant Cell,2001,13:1467~1475
    [71]Nuhse T S,Peck S C,Hirt H,Boiler T.Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6[J].Biol.Chem,2000,275:7521~7526
    [72]Khan M M,Jan A,Karibe H,et al.Identification of phosphoproteins regulated by gibberellin in rice leaf sheath[J].Plant Mol Biol,2005,58:27~40.
    [73]Nuhse T S,Stensballe A,Jensen O N,et al.Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database[J].Plant Cell,2004,16:2394~2405
    [74]Vener A V,Harms A,Sussman MR,et al.Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana[J].J.Biol Chem,2001,27:6959~6966
    [75]Hansson M,Vener A V,Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana.Mol Cell Proteomics.2003,2:550~9
    [76]Koornneef M,Bentsink L,Hilhorst H.Seed dormancy and germination.Current.Opinion in Plant Biol.2002,5:33~36
    [77]Bewley J,D.Seed germination and dormancy.Plant Cell 1997,9:1055~1066
    [78]Bove J,Jullien M,Grappin P.Functional genomics in the study of seed germination.Genome Biol,2001,3(1):1002.1~1002.5
    [79]颜启传.种子学[M].北京:中国农业出版社,2001,97~102.
    [80]傅家瑞.种子生理[M].北京:中国农业出版社,1992,18~70.
    [81]Beligni M V,Lamattina L.Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyls elongation three light-inducible responses in plants Planta.2000,210:215~221
    [82]Finkelstein R R,Lynch T J.Abscisic acid inhibition of radicle emergence but not seedlings growth is suppressed by sugars.Plant Physiology.2000,122:1179~1186.
    [83]Gul B,Weber D J.Effect of salinity,light and temperature on germination in Alenrolfea occidentalis[J].Can.J.Bot,1999,77:240~246
    [84]Khan M A,Ungar I A.Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions[J].Am.J.Bot,1997b,84:279~283
    [85]Agrawal G K,Yamazaki M,Kobayashi M,Hirochika R,Miyao A,Hirochika H.Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.Tagging of a zeaxanthin epoxidase gene and a novel OSTATC gene.Plant Physiology 2001,125:1248~1257
    [86]He Y,Gan S.A novel zinc-finger protein with a praline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis.Plant Molecular Biology 2004,54:1~9
    [87]Bradford K J,Downie A B,Gee O H,Alvarado V,Yang H,Dahal P.Abscisic acid and gibberellin differentially regulate expression of genes of the SNFl-related kinase complex in tomato seeds.Plant Physiology 2003,132:1560~1576
    [88]Gonzalez-Garcia M P,Rodriguez D,Nicolas C,Rodriguez P L,Nicolas G.Lorenzo O.Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2Cl plays a role in seed dormancy regulation and promotion of seed dormancy.Plant Physiology 2003,133:135~144
    [89]Tan B C,Joseph L M,Deng W T,Liu L J,Li Q B,Cline K,McCarty D R.Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family.Plant J 2003,35:44~56
    [90]Seo M,Aoki H,Koiwai H,Kamiya Y,Nambara E,Koshiba T.Comparative studies on the Arabidopsis aldehyde oxidase(AAO)gene family revealed a major role of AAO3 in ABA biosynthesis in seeds.Plant Cell Physiol 2004,45:1694~1703
    [91]Gubler F,Millar A A,Jacobsen J V.Dormancy release,ABA and pre-harvest sprouting.Current Opinion in Plant Biology 2005,8:183~187
    [92]Xin Z,Zhao Y,Zheng Z L,Transcriptome Analysis Reveals Specific Modulation of Abscisic Acid Signaling by ROP10 Small GTPase in Arabidopsis.Plant Physiology 2005,139:1350~1369
    [93]Ward J M,Smith AM,Shah P K,Galanti S E,Yi H,et al.A new role for the Arabidopsis AP2 transcription factor,LEAFY PETIOLE,in gibberellin-induced germination is revealed by the misexpression of a homologous gene,SOB2 / DRN-LIKE.Plant cell 2006,18:29~39
    [94]Koornneef M,van Eden J,Hanhart C and de Jongh A.Genetic fine-structure of the GA-1 locus in the higher plant Arabidopsis thaliana.Henynh Genet Res Camb 1983,41:57~68
    [95]Sun T P,Goodman H M,Ausubel F M.Cloning the Arabidopsis GA1 locus by genomic subtraction.Plant Cell 1992,4:119~28
    [96]Nonogaki H,Gee O H,Bradford K J.A germination-specific endo-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds.Plant Physiology 2000,123:1235~1246
    [97]Chen F,Bradford K J.Expression of an expansin is associated with endosperm weakening during tomato seed germination.Plant Physiology 2000,124:1265~1274
    [98]Chen F,Dahal P,Bradford K J.Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination.Plant Physiology 2001,127:928~936
    [99]Chen F,Nonogaki H,Bradford K J.A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination.Journal of Experimental Botany 2002,53:215~223
    [100]Lee S,Cheng H,King KE,Wang W,He Y,Hussain A,Lo J,Harberd N P,and Peng J.Gibberellin regulates Arabidopsis seed germination via RGL2,aGAI/RGA-like gene whose expression is up-regulated following imbibition.Genes Dev,2002,16:646~658
    [101]Tyler L,Thomas S G,Hu J,Dill A,Alonso J.M,Ecker J R,and Sun TP.Delia proteins and gibberellin-regulated seed germination and floral development in Arabidopsis.Plant Physiol 2004,135:1008~1019
    [102]Steber C M,Cooney S E,and McCourt P.Isolation of the GA-response mutant slyl as a suppressor of ABI1-1 in Arabidopsis thaliana.Genetics 1998,149:509~521
    [103]Russell L,Larner V,Kurup S,Bougourd S,Holdsworth M J.The Arabidopsis comatose locus regulates germination potential.Development 2000,127:3759~3767
    [104]Steber C M and Mccourt P.A role for brassinosteroids in germination in Arabidopsis.Plant Physiology 2001,125:763~769
    [105]Bethke P C,Gubler F,Jacobsen J V,Jones R L.Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide.Planta 2004,219:847~855
    [106]Zhang H,Shen W B,Zhang W,Xu L L.A rapid response ofp-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination.Planta 2005,220:708~716
    [107]Simontacchi M,Jasid S,Puntarulo S.Nitric oxide generation during early germination of sorghum seeds.Plant Science,2004,167:839~847
    [108]Sarath G,Bethke P C,Jones R,Baird LM,Hou G,Mitchell R B.Nitric oxide accelerates seed germination in warm-season grasses.Planta,2006,6:1154~1164
    [109]Beligni M V,Lamattina L.Nitric oxide stimulates seed germination and de-etiolation,and inhibits hypocotyl elongation,three light-inducible responses in plants.Planta,2000,210:215~221
    [110]Gallardo K,Job C,Groot S P C,Puype M,Demol H,Vandekerckhove J,Job D.Proteomic analysis of Arabidopsis seed germination and priming.Plant Physiol 2001,126:835~848
    [111]Fu Q,Wang B C,Jin X,Li H B,Han P,Wei K H,Zhang X M,Zhu Y X.Proteomic analysis and extensive protein identification from dry,germinating Arabidopsis seeds and young seedlings[J].Biochem Mol Biol 2005,38:650~660
    [112]Yang P F,Li X J,Wang X Q,Chen H,Chen F,Shen S H.Proteomic analysis of rice(Oryza sativa)seeds during germination.Proteomics 2007,7:3358~3368
    [113]Gallardo K,Job C,Groot S P C,Puype M,Demol H,Vandekerckhove J,Job D.Proteomics of Arabidopsis seed germination a comparative study of wild-type and gibberellin-deficient seeds.Plant Physiol 2002,129:823~837
    [114]Claudette J,Loi'c R,Yoann L,Maya B,Dominique J.Patterns of protein oxidation in Arabidopsis seeds and during germinationl.Plant Physiology 2005,138:790~802
    [115]Loi'c R,Maya B,Romain H,Caroline R,Adrien M,Claudette J,Dominique J.Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.Plant Physiology 2006,141:910~923
    [116]Yamauchi Y,Ogawa M,Kuwahara A,Hanada A.Kamiya Y,Yamaguchi S.Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds.Plant Cell 2004,16:367~378
    [117]Rathinasabapathi B,Burnet M,Russell B L,Gage D A,Liao P C,et al.Choline monooxygenase,an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning.Proc Natl Acad Sci,1997,94(7):3454-3458
    [118]Kishitani S,Takanami T,Suzuki M,Oikawa M,et al.Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley.Plant Cell Environ,1998,23:107-114
    [119]Strizhov N,Abraham E,Okresz L,Blicking S,Zilberstein A.,Schell J.,Koncz C.,and Szabados L.Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1,ABIl and AXR2 in Arabidposis.Plant J,1997,12(3):557-569
    [120]Igarashi Y,Yoshiba Y,Sanada Y,Wada K,et al.Characterization of the gene for deltal-pyrroline -5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L.Plant Mol.Biol,1997,33(5):857-865
    [121]Verbruggen N,Villarroel R,Montagu M V.Osmoregulation of a pyrroline -5-carboxylate reductase gene in Arabidposis thaliana.Plant Physiol,1993,103(3):771-781
    [122]Bohnert H J and Cushman J C.The ice plant cometh:lessons in abiotic stress tolerance.Journal of Plant Growth Regulation,2000,19,(3):334 - 346
    [123]Jang I C,Oh S J,Seo J S,Choi W B,Song S.I.,Kim C.H.,Kim Y.S.,Seo H.S.,Choi Y.D.,Nahm B.H.,and Kim J.K.Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6- phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth.Plant Physiol,2003,131(2):516-524
    [124]Vogel G;Aeschbacher R A,Muller J,Boiler T and Wiemken A.Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant.Plant J,1998,13(5):673 - 683
    [125]Roxas V P,Lodhi S A,Garrett D K,Mahan J R,and Allen R D.Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase.Plant Cell Physiol,2000,41(11):1229-1234
    [126]马长乐,王萍萍,曹子谊,赵彦修,张慧.盐地碱蓬(Suaedasalsa)APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报,2002,04:17-22
    [127]马秀灵,王增兰,戚元成,赵彦修,张慧.硫腺昔甲硫氨酸合成酶基因的克隆及其在盐胁迫条件下的不同表达(英文)[J].Acta Botanica Sinica,2003,11:102-108
    [128]王丽萍,戚元成,赵彦修,张慧.盐地碱蓬GST基因的克隆、序列分析及其表达特征[J].植物生理与分子生物学学报,2002,02:55-58
    [129]Espinosa-Ruiz A,Belles J M,Serrano R,and Culianez-Macla F A.Arabidopsis thaliana AtHAL3:a flavoprotein related to salt and osmotic tolerance and plant growth.Plant J,1999,20(5):529-539
    [130]Daniels M J,Mirkov TE and Chrispeels M J.The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP.Plant Physiol,1994,106:1325~1333
    [131]Kammerloher W,Fischer U,Piechottka G P and Schaffner A R.Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system.Plant J,1994,6(2):187~199
    [132]Yamada S,Katsuhara M,Kelly W B,Michalowski C B and Bohnert H.J.A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant.Plant Cell,1995,7(8):1129~1142
    [133]Xu D,Duan X,Wang B,Hong B,Ho THD,Wu R.Expression of a late embryogenesis abundant protein gene,HVA1,from barley confers tolerance to water deficit and salt stress in transgenic rice.Plant Physiol,1996,110:249~257
    [134]Liu,D,Zhang,X,Cheng,Y,Takano,T,Liu,S.rHsp90 gene expression in response to several environmental stresses in rice(Oryza sativa L.).Plant Physiology and Biochemistry,2006,44:380~386
    [135]Choi H,Hong J,Ha J,King J and Kim S Y ABFs,a family of ABA-responsive element binding factors.J Biol Chem,2000,275(3):1723~1730
    [136]Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozoki K and Shinozoki K.Improving plant drought,salt and freezing tolerance by gene transfer of a single stress inducible transcription factor.Nat Biotechnol,1999,17(3):287~291
    [137]Frank W,Philips J,Salamini F and Bartels D.Two dehydration inducible transcripts from the resurrection plant Craterostigma plantagineum encode interesting homeodomainleucine zipper proteins.Plant J,1998,15(3):413~421
    [138]Seki M,Narusaka M,Ishida J,et al.Monitoring the expression profiles of 7000Arabidopsis gene under drought,cold and high-salinity stresses using a full-length cDNA microarray.Plant J,2002,31(3):279~292
    [139]Abe H.,Yamaguchi-Shinozaki K,Urao T,Iwasaki T,Hosokawa D and Shinozaki K.Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression.Plant Cell,1997,9:1859~1868
    [140]Ndimba B K,Chivasa S,Simon W J,Slabas AR.Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry.Proteomics 2005,16:4185~4196
    [141]Ramani S,Apte S K.Transient expression of multiple genes in salinity-tressed young seedlings of rice(Oryza sativa L.Cv Bura Rata).Biochem Biophys Res Commun.1997,233:663~667
    [142]Salekdeh Cx H,Siopongco J,Wade L J,Ghareyazie B,Bennett J.A proteomic approach to analyzing drought and salt responsiveness in rice.Field Crop Res,2002,76:199~219
    [143]Majoul T,Chahed K,Zamiti E,Ouelhazi L,Ghrir R.Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salttolerant and a salt-sensitive cultivar of wheat.Electrophoresis,2000,21.2562~2565
    [144]Hossein A,Johan E,Mohsen H,Mohammad K,Ghasem H S.Effects of salinity levels on proteome of Suaeda aegyptiaca leaves.Proteomics,2006,6:2542~2554
    [145]Lee S,Lee E J,Yang E J,Lee J E,et al.Proteomic identification of annexins,calciumdependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabiopsis.Plant Cell,2004,16(5):1378~1391
    [146]Porubleva L,Vanden KV,K,Kothari S,et al.The proteome of maize leaves:Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints[J].Electrophoresis 2001,22:1724~1738
    [147]Mechin V,Balliau T,Chateau J S,et al.A two-dimensional proteome map of maize endosperm[J].Phytochemistry 2004,65:1609~16181.
    [148]Mechin V,Thevenot C,Guilloux M L,et al.Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate or thophosphate dikinase[J].Plant Physiology 2007,143:1203~12191
    [149]Leonardi A,Damerval D,de Vienne D.Organ-specific variability and inheritance of maize proteins revealed by two-dimensional electrophoresis.Genet Res Camb 1988,52:97~103
    [150]Okamoto T,Higuchi K,Shinkawa T,et al.Identification of major proteins in maize egg cells[J].Plant Cell Physiol 2004,45:1406~14121
    [151]Hochholdinger F,Guo L,Schnable P S.Lateral root s affect t he proteome of the primary root of maize(Zea maysL.)[J].Plant Moll Biol 2004,56:397~4121
    [152]Zhu J,Mickelson S M,Kaeppler S M et al.Detection of quantitative trait loci for seminal root traits in maize(Zea mays L.)seedlings grown under differential phosphorus levels.Theor.Appl.Genet 2006,113:1~10
    [153]Liu Y,Lamkemeyer T,Jakob A,et al.Comparative proteome analyses of maize(Zea mays L.)primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant ruml.Proteomics 2006,6:4300~4308.
    [154]Sauer M,Jakob A,Nordheim A,et al.Proteomic analysis of shoot-borne root initiation in maize(Zea mays L.).Proteomics 2006,6:2530~2541.
    [155]Majeran W,Cai Y,Sun Q,et al.Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics[J].Plant Cell 2005,17:3111~3140
    [156]Patricia M,Lonosky,Zhang X,Vasant Q Honavar et al.A Proteomic analysis of maize chloroplast biogenesis[J].Plant Physiology 2004,134:560~574
    [157]Hochholdinger F,Guo L,Schnable P S.Cytoplasmic regulation oft he accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize[J].Plant J,2004,37:199~208
    [158]Riccardi F,Gazeau P,Jacquemot M P,et al.Deciphering genetic variations of proteome responses to water deficit in maize leaves[J].Plant Physiol Biochem 2004,42:1003~1011
    [159]Vincent,D,Lapierre,C,Pollet,B,Cornic,G,Negroni,L,Zivy,M.Water deficits affect caffeate O-methyltransferase,lignification,and related enzymes in maize leaves.Plant physiol 2005,137:949~960
    [160]Requejo R,Tena M.Proteome analysis of maize root s reveals t hat oxidative stress is a main contributing factor to plant arsenic toxicity[J].Phytochemistry 2005,66:1519~1528
    [161]Chang W W,Huang L,Shen M,et al.Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment,and identification of proteins by mass spectrometry[J].Plant Physiol 2000,122:295~318
    [162]Campo Sonia,Montserrat Carrascal,Maria Coca et al.The defense response of germ inating maize embryos against fungal infection:A proteomics approach[J].Proteomics.2004,4:383~396
    [163]Campo S,M M,Coca M The defense response of germinating maize embryos a Carrascal gainst fungal infection:a proteomics approach[J].Proteomics 2004,4:383~396
    [164]Stephen C,William J S,Yu X L,et al.Pathogen elicitor-induced changes in the maize extracellular matrix proteome[J].Proteomics,2005,5:4894~4904
    [165]Chen Z Y,Brown R L,Lax AR,et al.Resistance to Aspergillus,flavus in corn kernels is associated with a 14-kDa protein[J].Phytopathology,1998,88:276~281
    [166]Rajjou,L.,Gallardo,K.,Debeaujon,I.,Vandekerckhove,J.et al.,Proteomic Analysis of Arabidopsis Seed Germination and Priming.Plant Physiol.2004,134:1598~1613
    [167]Pingfang Yang,Xiaojuan Li,Xiaoqin Wang,Hui Chen,Fan Chen and Shihua Shen.Proteomic analysis of rice(Oryza sativa)seeds during Germination.Proteomics 2007,7:3358~3368
    [168]Darren Gruis,Jan Schulze,and Rudolf Jung.Storage Protein Accumulation in the Absence of the Vacuolar Processing Enzyme Family of Cysteine Proteases.The Plant Cell,Vol.2004,16:270~290
    [169]Johansen,K.S.,Svendsen,I.,Rasmussen,S.K.,Purification and cloning of the two domain glyoxalase I from wheat bran.Plant Sci.2000,155:11~20
    [170]Singla-Pareek,S.L.,Reddy,M.K.,Sopory,S.K.,Genetic engineering of the glyoxalase pathway in the tobacco leads to enhanced salinity tolerance.Proc.Natl.Acad.Sci.USA 2003,100:14672~14677
    [171]Roncarti,R.,Salimini,F.,Bartels,D.,An aldose reductase homologous gene from barley:regulation and function.Plant J.1995,7,809~822
    [172]Jones AM,Dangl JL Logjam at the styx:programmed cell death in plants.Trends Plant Sci,1996,1:114~119
    [173]Weiss D,Halevy AH Stamens and gibberellin in the regulation of corolla pigmentation and growth in Petunia hibrida.Planta,1989,179:89~96
    [174]Lourdes Go'mez-Go'mez2 and Pedro Carrasco~* Differential Expression of the S-Adenosyl-L-Methionine Synthase Genes during Pea Development.Plant Physiol.1998),117:397~405
    [175]Espartero J,Pintor-Toro JA,Pardo JM Differential accumulation of Sadenosyl methionine synthetase transcripts in response to salt stress.Plant Mol Biol.1994,25:217~227
    [176]Van Breusegem F,Dekeyser R,Gielen J,Van Montagu M,Kaplan A Characterization of a S-adenosylmethionine synthase gene in rice.Plant Physiol.1994,105:1463~1464
    [177]Kawalleck P,Plesch G,Halhbrock K,Somssich IE Induction of S-adenosyl-1-methionine synthetase and S-adenosyl-1homocysteine hydrolase mRNAs in cultured cells and leaves of Petroselium crispum.Proc Natl Acad Sci USA1992,89:4713~4717
    [178]Tuomainen J,Betz C,Ernst D,Langebartels C,Sandermann H Jr,Kangasja'rvi J Ozone affects the ethylene biosyntheticpathway at both biochemical and mRNA levels.NATO Advanced,Research Workshop.In Biology and Biotechnology of the Plant Hormone Ethylene.Chania,Greece,1996,p 33
    [179]Abeles FB,Morgan PW,Saltveit ME Regulation of ethylene production by internal,environmental,and stress factors.In FBAbeles,PW Morgan,ME Salveit,eds,Ethylene in Plant Biology,1992
    [180]Kahl,J.,Siemens,D.H.,Aerts,R.J.,GaE bier,R.,KuE hnemann,F.,Preston,C.A.and Baldwin,I.T.Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore.Planta,2000,210:336~342
    [181]O'Donnell,P.J.,Calvert,C,Atzorn,R.,Wasternack,C,Leyser,H.M.O.and Bowles,D.J.Ethylene as a signal mediating the wound response of tomato plants.Science,1996,274:1914~1917
    [182]Brett C.Couch,Russ Spangler,Christine Ramos,and Georgiana May.Pervasive Purifying Selection Characterizes the Evolution of 12 Homologs.MPMI Vol.19,No.3,2006,pp.288~303
    [183]Uta von Rad1,Regina Hu(?)ttl1,Friedrich Lottspeich2,Alfons Gierll and Monika Freyl, Two glucosyltransferases are involved in detoxi?cation of benzoxazinoids in maize.The Plant Journal.2001,28(6),633~642
    [184]Urao,T,Katagiri,T,Mizoguchi,T,Yamaguchi-Shinozaki,K.,Hayashida,N.and Shinozaki,K.Two genes that encode Ca2+-dependent protein kinases are induced by drought and highsalt stresses in Arabidopsis thaliana.Mol.Gen.Genet.1994,224:331~340
    [185]Yoon,G.M.,Cho,H.S.,Ha,H.J.,Liu,J.R.and Lee,H.S.Characterization of NtCDPKl,a calcium-dependent protein kinase gene in Nicotiana tabacum,and the activity of its encoded protein.Plant Mol.Biol.1999,39:991~1001
    [186]Saijo,Y,Kinoshita,N.,Ishiyama,K.,Hata,S.,Kyozuka,J.,Hayakawa,T.,Nakamura,T,Shimamoto,K.,Yamaya,T andlzui,K A Ca2+-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles.Plant Cell Physiol.2001,42:1228~1233
    [187]Yang,G,Shen,S.,Yang,S.and Komatsu,S.OsCDPK13,a calcium-dependent protein kinase gene from rice,is induced in response to cold and gibberellin.Plant Physiol.Biochem.2003,41:369~374
    [188]Bingliang Wan,Yongjun Lin,Tongmin Mou.Expression of rice Ca~(2+)-dependent protein kinases(CDPKs)genes under different environmental stresses.FEBS Letters 2007,581:1179~1189
    [189]Muenier B,De Visser SP,and Shaik S.Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes.Chem Rev 2004,104:3947~3980
    [190]Li D,Robert R.WD-repeat proteins:structure characteristics,biological function,and their involvement in human diseases[J].J Cell Mol Life Sci,2001,58:2085~2097
    [191]HatzfeldM.The armadillo family of structural proteins[J].Int.Rev.Cytol.,1999,186:179~224
    [192]SamuelM A,Salt J N,Shiu S H,et al.Multifunctional arm repeat domains in p lants[J].Int.Rev.Cytol.,2006,253:1~26
    [193]Hayward D G,Clarke R B,FaragherA J,et al.The centrosomal kinase Nek2 disp lays elevated levels of orotein exp ression in human breast cancer[J].Cancer Res,2004,64(20):7370~7376
    [194]Bewley,J.D.,Black,M.,Seeds:Physiology and Development of Germination.Plenum Publishing Corporation,New York,1994,147~197
    [195]Sheoran I S,Olson D J H.,Ross AR S,Sawhney V K.Proteome profile and functional classification of proteins in Arabidopsis thaliana(Landsberg erecta)mature pollen Proteomics 2005,5:3752~3764
    [196]Bφsager B C,Finnie C,Roepstorff P,Svensson B.Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo,aleurone layer,and endosperm tissues.Proteomics 2007,7:1-12
    [197]Gallardo.K.,Job,C.,Groot,S.P.C.,Puype,M.,et al.,Proteomic of Arabidopsis seed germination.A comparative study of wild-type and gibberellin-deficient seeds.Plant Physiol.2002,129:823-837
    [198]Bethke,P.C.,Hwang,Y.,Zhu,T.,Jones,R.L.,Global patterns ofgene expression in the aleurone of wild-type and dwarfl mutant rice.Plant Physiol.2005,140:484-498
    [199]Ingram,J.,Bartels,D.,The molecular basis of dehydration tolerance in plants.Annu.Rev.Plant Physiol.Mol.Biol.1996,47:377-404
    [200]Lane,B.G.Cellular desiccation and hydration:Developmentally regulated proteins,and the maturation and germination of seed embryos.FASEBJ.1991,5:2893-2901
    [201]Jiang,L.,and Kermode,A.R.Role of desiccation in the termination of expression of genes for storage proteins.Seed Sci.Res.1994,4:149-173
    [202]Han,B.,Hughes,D.W.,Galau,G.A.,Bewley,J.D.,and Kermode,A.R.Changes in late embryogenesis abundant(Lea) messenger RNAs and dehydrins during maturation and premature drying ofRicinus communis L.Seeds.Planta.1996,201:27-35
    [203]Beltran-Petia,E.,Ortiz-L(?)pez,A.,and Sanchez de Jim(?)nez,E.Synthesis of ribosomal proteins from stored mRNAs early in seed germination.Plant MOI.Biol.1995,28:327-336
    [204]Bewley,J.D.Protein and nucleic acid synthesis during germination and early seedling growth.In Encyclopaedia of Plant Physiology,Vol.14A,D.Boulter and B.Parthier,eds (New York:Springer-Vedag),1982,61-81
    [205]Ozturk,Z.N.,Talam(?),V.,Deyholos,M.,Michalowski,C.B.,et al.,Monoring largescale changes in transcript abundance in drought- and salt-stressed barley.Plant Mol.Biol.2002,48:551-573
    [206]Kollipara,K.P.,Saab,I.N.,Wych,R.D.,Lauer,M.J.,Singletary,G.W.,Expression profiling of reciprocal maize hybrids divergent for cold germination and desiccation tolerance.Plant Physiol.2002,129,974-992
    [207]Seki,M.,Narusaka,M.,Abe,H.,Kasuga,M.,et al.,Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using full-length cDNA microarray.Plant Cell 2001,13:61-72
    [208]Luo Y,Mooney H.A.Interactions between rising CO_2,soil saliniztion and plant growth.London:Academic Press,1999,139-167
    [209]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性对策.植物学通报.1997,14(增刊):25-30
    [210]Bewley J D,Black M.Seeds:Physiology of Development and Germination.Plenum Press,New York,1994,199~257
    [211]Hossein A,Johan E,Mohsen H,Mohammad K,Ghasem H S.Effects of salinity levels on proteome of Suaeda aegyptiaca leaves.Proteomics,2006,6:2542~2554
    [212]Sonia Campo,Montserrat Carrascal,Maria Coca,Joaquin Abian,Blanca San Segundo.The defense response of germinating maize embryos against fungal infection:A proteomics approach.Proteomics 2004,4:383~396
    [213]Foyer,C.H.,Lelandais,M.,Kunert,K.J.,Physiol.Plantl994,92,696~717
    [214]David S.Skibbel,Feng Liu,Tsui-JungWen,Marna D.Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis.Plant Molecular Biology,2002,48:751~764
    [215]Liu,R,Cui,X.,Horner,H.T.,Weiner,H.and Schnable,PS.Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize.Plant Cell.2001,13:1063~1078
    [216]Wise,R.P.,Bronson,C,Schnable,P.S.and Horner,H.T.Tcytoplasmic male sterility of maize.Adv.Agron.1999,65:79~130
    [217]Moonil Kim,Hye Sun Cho,Do-Myung Kim,Jeong Hee Lee,Hyun-Sook Pai~* CHRK1,a chitinase-related receptor-like kinase,interacts with NtPUB4,an armadillo repeat protein,in tobacco.Biochimica et Biophysica Acta 2003,1651:50~59
    [218]Smith T F,Gaitatzes C,Saxena K,et al.The WD repeat:a common architecture for diverse functions[J].Trends Biochem Sci,1999,24:181~185
    [219]Riggleman B,Wieschaus E,Schedl P.Molecular analysis of the armadillo locus:uniformly distributed transcripts and a p rotein with novel internal repeats are associated with a Drosophila segment polarity gene[J].Genes Dev.,1989,3:96~113
    [221]Bewley,J.D.,Seed Germination and Dormancy.Plant Cell 1997,9:1055~1066
    [222]Trewavas,A.J.,Timing and memory processes in seed embryo dormancy-A conceptual paradigm for plant development questions.Bioessays 1987,6:87~93
    [223]Manning,G,Whyte,D.B.,Martinez,R.,Hunter,T,Sudarsanam S.The protein kinase complement of the human genome.Science 2002,298:1912~1934
    [224]Venter,J.C,Adams,M.D,Myers,E.W.,Li,P.W.et al.,A comparison of wholegenome shotgun-derived mouse chromosome 16 and the human genome.Science 2001,291:1304~1351
    [225]The Arabidopsis Genome Initiative,Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Nature 2000,408:796~815
    [226]Kerk,D.,Bulgrien,J.,Smith,D.W.,Barsam,B,et al,The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis.Plant Physiol.2002,129:908~925
    [227]Yang,E,Stenoien,D.L.,Strittmatter,E.E,Wang,J.,et al.,Phosphoproteome profiling of human skin fibroblast cells in response to low-and high-dose irradiation.J.Proteome Res.2006,5:1252~1260
    [228]Villen,J.,Beausoleil,S.A.,Gerber,S.A.,Gygi,S.P.,Large-scale phosphorylation analysis of mouse liver.Proc.Natl.Acad.Sci.U S A,2007,104:1488~1493
    [229]Beausoleil,S.A.,Jedrychowski,M.,Schwartz,D.,Elias,J.E.,et al.,Large-scale characterization of HeLa cell nuclear phosphoproteins.Proc Natl Acad Sci.USA,2004,101:12130~12135
    [230]Dai,J.,Tin,W.H.,Sheng,Q.H.,Shieh,C.H.et al.,Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography(Yin-yang MDLC)mass spectrometry.J.Proteome Res.2007,6:250~262
    [231]Peng,J.,Elias,J.E.,Thoreen,C.C,Licklider,L.J.et al.,Evaluation of multidimensional chromatography coupled with tandem mass spectrometry(LC/LC-MS/MS)for large-scale protein analysis:the yeast proteome.J.Proteome Res.2003,2:43~50
    [232]Mangalathu,S.R.,Daya,G.R.,Suzanne,D.V.,Elizabeth,R.U.,Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies,Methods 2001,25:443~451
    [233]Wu,C.C,MacCoss,M.J.,Howell,K.E.,Yates,J.R.,A method for the comprehensive proteomic analysis of membrane proteins.Nat.Biotechnol.2003,21:532~538
    [234]He,P.,He,H.Z.,Dai,J.,Wang,Y.et al.,The human plasma proteome:analysis of Chinese serum using shotgun strategy.Proteomics 2005,5:3442~3453
    [235]Chen,M,Ying,W,Song,Y,Liu,X.,et al.,Analysis of human liver proteome using replicate shotgun strategy.Proteomics 2007,7:2479~2488
    [236]Lee,J.,Garrett,W.M,Cooper,B.,Shotgun proteomic analysis of Arabidopsis thaliana leaves.J.Sep.Sci.2007,30:2225~2230
    [237]Bewley,J.D.Seed germination and dormancy.Plant cell 1997,1055~1066
    [238]Babiychuk,E.,Cottrill,P.B.,Storozhenko,S.,Fuangthong,M.et al.,Higher plants possess two structurally different poly(ADP-ribose)polymerases.Plant J.1998,15:635~645
    [239]Chen,I.-P,Haehnel,U.,Altschmied,L.,Schubert,I.and Puchta,H.The transcriptional response of Arabidopsis to genotoxic stress-a high-density colony array study(HDCA).Plant J.2003,35:771~786
    [240]Doucet-Chabeaud,G,Godon,C,Brutesco,C,de Murcia,G and Kazmaier,M.Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis.Mol.Genet.Genomics,2001,265:954~963
    [241]De Block,M,Verduyn,C,De Brouwer,D.,Cornelissen.M,Poly(ADP-ribose)polymerase in plants affects energy homeostasis,cell death and stress tolerance.Plant J.2005,41:95~106
    [242]Whitby A.J.,Whish,W.J.D.Poly(adenosine phosphate ribose)in wheat.Biochem Soc Trans 1977,5:948~949
    [243]Payne,J.F.,Bal,A.K.Cytological detection of poly(ADP-ribose)polymerase.Expcell Res 1976,99:428~432
    [244]Hunt,L.,Holdworth,M.J.,Gray,J.E.Nicotinamides activity is important for germination.Plant J.2007,51:341~351
    [245]Munster,T.,Wingen,L.U.,Faigl,W.,Werth,S.,et al.Characterization of three GLOBOSA-like MAD-box genes from maize:evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.Gene 2001,262:1~13
    [246]Chuck,G.,Muszynski,M.,Kellogg,E.,Hake,S.et al.,The control of spikelet meristem identity by the branched silklessl gene in maize.Science 2002,298:1238-1241
    [247]Graveley,B.R.,Sorting out the complexity of SR protein functions.RNA 2000,6:1197~1211
    [248]Ostheimer,G.J.,Rojas,M,Hadjivassiliou,H.,Barkan,A.,Formation of the CRS2-CAF2 group Ⅱ intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2.J.Biol.Chem.2006,281:4732~4738
    [249]Bailey-Serres,J.,Vangala,S.,Szick,K.,Lee,C.H.,Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots,components and changes in response to flooding.Plant Physiol.1997,114:1293~1305
    [250]Zinker,S.,Warner,J.R.,The ribosomal proteins of Saccharomyces cerevisiae Phosphorylated and exchangeable proteins.J.Biol.Chem.1976,251:1799~1807
    [251]Zinker,S.,P5/P5′ the acidic ribosomal phosphoproteins from Saccharomyces cerevisiae.Biochim.Biophys.Acta.1980,606:76~82
    [252]S(?)nchez-Madrid,F.,Vidales,F.J.,Ballesta,J.P.,Effect of phosphorylation on the affinity of acidic proteins from Saccharomyces cerevisiae for the ribosomes.Eur.J.Biochem.1981,114:609~613
    [253]Bailey-Serres,J.,Vangala,S.,Szick,K.,Lee,C.H.K.Acidic phosphoprotein complex of 60S ribosomal subunit of maize seedling root.1997,114:1293~1305
    [254]Adrian.A.L.,David,M.R.,Anders,L.L.,Ronald,L.C.et al.,In Vivo Modifications of the Maize Mitochondrial Small Heat StressProtein,HSP22.J.Biol.Chem.2001,276:29924~29929
    [255]Hepler,P.K.,Wayne,R.O.,Calcium and plant development.Plant Physiol.1985,136:397~439
    [256]Bush,D.S.,Calcium regulation in plant cells and its role in signaling.Plant Physiology and Plant Molecular Biology 1995,46:95~122
    [257]Trewavas,A.J.,Malho,R.,Signal Perception and Transduction:The Origin of the Phenotype.Plant Cell 1997,9:1181~1195
    [258]Anil,VS.,Harmon,AC,Rao,K.S.,Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis,seed development,and germination in sandalwood.Plant Physiol.2000,122:1035~1043
    [259]Safadi,R,Reddy,VS.,Reddy,AS.,A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats.J.Biol.Chem.2000,275:35457~35470
    [260]Pang,X.,Halaly,T,Crane,O.,Keilin,T.et al.,Involvement of calcium signalling in dormancy release of grape buds.J.Exp.Bot.2007,58:3249~3262
    [261]Safadi,E,Reddy,VS.,Reddy,AS.,A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats.J.Biol.Chem.2000,275:35457~35470
    [262]Kim,H.U.,Cotter,R.,Johnson,S.,Senda,M.et al.,New pollen-specific receptor kinases identified in tomato,maize and Arabidopsis:the tomato kinases show overlapping but distinct localization patterns on pollen tubes.Plant Mol.Biol.2002,50:1~16
    [263]Mok,M.C.,In:DWS Mok,M.C.Mok,(Eds.),Cytokinins:Chemistry,Activity,and Function.CRC Press,Boca Raton,FL,1994,155-166
    [264]Forde,B.G.,Local and long-range signaling pathways regulating plant responses to nitrate.Annu.Rev.Plant Biol.2002,53:203~224
    [265]Hardin,S.C.,Wolniak,S.M.,Molecular cloning and characterization of maize ZmMEK1,a protein kinase with a catalytic domain homologous to mitogen-and stress-activated protein kinase kinases.Planta.1998,206:577~584
    [266]Hirt,H.,Multiple roles of MAP kinase in plant signal transduction.Trends Plant Sci.1997,2:11-15
    [267]Mizoguchi,T,Ichimura,K.,Shinozaki,K.,Environmental stress response in plants:the role of mitogen-activated protein kinases.Trends Biotechnol.1997,15:15~19
    [268]Wilson,C,Voronin,V,Touraev,A,Vicente,O.et al.,A developmentally regulated MAP kinase activated by hydration in tobacco pollen.Plant Cell,1997,9:2093~2100
    [269]Morris,P.,Guerrier,D.,Leung,J.,Giraudat,J.Cloning and characterization of MEK1,an Arabidopsis gene encoding a homologue of MAP kinase kinase.Plant Mol Biol.1997,35:1057~1064
    [270]Mizoguchi,T.,Hayashida,N.,Hirayama,T,Urao,T.et al,A variety of functions of protein kinases in plants.Tanpakushitsu Kakusan Koso.1994,39:2131~2149
    [271]Jonak,C,Pay,A.,Bogre,L.,Hirt,H.et al.,The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner.Plant J.1993,3:611~617
    [272]Devitt,M.L.,Stafstrom,J.P.,Cell cycle regulation during growth-dormancy cycles in pea axillary buds.Plant Mol.Biol.1995,29:255~265
    [273]Bischoff,JR.,Plowman,G.D.,The Aurora/Ipl1p kinase family:regulators of chromosome segregation and cytokinesis.Trends Cell Biol.1999,9:454-459[62]
    [274]Giet,R.,Prigent,C,Aurora/Ipl1p-related kinases,a new oncogenic family of mitotic serine-threonine kinases.! Cell Sci.1999,112:3591-3601
    [275]Adams,R.R.,Eckley,DM.,Vagnarelli,P.,Wheatley,S.P.,et al.,Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells..Chromosoma.2001,110:65-74
    [276]Nigg,E.A.,Mitotic kinases as regulators of cell division and its checkpoints.Nat.Rev.Mol.Cell Biol.2001,2:21~32
    [277]Shannon,K.B.,Salmon,E.D.,Chromosome dynamics:new light on Aurora B kinase function.Curr.Biol.2002,12:458~460
    [278]Andrews,P.D.,Knatko,E.,Moore,W.J.,Swedlow,J.R.,Mitotic mechanics:the auroras come into view.Curr.Opin.Cell Biol.2003,156:72~83
    [279]Carmena,M.,Earnshaw,W.C.,The cellular geography of aurora kinases.Nat.Rev.Mol.Cell Biol.2003,4:842~854
    [280]Kufer,T.A.,Nigg,E.A.,Sillje,H.H.,Regulation of Aurora-A kinase on the mitotic spindle.Chromosoma.2003,112:159~163
    [281]Demidov,D.,Van Damme,D.,Geelen,D.,Blattner,F.R.,Houben,A.,Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants.Plant Cell 2005,17:836~848
    [282]Kyriakis,J.M.,Signaling by the germinal center kinase family of protein kinases.J.Biol.Chem.1999,274:5259~5262
    [283]Chang,L.,Karin,M.,Mammalian MAP kinase signalling cascades.Nature 2001,410:37-40
    [284]Dan,I.,Watanabe,N.M.,Kusumi,A.,The Ste20 group kinases as regulators of MAP kinase cascades.Trends Cell Biol.2001,11:220~230
    [285]Llompart,B.,Castells,E.,Rio,A.,Roca,R.et al.,The direct activation of MTK,a germinal center kinase(GCK)-like kinase,by MARK,a maize atypical receptor kinase,suggests a new mechanism for signaling through kinase-dead receptors.J.Biol.Chem.2003,278:48105~48111
    [286]Muehlbauer,G.J.,Somers,D.A.,Matthews,B.F.,Gengenbach BG Molecular genetics of the maize(Zea mays L.)aspartate kinase-homoserine dehydrogenase gene family.Plant Physiol.1994,106:1303~1312
    [287]Bryan,J.K.,Advances in the biochemistry of amino acid biosynthesis.In:Miflin,B.J.,Lea,P.J.(Eds),The Biochemistry of Plants.Academic Press,New York,1990,161~195
    [288]Llompart,B.,Castells,Enric,Rfo,A.et al.The Direct Activation of MIK,a Germinal Center Kinase (GCK)-like Kinase,by MARK,a Maize Atypical Receptor Kinase,Suggests a New Mechanism for Signaling through Kinase-dead Receptors.J Biol Chem.2003,278:48105~48111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700