多胺调节拟南芥耐盐性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫可以引起植物组织中多胺水平变化,同时外源多胺处理可以增强植物对盐胁迫的抗性,但是外源多胺的作用机理尚不清楚。本文选用拟南芥(Arabidopsisthiliana)为研究对象,比较了不同浓度、不同种类外源多胺对拟南芥幼苗盐害的缓解效应;同时采用不同浓度盐胁迫下拟南芥幼苗内源多胺含量的测定和外源精胺处理缓解拟南芥盐害相结合的方法,研究了多胺和拟南芥耐盐性之间的关系。研究结果如下:
     100 mmol/L NaCl胁迫下拟南芥幼苗的生长受到明显的抑制,相同条件下比较了不同浓度的4种外源多胺-腐胺(Put)、尸胺(Cad)、亚精胺(Spd)、精胺(Spm)对拟南芥幼苗盐害的缓解效应,发现外加0.01 mmol/L Spd、0.01 mmol/L Spm在不同程度上都能增加幼苗根的伸长和干鲜重,其中以0.01 mmol/L Spm效果更显著;但是1mmol/L Put和0.05 mmol/L Cad作用相对不明显。
     对不同浓度NaCl处理下的拟南芥幼苗体内三种形态多胺含量进行测定,结果显示,50 mmol/L NaCl刺激高氯酸可溶性结合态Spd积累,除此之外,随着盐浓度的增加,游离态和高氯酸可溶性结合态Spd含量显著下降,而Spm含量逐渐升高;150mmol/L NaCl处理7天,游离态Put比同期对照有所降低,在其它浓度和时间处理条件下,三种形态Put含量基本不变。三种形态Cad含量在所有处理条件下均没有明显变化。与游离态和高氯酸可溶性结合态相比,高氯酸不溶性结合态多胺较稳定,受盐处理影响较小。随着处理时间的延长,总多胺含量呈下降趋势。
     外源施用0.01 mmol/L Spm对100 mmol/L NaCl胁迫下拟南芥幼苗的伤害有显著的缓解效应,不仅可以有效地抑制叶片中MDA含量的上升和质膜透性的增加,还降低植株体内Na~+含量,增加K~+的累积,降低植株体内Na~+/K~+,结果表明外源精胺通过对离子平衡的调节缓解了盐胁迫对拟南芥幼苗的伤害。
Salt stress could cause changes in polyamines levels in plant tissues,and exogenous polyamines enhanced salt tolerance of plant.However the mechanism of the effect of exogenous polyamines still remains unclear.In the paper,we chose Arabidopsis thaliana as a studying material,the alleviative effects on salinity of different polyamines at different concentrations were compared.In addition,endogenous polyamine contents of Arabidopsis seedlings under different NaCl concentrations were determined,combining with exogenous spermine treatment for Arabidopsis salinity,the relationships between polyamine metabolism and Arabidopsis salt tolerance were studied.The main results were as follows:
     The growth of Arabidopsis seedlings was obviously suppressed under 100 mmol/L NaCl treatment,and the alleviative effect on Arabidopsis salinity of four exogenous polyamines(putrescine,Put;cadaverine,Cad;spermidine,Spd;spermine,Spm) at different concentrations were investigated.After applying 0.01 mmol/L Spd and 0.01 mmol/L Spm respectively,the length of root elongation and the dry and fresh weight of per plant increased to some different extent,and 0.01 mmol/L Spm had the best alleviative effect on the salt damage of Arabidopsis.However,the effect of 1 mmol/L Put and 0.05 mmol/L Cad appeared not to be significant compared with Spd and Spm.
     Three forms of endogenous polyamine contents of Arabidopsis under different NaCl concentrations were determined,it showed that the PCA soluble Spd content was provoked by 50 mmol/L NaCl treatment.Besides,free form and PCA soluble Spd contents obviously decreased while Spm content increased with the rising of NaCl concentrations in Arabidopsis seedlings.The free Put content decreased under 150 mmol/L NaCl treatment for 7 days,under the other concentration and time treatment,three forms of Put contents did not mainly change.There was no distinct changes in three forms of Cad caused by salt stress.Comparing with the free polyamines and PCA soluble polyamines,the PCA insoluble polyamines changed unconspicuously under salt stress.The contents of total polyamines reduced significantly as the treatment time was prolonged.
     The Arabidopsis was treated with 0.01 mmol/L exogenous Spm,which significantly ameliorated Arabidopsis damage caused by 100 mmol/LNaCl stress.The increase of MDA content and electrolytic leakage of leaves were restrained effectively,the content of Na~+ decreased and the content of K~+ increased,resulting in the decrease of the ratio of Na~+/K~+ in Arabidopsis seedlings.It is suggest that exogenous Spm alleviated the salt damage of Arabidopsis through regulating the ion balance of Arabidopsis.
引文
[1]陈沁,刘友良,陈亚华.盐胁迫下大麦叶片的活性氧伤害与液泡膜H~+-ATFase活性的关系.南京农业大学学报,1998,21(3):21-25
    [2]龚月桦,王俊儒,荆家海.高等植物对多胺的吸收和转运.植物生理学通讯,1998,34(1):64-68
    [3]何生根,黄学林,傅家瑞.植物的多胺氧化酶.植物生理学通讯,1998,34(3):213-218
    [4]江行玉,宋杰,范海,等.外源钙和亚精胺对NaCl胁迫条件下玉米幼苗体内离子平衡和多胺水平的调节.植物生理学报,2000,26(6):539-544
    [5]江行玉,赵可夫,窦君霞.NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响.植物生理学通讯,2001,37(1):6-9.
    [6]李振国.植物细胞质膜透性的测定.见:中国科学院上海植物生理研究所:上海植物生理学会编,现代植物生理学实验指南.北京:科学出版社,1999,302-303
    [7]刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法.植物生理学通讯,2002,38(6):596-598
    [8]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.汤章城主编,植物生理与分子生物学.北京:科学出版社,1998,752-769
    [9]沈慧娟,梁成喜,李梅枝.多效唑浸种提高刺槐耐盐性的研究.植物学报,1993,35(8):606-610
    [10]汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,26(1):1-7
    [11]王晓云,李向东,邹琦.外源多胺、多胺合成前体及抑制剂对花生连体叶片衰老的影响.中国农业科学,2000,33(3):30-35
    [12]赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000,36(1):1-6
    [13]赵福庚,孙诚,刘友良,等.ABA和NaCl对碱蓬多按和脯氨酸代谢的影响.植物生理学与分子生物学学报,2002,28(2):117-120
    [14]赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    [15]周俊义.多胺在果树生理中的作用.果树科学,1995,12(2):117-119
    [16]Agastian P,Kingsley S J,Vivekanandan M.Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes.Photosynthetica,2000,38:287-290
    [17] Ahn I P, Kim S, Choi WB et al. Calcium restores prepenetration morphogenesis abolished by polyandries in coltetotrichum gloeosporioides infecting red pepper.FEMS Microbio Lett, 2003, 227: 237-241
    [18] Alamgir A N M, Ali M Y. Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPAase activity of rice (Oryza sativa L). Bangladesh.J Bot, 1999,28: 145-149
    [19] AliDinar H.M, Ebert G, Ludders P. Growth, chlorophyll content, photosynthesis and water relations in guava (Psidium guajava L) under salinity and different nitrogen supply. Eur.J.Hortic.Sci, 1999, 64: 54-59
    [20] Antony T, Thomas T, Shirahata A. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiestor and phosphorothioate oligodeoayribonucleotides. Biochem, 1999, 28: 10775-10784
    [21] Athwal G S, Huber S C. Divalent canons and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J,2002,29:119-130
    [22] Aziz A, Martin-Tanguy 1, Larher F. stress induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant, 1998, 23: 158-161
    [23] Basu R, Maitra N, Ghosh B. Salinity results in polyamine accumulation in early rice (Oryza sativa L) seedlings. Aust J Plant Physiol, 1988, 15: 777-786
    [24] Batchelor K W, Smith R A, Watson N S. Dicyclohexylamine is not an inhibitor of spermidine synthase. Biochem, 1986, 233: 307-308
    [25] Binzel M L, Hess F D, Bressan R A, et al. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol, 1988, 86: 607-614
    [26] Bohnert H J, Jensen R G. .Strategies for engineering waterstress tolerance in plants.Trends Biotechnol, 1996,14: 89-97
    [27] Borrell A, Besford R T, Altabella T. Regulation of arginine decarboxylase by spermine in osmotically stressed oat leaves. Physiol Plant, 1996, 98: 105-110
    [28]Capel T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 2004, 101: 9909-9914
    [29] Carrizo C N, Pittaalvares S I, Kogan M J, et al.Occurrence of cadeverine in hairy roots of Brugmansia Candida . Photochem, 2001, 57: 759-763
    [30] Chartzoulakis K, Klapaki G. Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci Hortic, 2000, 86: 247-260
    [31] Chattopadhayay M K, Tiwari B S, Chattopadhyay G, et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant,2002,116:192-199
    [32] Chaudhuri K, Choudhuri M A. Effect of short-term NaCl stress on water relations and gas exchange of two jute species. Biol Plant, 1997, 40: 373-380
    [33] Cherian S, Reddy M P, Pandya J B. Studies on salt tolerance in Avicennia marina (Forstk) Vierh: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian. Plant Physiol, 1999, 4: 266-270
    [34] Chinnusamy V, Zhu J, Zhu J K. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng (N Y), 2006, 27: 141-177
    [35] Claire D, Guillaume G, David G, et al. The conversion of spermidine to putrescine and 1.3-diaminopropane in the roots of Iimonium Tataricum. Plant Sci, 2003, 163:639-647
    [36] Das S, Bose A, Ghosh B. Effect of salt stress on polyamine metabolism in Brassica campestris. Phytochem, 1995, 39: 283-285
    [37] Del Duca S, Beninati S, Serafini-fracassini D. Polyamines in chloroplasts:identification of their glutamyl and acetyl derivatives. Biochem J, 1995, 305: 233-237
    [38] Descenzo R A, Minocha S C. Modulation of cellar polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol, 1993, 22:113-127
    [39] Dobrovinskaya O R, Muniz J, Pottosin II. Inhibition of vacuolar ion channels by polyamines. Membrane Biol, 1999, 167: 127-140
    
    [40] Drolet G. Radical scavengmg pries of polyamines. Phytochem., 1986, 25: 367-371
    [41] Dureja-Munjal I, Acharya M K, Guha Mukherjee S. Effect of hormones and spermidine on the turnover of inositol phosphalipids in Brassica seedlings. Phytochem,1992,31:1161-1163
    [42] Elshintinawy F, Elshourbagy M N. Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biol Plant, 2001,44: 541-545
    [43] Epstein E. et al. Saline culture of crops: a genetic approach. Science, 1980, 210: 399-404
    [44] Erdei L, Szegltes Z, Barabas K, et al. Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. Plant Physiol, 1996, 147: 599-603
    [45] Ferreira R G, Tavora F J A F, Hernandez F F F. Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions.Pesqui Agropecu Bras, 2001, 36: 79-88
    [46] Feuerstein B G, Williams L D, Basu H S, et al. Implications and concepts of polyamine nucleic acid interactions. Cell Biochem, 1991,46: 37-47
    [47] Gadallah M A A. Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biol Plant, 1999,42: 249-257
    [48] Gereggory P, Patrice A. Accumulation of feruloylthtramine and Ψ-coumaroytyramine in tomato leaves in response to wounding. Phytochem, 1998,47: 659-664
    [49] Greenway, H., Munns, R... Mechanisms of salt tolerance in nonhalophytes. Annu Rev.Plant Physiol, 1980,31: 149-190
    [50] Hagemann M, Erdmann N. Environmental stresses. In: Rai, A K. (Ed), Cyanobacterial Nitrogen Metabolism and Environmental Biotechnology. Springer Heidelberg Narosa Publishing House, NewDelhi, India, 1997, 156-221
    [51] Hanzawa Y, Imai A., Michael A.J. Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett, 2002, 527: 176-180
    [52] Hanzawa Y, Takahashi T, Michael A J, et al. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO, 2000, 19: 4248-4256
    [53] Hasegawa P M, Bressan R A, Zhu J K. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant MolBiol, 2000, 51: 463-499
    [54] Hayashi H., Murata N. Genetically engineered enhancement of salt tolerance in higher plants. In: Sato K, Murata N. (Eds), Stress Response of Photosynthetic Organisms: Molecular Mechanisms and Molecular Regulation. Elsevier Amsterdam,1998,133-148.
    [55] He L X, Nada K ,Tachibana S. Effects of Sermidine Pretreatment through the Roots on Growth and Photosynthesis of Chilled Cucumber Plants. Japan Soc Hort Sci, 2002,7: 490-498
    [56] Hernandez J, Nistal Dopico B, Labrador E. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci,2002,163:507-514
    [57] Hiatt A C, Mcindoo J, Malmberg R L. Effects of inhibitors and exogenous polyamines on arginine decarboxylase, ornithine decarboxylase and S-adenosylmethionine decarboxylase. Biol Chem, 1986, 261: 1293-1298
    [58] IbrahimMohamed zeid. Response of bean ( phaseolus vulgaris) to Exogenous putrescine treatment under salinity stress. Parkistan. J.Bio Sci, 2004, 2: 219-225
    [59] Jiang Xing-yu, Song Jie, FAN Hai, et al. Regulations of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress.Acta Phyto Sinica, 2000, 26: 539-544
    [60] Kakkar R K, Nagar P K, Ahuja P S. Polyamine and plant morphogenesis. J Biol Plant,2000,43:1-11
    [61] Kakkar R K, Vipen K S. Polyamine research in plants-a changing perspective. Physiol Plant, 2002, 116:281-292
    [62] Kasinathan V, Wingler A. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana.Physiol Plant, 2004, 121: 101-107
    [63] Katiyar S, Dubey R S. Changes in polyamine titer in rice seedlings following sodium chloride salinity stress. Agron Crop Sci, 1990, 165: 19-27
    [64] Khan M A, Ungar I A, Showalter A M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte Suadea fruticosa (L) Forssk. Arid Environ, 2000, 45: 73-84
    [65] Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot, 2001, 70: 259-268
    [66] Khavarinejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments,saccharides, and chloroplast ultrastructure in leaves of tomato cultivars.Photosynthetica, 1998, 35: 151-154
    [67] Krishnamurthy R, Bhagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol, 1989, 91: 500-504
    [68] Krishnamurthy R. Amelioration of salinity effect in salt tolerant rice (Oryza sativa L) by foliar application of putrescine. Plant Cell Physiol, 1991, 32: 699-703
    [69] Kumar A, Altabella T, Taylor M A. Recent advance in plant polyamine research trend.Plant Sci, 1997,2:124-130
    [70] Kusakabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol,2004,45:712-722
    [71] Kwak S H, Lee S H. The regulation of omithine decarboxylase gene expression by sucrose and small upstream open reading frame in tomato (Lycopersicon esculentum Mill). Plant Cell Physiol, 2001, 42: 314-323
    [72] Lazof D B, Bernstein N. The NaCl induced inhibition of shoot growth: the case for distributed nutrition with special consideration of calcium. Adv Bot Res, 1999, 29:113-189
    [73] Lechno S, Zamski E, Telor E. Salt stress-induced responses in cucumber plants. Plant Physiol, 1997, 150,206-211
    [74] Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L). Plant Physiol, 2001,158: 737-745
    [75] Lee T M, Liu C H. Correlation of decreases calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J Exp.Bot, 1999, 50: 1855-1862
    [76] Legocka J, Kluk A. Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. Plant Physiol, 2005,162: 662-668
    [77] Li C Z; Jiao J, Wang G X. The important roles of reactive oxygen species in the retationship between ethylene and polyamines in leaves of spring whew seedlings under root osmotic stress. Plant sci, 2004, 16: 303-316
    [78] Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil, 1999, 209: 217-224
    [79] Liu K, Fu H H, Bei Q X, et al. Inwards potassium channel in guard cells as a target for polyamin eregulation of stomatal movements. Plant Physiol, 2000, 124:1315-1325
    [80] Lu C M, Qiu N W, Lu Q T, et al. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci, 2002, 163: 1063-1068
    [81] Maiale S, Sanchez D H, Guirado A, et al. Spermine accumulation under salt stress. J Plant Physiol, 2004, 161: 35-42
    [82] Malmberg R L, Watson M B, Galloway G L, et al. Molecular genetic analysis of plant polyamines. Crit Rev Plant Sci, 1998, 17: 199-224
    [83] Marcelis L F M, VanHooijdonk J. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L). Plant Soil, 1999, 215: 57-64
    [84] Martin-Tanguy J, Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul, 2001,100: 675-688
    [85] Martin-Tanguy J. Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant, 1997, 100: 675-688
    [86] Matsumura T, Kanechi M, Inagaki N, et al. The effects of salt stress on ion uptake, accumulation of compatible solutes, and leaf osmotic potential in safflower,Chrysanthemum paludosum and sea aster. Jpn Soc. Hortic Sci, 1998, 67: 426-431
    [87] Meloni D A, Oliva M A, Ruiz, H A, et al. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Plant Nutr, 2001, 24:599-612
    [88] Messiaen J, Cutsem P. Polyamines and pectins Ⅱ. Modulation of pectic signal transduction. Planta, 1999, 208: 247-256
    [89] Michael A J, Furez J M, Rhodes M J. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem, 1996, 314: 241-248
    [90] Mohammad M, Shibli R, Ajouni M, et al. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. Plant Nutr, 1998, 21: 1667-1680
    [91] Munns R. Genes and salt tolerance: bringing them together. New Phytol, 2005, 167:645-663
    [92] Munns R. Physiological processes limiting plant growth in saline solis: some dogmas and hypotheses. Plant Cell Environ, 1993,16: 143-160
    [93] Muthukumarasamy M, Gupta S D, Pannerselvam R. Enhancement of peroxidase,polyphenol oxidase and superoxide dismutage activities by triadimefon in NaCl stressed Raphanus sativus L. Biol Plant, 2000,43: 317-320
    [94] Negel J, Martin C. The biosynthesis of feruloylthtramine in Nicotiana tabacum.Phytochem, 1984, 98: 2797-2801
    
    [95] Owens S. Salt of the earth. EMBO Rep, 2001, 21: 877-879
    [96] Parida A, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol, 2002,45: 28-36
    [97] Perez-Amador M A, Leon J, Green P J, et al. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol, 2002,130: 1454-1463
    [98] Prakash L, Prathapsenan G. Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice (Oryza sativa). Agron Crop Sci, 1988, 160:325-334
    [99] Prarkash L, Prathapasenan G. Putrescine reduces NaCl-induced inhi-bition of germination and early seedling growth of rice (Oryza sativa L). Aust J Plant Physiol,1988, 15: 761-767
    [100]Rajasekaran L R, Aspinall D, Jones G P, et al. Stress metabolism. IX. Effect of salt stress on trigonelline accumulation in tomato. Can J. Plant Sci, 2001, 81: 487-498
    [101]Ramagopal S. Salinity stress induced tissue-specific proteins in barley seedlings.Plant Physiol, 1987, 84: 324-331
    [102]Reggiani R, Zaina S, Bertani A. Plasma lemma ATPase in rice coleoptiles: stimulation by putrescine and polyamines. Phytochem, 1992, 31:417-419
    [103]Romeroaranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci, 2001, 160: 265-272
    [104] Sanchez D H, Cuevas J C, Chiesa M A, et al. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci, 2005, 168: 541-546
    [105] Sanders D. The salty tale of Arabidopsis. Curr Biol, 2000, 10: R486-R488
    [106] Santa-Cruz A, Acosta M, Perez-Alfocea F, et al. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant,1997,101:341-346
    [107] Santa-Cruz A, Acosta M, Rus A, et al. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem, 1999, 37: 65-71
    [108]Saowarath J, Pirkko M, Paula M, et al. Content of biosynthesis of polyamines in salt and osmotically stressed cells of synechocystis sp. PCC. Fems Microbio Letters, 2003, 228: 129-135
    [109]Schuber F. Influence of polyamines on membrane functions. Biochem J, 1989, 260: 1-10
    [110]Soyka S, Heyer A G. Arabidopsis knockout mutation of ADC2 gene reveals inducibility by osmotic stress. FEBS Lett, 1999,458: 219-223
    [111] Sun Cheng, Liu You liang, Zhang Wen-hua. Mechanism of the effect of polyamines on the activity of tonoplasts of barely roots under salt stress. Acta Botanica Sinica,2002,44:1167-1172
    [112]Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot, 2000, 68: 15-28
    [113]Tassoni A, Van-Buuren M, Franceschetti M L, et al. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development.Plant Physiol. Biochem, 2000, 38: 383-393
    [114]Tiburcio A F, Altabella T, Borrell A. Polyamine metabolism and its regulation. J Physiologia Plant, 1997, 100: 664-674
    [115]Triburcio A F, Altabella T, Flores D. Manipulation of Polyamines in Food Plant:Chemical and Transgenic Approaches. In: Bardocz S. and White A(eds). Polyamines in Health and Nutrition. Kluwer Acamedic Publishers, Boston, 1999,161-175
    [116]Urano K, Yoshiba Y, Nanjo T, et al. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ, 2003, 26: 1917-1926
    [117] Van Buuren M L, Guidi L, Fornalè S, et al.Ozone-response mechanisms in tobacco:implications of polyamine metabolism. New Phytol, 2002, 156: 389-398
    [118]Vander Moezel P G, Watson L E, Bell D T. Gas exchange responses of two Eucalyptus species to salinity and waterlogging. Tree physiology, 1989, 5: 251-257
    [119]Walden R, Cordriro A, Tiburcio A F. Polyamines: small molecules Triggering pathways in plant growth and development. Plant Physiol, 1997,113: 1001-1013
    [120] Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase,glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Hortic Sci. Biotechnol, 2000, 75: 623-627
    [121]Willadino L, Camara T, Boget N, et al. Polyamine and free amino acid variations in NaCl-stressed embryogenic maize callus from sensitive and resistant cultivars. Plant Physiol, 1996, 149: 179-185
    [122]Xiong H, Stanley B A, Tekwani B L. Processing of mammalian and plant S-adenosylmethion -ine decarboxylase proenzymes. Biol Chem, 1997, 272: 28342-28348
    [123]Xiong L, Zhu J K. Salt tolerance, in: E M Meyerowitz, C R Somerville (Eds), The Arabidopsis Book, American Society of Plant Biologists, Rockville, M D, USA, 2002,pp. 1-22
    [124]Xun C, Wang J, Liu H, et al. Promoting effect of exogenous spermine on anti-oxidative enzyme activity in wheat seedlings .Acta Phyto Sinca, 2001, 27:349-352
    [125]Yamaguchi K, Takahashi Y, Berberich T, The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 2006, 580: 6783-6788
    [126]Yoshida I, Yamagata H, Hirasawa E. Blue and red-light regulation and circadian control of gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil. J Exp Bot, 1999,50:319-326
    [127] Zhang W H, Chen Q, Liu Y L. Relationship between H~+-ATPase activity and fluidity of tonoplast in barley roots under NaCl stress. Acts Bot Sin, 2002, 44: 292-296
    [128]Zheliaskova A, Naydenova S, Petrov A G. Interaction of phospholipid bilayers with polyamines of different length. Eur Biophys J, 2000, 29: 153-157
    [129]Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700