甜菜M14品系表达基因M14-100、M14-265、M14-G12 cDNA全长克隆与序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜M14品系是由栽培甜菜(Beta vulgaris L.)与野生白花甜菜(Beta corolliflora Zoss.)种间杂交,进一步回交获得的甜菜无融合生殖单体附加系,其染色体组除了含有18条栽培甜菜染色体外,还附加有白花甜菜第9号染色体,附加染色体的传递率高达96.5%,如此高的传递率是由于附加的第9号染色体携带无融合相关基因所致。因此,甜菜M14品系是无融合生殖研究极其难得的材料。同时,甜菜M14品系还具有抗寒、抗病的优良性状,对M14品系特异表达基因的研究,也有助于我们挖掘和利用甜菜M14品系具有的优良基因。
     为了克隆甜菜M14品系中无融合生殖相关基因,实验室前期采用抑制消减杂交方法获得了298个甜菜M14品系特异表达的ESTs。本研究挑选其中3个有研究价值的ESTs作为侯选ESTs,采用SMART RACE技术获得了侯选ESTs所在基因——M14-100、M14-265和M14-G12的cDNA全长,并采用RT-PCR法进行验证,最后对三个目的基因的cDNA全长进行了生物信息学分析。M14-100 cDNA全长1 707bp,GenBank数据库接受号为EU529829,经过生物信息学分析,该基因序列与来自拟南芥(Arabidopsis thaliana)的细胞周期蛋白相关基因序列有60~70%的相似性,但该基因的功能目前还不清楚;M14-100 cDNA最长读码框编码324个氨基酸;推定编码蛋白的分子量为34.4 kD,理论等电点5.11,有较强的亲水性;为非分泌型蛋白;推定蛋白二级结构分析结果表明,含有6个α-螺旋和3个β-折叠。
    
     M14-265 cDNA全长1 006bp,GenBank数据库接受号为EU529830,经生物信息学分析认为该基因是一个新基因;缺乏明显的读码框,最长读码框仅编码81个氨基酸,可能以RNA的形式参与生命活动,也可能编码短肽;推定编码蛋白的分子量为9.3 kD,理论等电点4.69,为非分泌型蛋白;推定蛋白的二级结构预测表明,该蛋白含有1个α-螺旋和2个β-折叠。
     M14-G12 cDNA全长873bp,GenBank数据库接受号为EU529828,与来自拟南芥(Arabidopsis thaliana)的钙调蛋白基因的氨基酸序列相似性达到99%,可以认定该基因即是来自甜菜M14的钙调蛋白基因;该基因编码149个氨基酸,分析结果显示其编码蛋白分子量为16.8 kD,理论等电点4.11,总平均亲水性为-0.620;二级结构预测发现该蛋白质是一个富含α-螺旋的蛋白质。三级结构预测,该蛋白包含4个螺旋-环-螺旋结构,与钙调蛋白的功能特征相符合。
Apomictic monosomic addition line M14 of Beta corolliflora Zoss,was the progeny from the hybridization of Beta vulgaris L. and Beta corolliflora Zoss. in sugar beet. Constituted of the normal 18 Beta vulgaris L. chromosomes with the No.9 chromosome of Beta corolliflora Zoss, M14 was found having a chromosome transmission frequency 96.5%. The reason of apomixis in M14 was interpreted as possible existence of apomixis gene(s) in the additional chromosome, thus M14 is a precious material for research of apomixis. Meanwhile M14 was cold and disease resistant. Study of the specifically expressed genes in M14 will provide direct molecular evidence to reveal the special reproductive process of M14, and will help us to discover and use excellent genes of M14.
     In order to isolate and identify the apomixis gene(s) of M14, we have obtained 298 differential expression ESTs by the method of SSH and DDRT-PCR, three of which were selected as candidate ESTs in this study. SMART RACE was played to obtained full-length cDNA sequences of gene M14-100, M14-265 and M14-G12, which carry the three ESTs respectively. The sequences were then identified by RT-PCR, and bioinformatic analysis was also carried out.
     The results showed that M14-100 (GenBank accession No. EU529829) was 1 707bp in length, and shared 60~70% similarity with cyclin related genes from Arabidopsis thaliana by the method of bioinformatic analysis. But the function of cyclin was not clear. The longest ORF of M14-100 contained 324 amino acids. Molecular weight of its putative protein was 34.4 kD, and theoretical isoelectric point was 5.11. It has strong hydrophilicity, and is non-secretion protein. Secondary structure prediction of M14-100 putative protein indicated that it contained 6α-helices and 3β-strands.
     M14-265(GenBank accession No. EU529830) was 1 006bp in length. By the method of bioinformatic analysis we didn’t find any genes which share similarity with it, thus we deduced that M14-265 was a new gene. There is no significant ORF in M14-265, and the longest ORF contained 81 amino acids. M14-265 maybe encode a noncoding RNA or short-peptide. Molecular weight of its putative protein was 9.3 kD, and theoretical isoelectric point was 4.69. It is non-secretion protein. Secondary structure prediction of M14-100 putative protein indicated that it contained 1α-helices and 2β-strands.
     M14-G12 (GenBank accession No. EU529828) was 873bp in length, and shared 99% similarity with calmodulin gene from Arabidopsis thaliana. It was suggested that M14-G12 was calmodulin gene of M14, and its ORF contained 149 amino acids. Molecular weight of its coding protein was 16.8 kD. Theoretical isoelectric point was 4.11. Its total average hydrophilicity was -0.620. Secondary structure prediction of M14-G12 coding protein indicated that it was anα-helix rich protein. Three-dimensional structure prediction of M14-G12 coding protein showed that it contained four helix-spring-helix structures, which kept accordance with the function of calmodulin.
引文
[1] Maheshwari P. An introduction to the embryology of angiosperms[M]. New York: Mc Graw-Hill Book Co Inc., 1950, 14.
    [2] Battaglia E. Apomixis[A]. In: Maheshwari P, ed. Recent advances in the embryology of angiosperm[C]. Delhi: Intl Soc PI Morphol, 1963, 221-264.
    [3] Haslop-Harrison J. Sexuality in angiosperm[A]. In: Steward F C, ed. Plant physiology[C]. New York: Academic Press, 1972, 133-289.
    [4] Hanna W W, Bashaw E C. Apomixis: its identification and use in plant breeding[J]. Crop Sci, 1987, 27: 1136-1139.
    [5] Mazzucato A, Barcaccia G., Pezzotti M, et al. Biochemical and molecular markers for investigating the mode of reproduction in the facultative apomict Poa pratensis L. [J]. Sexual Plant Reproduction, 1995, 8: 133-138.
    [6]胡适宜.被子植物胚胎学[M].北京:高等教育出版社, 1982, 216-225.
    [7] Daniel Grimanelli, Olivier Leblanc, Enrico Perotti, et al. Develpmental genetics of gametophytic apomixis[J]. Trends Genetics, 2001, 17(10): 597-604.
    [8]黄群策.禾本科植物无融合生殖的研究进展[J].武汉植物学研究, 1999, 17(增刊): 39-44.
    [9] Lanzhuang Chen, Liming Guan, Misuk Seo, et al. Developmental expression of ASG-1 during gametogenesis in apomictic guinea grass(Panicum maximum)[J]. Journal of Plant Physiology, 2005, 162: 1141-1148.
    [10] Spillane C, et al. Apomixis technology development–virgin births in farmers’fields[J]. Nat. Biotechnol. 2004, 22: 687-691. [ 1 1 ]马三梅,王永飞,叶秀麟,等.人工创造植物无融合生殖的研究进展[ J ] .西北农林科技大学学报(自然科学版), 2002, 30(5): 131-135.
    [12] Roche D, Conner J A, Budiman M A, et al. Construction of BAC libraries from two apomictic grasses to study the micro-colinearity of their apospory-specific genomic regions[J]. Theor Appl Genet, 2002, 104: 804-812.
    [13] Goel S, Chen Z, Conner J A, et al. Delineation by fluorecencein in site hybridization of a single hemizygous chromosomal region associated with aposporous ebryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris[J]. Genetics, 2003, 163: 1069-1082.
    [14] Boutilier K, Offringa R, Sharma V J. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. Plant Cell, 2002, 14: 1737-1749.
    [15] Koltunow A M, Grossniklaus U. Apomixis: a developmental perspective[J]. Annu. Rev. PlantBiol, 2003, 54: 547-574.
    [16] Carman J G. The gene effect: genome collisions and apomixis[J]. Sec Ref, 2001, 34: 95-110.
    [17] Grossniklaus U, Spillane C, Page D R, et al. Genomic imprinting and seed development: endosperm formation with and without sex[J]. Curr Opin Plant Sci, 2001, 4: 21-27.
    [18] Eckardt N A, Patterns of gene expression in apomixis[J]. Plant Cell, 2003, 15: 1499-1501.
    [19]杨特武,骆炳山,杨业华,等. rol B基因导入对农垦58S内源激素水平、株型和育性的影响[J].作物学报, 2004, 30(8): 739-744.
    [20] Tucker M R, Araujo A C, Paech N A, et al. Sexual and apomictic reproduction in Hirracium subgenus pilosella are closely interrelated developmental pathways[J]. The Plant Cell, 2003, 15: 1524-1537.
    [21] Albertini E, Marconi G, Reale L, et al. SERK and APOSTART. Candidate genes for apomixis in Poa pratensis[J]. Plant physiol, 2005, 138(4): 2185-2199.
    [22] Vivian-Smith A, Luo M, Chaudhury A, et al. Fruit development is actively restricted in the absence of fertilization in Arabidopsis[J]. Development, 2001, 128: 2321-2331.
    [23] Nassar N M A, Collevatti R G. Microsatellite markers confirm high apomixis level in cassava inbred lines[J]. Hereditas, 2005, 142: 01-05.
    [24] Nassar N M A, Kalkmann D C, Collevatti R. A further study of microsatillite on apomixis in cassava[J]. Hereditas, 2007, 144: 181-184.
    [25] Matzk F, Prodanovic S, Baumlein H, et al. The Inheritance of apomixes in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance[J]. Plant Cell, 2005, 17(1): 13-24.
    [26] Schranz M E, Kantama L, de Jong H, et al. Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera(Brassicaceae)[J]. New Phytologist, 2006, 171(2): 425-438.
    [27] Singh M, Burson B L, Finlayson S A. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare) [J]. Plant Mol Biol, 2007, 64(6): 673-682.
    [28]郭德栋,刘丽萍,康传红,等.甜菜无融合生殖单体附加系的繁殖传递特性[J].黑龙江大学自然科学学报, 2001, 3: 104-107.
    [29]申业,申家恒,郭德栋,等.甜菜单体附加系M14无融合生殖的细胞胚胎学研究[J].西北植物学报, 2006, 26(5): 957-963.
    [30]申业,申家恒,郭德栋,等.甜菜无融合生殖单体附加系M14雌配子体的发生与发育[J].武汉植物学研究, 2006, 24(2): 106-112.
    [31] Fang X, Gu S, Xu Z. Construction of a binary BAC library for an apomictic monosomic adition line of Beta corolliflora in sugarbeet and identification of the clones derived from the alienchromosome[J]. Theor Appl Genet, 2004, 29.
    [32]于冰.利用抵制消减杂交法对甜菜无融合生殖系花期表达基因的研究[D].哈尔滨:黑龙江大学, 2004.
    [33]马春泉.利用抑制消减杂交技术寻找无融合生殖相关基因[D].哈尔滨:黑龙江大学, 2005.
    [34]高传军.利用mRNA差异显示技术对甜菜M14品系花期特异表达基因的研究[D].哈尔滨:黑龙江大学, 2006.
    [35] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcription using a single gene-spesific oligonucleotide primer[J]. Proc Nat Acad Sci, 1988, 85: 8998-9002.
    [36] Liu X , Goxovsky MA . Mapping the 5′and 3′ends of Tetrahpymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE)[J]. Nucleic Acids Res, 1993, 21(21): 4954.
    [37]李关荣,鲁成. cDNA末端快速扩增技术(RACE)的改良和发展[J].生命科学研究, 2004, 7(3): 294-297.
    [38] Ewards J B D M, Delort J, Mallet J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: A new tool for cloning 5′ends of mRNA and for contructing cDNA libraries by in vitro amplification [J]. Nucleic Acids Res, 1991, 19 (19): 5227-5232.
    [39] Shibata Y, Carninci P, Watahiki A, et al. Cloning full-length, cap-trapper-selected cDNAs by using the single-strand linker ligation method[J]. Biotechniques, 2001, 30(6): 1250.
    [40]王燕,刘艳艳,杨永清,等. cDNA末端快速扩增技术研究进展[J].生命科学研究, 2005, 9(4): 31-36.
    [41] Chenchik A, Diachenko L, Moqadam F, et al. Full-length cDNA cloning and determination of mRNA 5′and 3′ends by amplification of adaptor-ligated cDNA[J]. Biotechniques, 1996, 21(3): 526.
    [42] Matz M, Shagin D, Bogdanova E, et al. Amplification of cDNA ends based on template-switching effect and step-out PCR[J]. Nucleic Acids Res, 1999, 27(6): 1558-1560.
    [43] Wang CY, Wang SY, Lin X, et al. Full-length cloning of a novel gene, ELF2C, related to familial acute myelogenous leukemia[J]. Zhonghua Yi Xue Za Zhi, 2007, 87(32): 2245-2248.
    [44] Lin J, Zhou X, Gao S, Liu X, et al. cDNA cloning and expression analysis of a mannose-binding lectin from Pinellia pedatisecta. J Biosci, 2007, 32(2): 241-249.
    [45] Kuniyoshi H, Fukui Y, Sakai Y. Cloning of full-length cDNA of teleost corticotropin-releasing hormone precursor by improved inverse PCR[J]. Biosci Biotechnol Biochem. 2006, 70(8): 1983-1986.
    [46]王少丽,盛承发,等. cDNA末端快速扩增技术及其应用[J].遗传, 2004, 26(3): 419-423.
    [47]罗瑛,隋建丽,铁软等.生物信息学辅助定位及延伸辐射诱导未知序列标签[J].生物化学与生物物理进展, 2003, 28(2): 188-191.
    [48]王应,张颖妹,杨田,等.果蝇程序化死亡基因5(PDCDS)同源cDNA的克隆和序列分析[J].中国生物化学与分子生物学报, 2004, 17(2): 143-147.
    [49]蒋彦,王小行,曹毅,等.基础生物信息学及应用[M].北京:清华大学出版社, 2003, 4-5.
    [50] Werner T. Bioinformatics applications for pathway analysis of microarray data[J]. Curr Opin Biotechnol, 2008, 19(1): 50-54.
    [51] Zhu M, Zhao S. Candidate gene identification approach: progress and challenges[J]. Int J Biol Sci, 2007, 3(7): 420-427.
    [52] Chua HN, Sung WK, Wong L. An efficient strategy for extensive integration of diverse biological data for protein function prediction[J]. Bioinformatics, 2007, 23(24): 3364-3373.
    [53]梁秋芬,刘宽灿,徐碧玉,等.钙调蛋白在植物发育中的功能[J].生命科学研究, 2005, 9(4): 1-4.
    [54] Snedden W, Fromm H. Calmodulin as a versatile calcium signal transducer in plants[J]. New Physiol, 2001, 151: 35-66.
    [55] Liu H T, Li B, Shang Z L. Calmodulin is involved in heat shock signal transduction in wheat[J]. Plant Physiol, 2003, 132: 1186-1195.
    [56] Ali G S, Reddy V S, Lindgren P B. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses[J]. Plant Mol Biol, 2003, 51: 803-815.
    [57] Chen S R. In situ localization of calmodulin mRNA in the developing tobacco anthers[J]. Chinese Science Bulletin, 1999, 44(2): 142-145.
    [58] Kang C H, Jung W Y, Kang Y H, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants[J]. Cell Death Differ, 2006, 13(1): 84-95.
    [59] Perruc E, Charpenteau M, Ramirez B C. A novel calmodulin binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings[J]. Plant J, 2004, 38: 410-420.
    [60] Kim M C, Panstruga R, Elliott C. Calmodulin interacts with MLO protein to regulate defense against mildew in barley[J]. Nature, 2002, 416: 447-451.
    [61] Ma X, Qian Q, Zhu D. Expression of a calcineurin gene improves salt stress tolerance in transgenic rice[J]. Plant Mol Biol, 2005, 58(4): 483-495.
    [62] Fabrício F. Costa. Non-coding RNAs: Lost in translation? [DB]. www.elsevier.com/locate/gene, accepted 27 Oct. 2006.
    [63]戴晓燕.玉米中类似于mRNA的非编码基因ZM401 cDNA的克隆及其在玉米花粉发育中的作用[D].北京:中国农业大学, 2003.
    [64] Jan Barciszewski, Volker A. Erdmann著,郑晓光译.非编码RNA[M].北京:化学工业出版社, 2008, 206-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700