细胞分裂素调节拟南芥花发育基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞分裂素调节植物生长和发育的许多过程,如促进细胞分裂、影响开花时间、延缓叶的衰老以及控制顶端优势等。人们对拟南芥(Arabidopsis thaliana)花分生组织特征基因和花器官特征基因的功能以及光、温度等环境因素对花发育的调控作用已有较深入的研究。在拟南芥中,转基因表达pAP1:IPT4的研究结果显示,与野生型植株相比,转基因植株花序中的细胞分裂素含量显著提高,表现出花排列密集、花原基和花器官数目增多、顶端优势降低等表型(李兴国等,未发表资料)。为进一步阐明细胞分裂素对花发育的调控作用,我们主要利用原位杂交和GUS染色技术,对pAP1:IPT4转基因植株中花发育相关基因的表达模式进行了较详细的分析。
     原位杂交和GUS染色分析结果显示,在pAP1:IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)的表达部位与野生型相比没有明显变化,但表达量显著提高。原位杂交结果同时显示,在pAP1:IPT4转基因植株中,花器官特征决定基因APETALA1(AP1)、PISTILLATA(PI)、AGAMOUS(AG)的表达量均有不同程度的提高。在转基因植株处于时期4的花中,AP1不仅在萼片原基中表达,在花中心的分生组织中亦有较多的mRNA积累,这与其在野生型植株中的表达模式有所不同。PI在转基因植株的花序分生组织和时期2的花中均有表达,随着花的进一步发育,PI的转录水平较野生型明显提高。AG在转基因植株的花原基中有较强的表达信号。当花发育至时期3和4时,AG在萼片原基内方分生组织中的mRNA水平比野生型明显增加,在萼片原基中也检测到AG的表达。我们推测转基因植株的表型可能与上述基因的表达变化具有一定的关系。
     对pAP1:IPT4转基因植株进行的全基因组表达谱分析发现,LATERAL ORGAN BOUNDARIES DOMAIN(LBD)基因家族成员LBD3的表达量受到上调。为了进一步探究LBD3的功能,我们构建了35S:LBD3和35S:anti-LBD3表达载体并转化野生型拟南芥。结果显示,35S:LBD3转基因植株主花序轴的顶端优势显著下降,而35S:anti-LBD3转基因植株未见明显的表型变化。RT-PCR的结果表明,在35S:LBD3转基因植株中,MORE AXILLARY GROWTH4(MAX4)表达量明显提高,MAX2的表达量则略有降低。MAX途径的下游基因BRANCHED1(BRC1)的表达量也有所上调。MAX途径通过抑制生长素的极性运输来抑制侧枝生长。LBD3与生长素极性运输以及侧枝发育相关基因的作用关系有待进一步研究。
Plant hormone cytokinin participates in regulation of diverse plant growth and development processes including cell division, flowering, leaf senescence and maintenance of apical dominance. The functions of Arabidopsis thaliana floral meristem identity genes and floral organ identity genes have been well studied, and some environmental factors such as light and temperature were implicated in floral development modulation. In Arabidopsis, cytokinin level in pAP1:IPT4 transgenic plants is elevated compared with wild type plants, resulted in abnormal phenotypes including compacted flower arrangement, increased floral primordium and floral organs,reduced apical dominance and so on (Li et al., unpublished data). To investigate the roles of cytokinin regulation in flower development, we examined the expression patterns of genes controlling flower and floral organ development in pAP1:IPT4 transgenic plants of Arabidopsis.
     In situ hybridization and GUS staining analyses indicated that floral meristem identity gene LFY was up-regulated in pAP1:IPT4 transgenic plants, whereas its expression domain was not affected compared with that in wild type plants. Analyses of in situ hybridization revealed that the up-regulation of floral organ identity genes AP1, PI and AG occurs in pAP1:IPT4 transgenic plants. AP1 mRNA was first detectable in flower primordia. As flower development proceeds, AP1 trancripts accumulated in sepal primordium, as well the central meristem interior to sepal primordial in pAP1:IPT4 transgenic plants, suggested that the AP1 expression pattern was affected by transgenic expresssion of IPT4. PI was expressed in the floral meristem and stage 2 flower of pAP1:IPT4 transgenic plants, and the PI mRNA level increased along with subsequently flower development. AG signal was detectable in the floral primordium of pAP1:IPT4 transgenic plants and stronger in floral meristem than that of wild type in stage 3 and 4 flowers. Additionally, In pAP1:IPT4 plants, AG signal was discovered in sepal primordium, which differed from that of wild type plants. Thus, it suggested that changed expression patterns of these genes partially contribute to the phenotype of pAP1:IPT4 plants.
     Genome-wide expression analyses by gene chip revealed that the expression of LBD3, a member of the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family in Arabidopsis, was up-regulated in pAP1:IPT4 plants. To further study the function of LBD3, 35S:LBD3 and 35S:anti-LBD3 construct was introgressed into wild type plants of Arabidopsis, respectively. Overexpression of LBD3 resulted in reduced apical dominance, while 35S:anti-LBD3 transgenic plants had no detectable phenotypic altreration. Previous studies have uncovered that MAX pathway represses lateral bud growth by suppression of polar auxin transport, and BRANCHED1(BRC1) functions downstream of MAX pathway. The results of RT-PCR analyses indicated that the expression of MAX4 was evidently up-regulated and MAX2 down-regulated in LBD3-overexpressing plants. In addition, the abundance of BRC1 mRNA was elevated in 35S:LBD3 plants. These data raised the possible relationships between LBD3 and polar auxin transport as well as genes controlling lateral bud growth.
引文
戴玉玲,张蜀秋,杨世杰细胞分裂素对大豆种子发育时期同化物卸出及胚代谢的影响.作物学报, 1998(24):613-617
    Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., Ichinoki H., Notaguchi M., Goto K. and Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005(309):1052-1056
    Achard P., Herr A., Baulcombe D. C. and Harberd N. P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004(131):3357-3365
    Achard P., Baghour M., Chapple A., Hedden P., Van Der Straeten D., Genschik P., Moritz T. and Harberd N. P. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A, 2007(104): 6484-6489
    Aguilar-Martínez J. A., Poza-Carrión C. and Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007(190):458-472
    Araki T. Transition from vegetative to reproductive phase. Curr Opin Plant Biol, 2001(4):63-68
    Ashikari M., Sakakibara H., Lin S. Y., Yamamoto T., Takashi T., Nishimura A., Angeles E. R., Qian Q., Kitano H. and Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005(309):741-745
    Atkins C. A., Pigeaire A. Application of cytokinins to flowers to increase pod set in Lupinus angustifolius. Aust J Agr Res, 1993(44):1799-1819
    Auldridge M. E., Block A., Vogel J. T., Dabney-Smith C., Mila I., Bouzayen M., Magallanes-Lundback M., DellaPenna D., McCarty D. R. and Klee H. J. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J, 2006(45):982-993
    Bangerth F. Response of cytokinin concentration in xylem exude of beans (Phaseolus vulgaris L.) plants to decapitation and auxin treatment and relationship to apical dominance. Planta, 1994(194):439-442
    BenkováE., Witters E., Van Dongen W., Kolár J., Motyka V., Brzobohaty B.,Onckelen H. A. and MacháckováI. Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. Plant Physiol, 1999(121):245-252
    Bennett S. R. M., Alvarez J., Bossinger G.. and Smyth D. R. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J, 1995(8):505-520
    Bennett T., Sieberer T., Willett B., Booker J., Luschnig C. and Leyser O. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biol, 2006(16):553-563
    Blazquez M. A., Green R., Nilsson O., Sussman M. R. and Weigel D. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell, 1998(10):791-800
    Bonhomme F., Kurz B., Melzer S., Bernier G. and Jacqmard A. Cytokinin and gibberellin activate SaMADS, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J, 2000(24):103-110
    Borghi L., Bureau M. and Simon R. Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell, 2007(19):1795-1808
    Bortiri E., Chuck G., Vollbrecht E., Rocheford T., Martienssen R. and Hake S. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006(18):574-585
    Boss P. K., Bastow R. M., Mylne J. S. and Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004(16):S18-S31
    Bowman J. L., Alvarez J., Weigel D., Meyerowitz E. M. and Smyth D. R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993(119):721-743
    Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell, 1989(1):37-52
    Bowman J. L., Smyth D. R. and Meyerowitz E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991(112):1-20
    Bradley D., Ratcliffe O., Vincent C., Carpenter R. and Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997(275):80-83
    Byrne M. E., Simorowski J. and Martienssen R. A. SYMMETRIC LEAVES1reveals knox gene redundancy in Arabidopsis. Development, 2002(129): 1957-1965
    Chalfun-Junior A., Franken J., Mes J. J., Marsch-Martinez N., Pereira A. and Angenent G. C. ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximaldistal patterning in Arabidopsis petals. Plant Mol Biol, 2005(57):559-575
    Chaudhury A. M., Letham D. S., Craig S. and Dennis E. S. amp1-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J, 1993(4):907-916
    Cheng H., Qin L., Lee S., Fu X., Richards D. E., Cao D., Luo D., Harberd N. P. and Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 2004 (131): 1055-1064
    Chory J., Reinecke D., Sim S., Washburn T. and Brenner M. A role for cytokinins in deetiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol, 1994(104):339-347
    Coen E. S., Meyerowitz E. M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991(353):31-37
    Dai Y., Wang H. Z, Li B. H., Huang J., Liu X. F., Zhou Y. H., Mou Z. L. and Li J. Y. Increased Expression of MAP KINASE KINASE7 Causes Deficiency in Polar Auxin Transport and Leads to Plant Architectural Abnormality in Arabidopsis. Plant Cell, 2006(18):308-320
    Datta S., Hettiarachchi G. H., Deng X. W. and Holm M. Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth. Plant Cell, 2006(18):70-84
    Dragovoz I. V., Kots S. Y., Chekhun T. I., Yavorskaya V. K. and Volkogon N. V. Complex growth regulator increases alfalfa seed production. Russ J Plant Physiol, 2002(49):823-827
    Duan Q. H., Wang D. H., Xu Z. H. and Bai S. N. Stamen development in Arabidopsis is arrested by organ-specific overexpression of a cucumber ethylene synthesis gene CsACO2. Planta, 2008(Epub ahead of print) Ellis C. M., Nagpal P, Young J. C., Hagen G., Guilfoyle T. J. and Reed J. W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulatesenescence and floral organ abscission in Arabidopsis thaliana. Development, 2005(132):4563-4574
    Eriksson S., B?hlenius H., Moritz T. and Nilsson O. GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation . Plant Cell, 2006(18:2172-2181
    Estruch J. J., Granell A., Hansen G., Prinsen E., Redig P., Onckelen H. V., Schwarz-Sommer Z., Sommer H. and Spena A. Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J, 1993(4):379-384
    Evans M. M. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo Sac and leaf development. Plant Cell, 2007(19):46-62
    Ferreira F. J., Kieber J. J. Cytokinin signaling. Curr. Opin. Plant Biol, 2005(8):518-525
    Finlayson S. A.) Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1. Plant Cell Physiol, 2004(8):667-677
    Gallois J. L., Woodward C., Reddy G. V., Sablowski R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 2002(129):3207-3217
    Gan S., Amasino R. M. Cytokinins in plant senescence: From spray and spray to clone and play. Bioessays, 1996(18):557-565.
    Gattolin S., Alandete-Saez M., Elliott K., Gonzalez-Carranza Z., Naomab E., Powell C. and Roberts J. A. Spatial and temporal expression of the response regulators ARR22 and ARR24 in Arabidopsis thaliana. J Exp Bot , 2006(57):4225-4233
    Greb T., Clarenz O., Sch?fer E., M?ller D., Herrero R., Schmitz G. and Theres K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev, 2003(17):1175-1187
    Goto K., Meyerowitz E. M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev, 1994(8):1548-1560
    Helliwell C., Chin-Atkins A., Wilson I., Chapple R., Dennis E. and Chaudhury A. The Arabidopsis AMP1 gene encodes a putative glutamatecarboxypeptidase. Plant Cell, 2001(13):2115-2126
    Huang T., Bohlenius H., Eriksson S., Parcy F. and Nilsson O. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science, 2005(309):1694-1696
    Husbands A., Bell E. M., Shuai B., Smith H. M. and Springer P. S. LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res, 2007(35):6663-6671
    Hutchison C. E., Li J., Argueso C., Gonzalez M., Lee E., Lewis M. W., Maxwell B. B., Perdue T. D., Schaller G. E., Alonso J. M., Ecker J. R. and Kieber J. J. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell, 2006(18):3073-3087
    Hutchison C. E., Kieber J. J. Cytokinin signaling in Arabidopsis. Plant Cell, 2002:S47-S59
    Immink R. G., Gadella T. W. J. and Ferrario S. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci US A, 2002(99):2416-2421
    Imamura A., Hanaki N., Nakamura A., Suzuki T., Taniguchi M., Kiba T., Ueguchi C., Sugiyama T. and Mizuno T. Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol, 1999(40):733-742
    Imamura A., Yoshino Y. and Mizuno T. Cellular localization of the signaling components of Arabidopsis His-to-Asp phosphorelay. Biosci Biotechnol Biochem, 2001(65):2113-2117
    Imamura A., Kiba T., Tajima Y., Yamashino T. and Mizuno T. In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol, 2003(44):122-131
    Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K. and Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 2001(409):1060-1063
    Iwakawa H., Ueno Y., Semiarti E., Onouchi H., Kojima S., Tsukaya H., Hasebe M., Soma T., Ikezaki M., Machida C. and Machida Y. TheASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol, 2002(43):467-478
    Jackowski G., Jarmolowski A. and Szweykowska A. Kinetin modifies the secondary structure of poly(A)RNA in cucumber cotyledons. Plant Sci, 1987(52):67-70
    Jack T., Brockman L. L. and Meyerowitz E. M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 1992(68):683-697
    Jack T. Molecular and genetic mechanisms of floral control. Plant Cell, 2004(16):S1-S17
    Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A. and Hedden P. KNOX Action in Arabidopsis Is Mediated by Coordinate Regulation of Cytokinin and Gibberellin Activities. Current Biol, 2005(15) :1560-1565
    Jung K. W., Oh S. I., Kim Y. Y., Yoo K. S., Cui M. H. and Shin J. S. Arabidopsis Histidine-containing Phosphotransfer Factor 4 (AHP4) Negatively Regulates Secondary Wall Thickening of the Anther Endothecium during Flowering. Mol Cells, 2008(25): 294-300
    Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., Yamaguchi S. and Sakakibara S. Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem, 2004(279): 14049-14054
    Kiba T, Aoki K., Sakakibara H. and Mizuno T. Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the WOL cytokinin-receptor mutant. Plant Cell Physiol, 2004(45): 1063-1077.
    Kieber J. J. Cytokinins. The Arabidopsis Book, 2002
    Kobayashi Y., Kaya H., Goto K., Iwabuchi M. and Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999(286):1960-1962
    Laux T., Mayer K. F., Berger J. and Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996(122):87-96
    Lazar G., Goodman H. M. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci U S A, 2006(10):472-476
    Leibfried A., To J. P. C., Busch W., Stehling S., Kehle A., Demar M., Kieber J. J. and Lohmann J. U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005(438):22-29
    Lenhard M., Jurgens G. and Laux T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 2002(129):3195-3206
    Letham D. S. Cytokinins from Zea mays. Phytochemistry, 1973(12):2445-2455
    Levy Y. Y., Dean C. The transition to flowering. Plant Cell, 1998(10): 1973-1989
    Liljegren S. J., Gustafson-Brown C., Pinyopich A., Ditta G. S.and Yanofsky M. F. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 1999(11):1007-1018
    Link G. Photocontrol of plastid gene expression. Plant Cell Environ, 1988(11):329-338
    Li Q. Z., Li X. G., Bai S. N., Lu W. L. and Zhang X. S. Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta, 2002(215):533-540
    Liu H., Wang S., Yu X., Yu J., He X., Zhang S., Shou H. and Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005(43):47-56
    MahOnen A. P., Bishopp A., Higuchi M., Nieminen K. M., Kinoshita K., Tormakangas K., Ikeda Y., Oka A., Kakimoto T. and Helariutta Y. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science, 2006(311):94-98
    Mandel M. A., Gustafson-Brown C., Savidge B. and Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992(360):273-277
    Mandel M. A., Yanofsky M. F. A gene triggering flower formation in Arabidopsis. Nature, 1995(377):522-524
    McGinnis K. M., Thomas S. G., Soule J. D., Strader L. C., Zale J. M., Sun T.-P. and Steber C. M. The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 ubiquitin ligase. Plant Cell, 2003(15):1120-1130
    Miller C. O., Skoog F., Von Saltza M. H. and Strong F. Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc, 1955(77):1392-1293
    Miller C. O. Similarity of some kinetin and red light effects. Plant Physiol, 1956(31):318-319
    Mok D. W., Mok M. C. Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol,2001(89):89-118
    Moon J., Suh S.-S., Lee H., Choi K.-R., Hong C. B., Paek N.-C., Kim S.-G. and Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J, 2003(35):613-623
    Müller B. and Sheen J. Advances in cytokinin signaling. Science, 2003(18):68-69
    Müller D., Schmitz G., Theres K. Blind Homologous R2R3 Myb Genes Control the Pattern of Lateral Meristem Initiation in Arabidopsis. Plant Cell, 2006(18):586-597
    Nagel L., Brewster R., Riedell W. E. and Reese R. N. Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.)Merr.). Ann Bot, 2001(88):27-31
    Nagpal P., Ellis C. M., Weber H., Ploense S. E., Barkawi L. S., Guilfoyle T. J., Hagen G., Alonso J. M., Cohen J. D., Farmer E. E., Ecker J. R. and Reed J. W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005(132):4107-4118
    Naito T., Yamashino T., Kiba T., Koizumi N., Kojima M., Sakakibara H. and Mizuno T. A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2007(71):1269-78
    Nemhauser J. L., Feldman L. J. and Zambryski P. C. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 2000(127):3877-3888
    Nishimura C., Ohashi Y., Sato S., Kato T., Tabata S. and Ueguchi C. Geneticanalysis of Arabidopsis histidine kinase genes encoding cytokinin receptors reveals their overlapping biological functions in the regulation of shoot and root growth in Arabidopsis thaliana. Plant Cell, 2004(16):1365-1377
    Noh Y. S., Amasino R. M. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol, 1999a(41):181-194
    Noh Y. S., Amasino R. M. Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol. Biol, 1999b(41):195-206
    Ohya T., Suzuki H. Cytokinin-promoted polyribosome formation in excised cucumber cotyledons. J Plant Physiol, 1988(133):295-301
    Okada K., Ueda J., Komaki M. K., Bell C. J. and Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991(3):677-684
    Okushima Y., Fukaki H., Onoda M., Theologis A. and Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 2007(19):118-130
    Ongaro V., Leyser O. Hormonal control of shoot branching. J Exp Bot, 2008(59):67-74
    Parthier B. The role of phytohormones (cytokinins) in chloroplast development. Biochem Physiol Pflanzen, 1979(174):173-214
    Parthier B. Hormone-induced alterations in plant gene expression. Biochem Physiol Pflanzen, 1989(185):289-314
    Pas J, von Grotthuss M., Wyrwicz L. S., Rychlewski L. and Barciszewski J. Structure prediction, evolution and ligand interaction of CHASE domain. FEBS Lett, 2004(576):287-290
    Peng M. S., Cui Y. H., Bi Y. M. and Rothstein S. J. AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J, 2006(46):282-296
    Pinyopich A., Ditta G. S., Savidge B., Liljegren S. J., Baumann E., Wisman E. and Yanofsky M. F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003(424):85-88
    Reeves P. H., Coupland G. Response of plant development to environment: Control of flowering by daylength and temperature. Curr Opin Plant Biol,2000(3):37-42
    Reinhardt D., Mandel T. and Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 2000(12):507-18
    Reski R. Plastid genes and chloroplast biogenesis. In DWS Mok, M Mok, eds, Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, 1994:pp179-195
    Riefler M., Novak O., Strnad M. and Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 2006(18):40-45
    Riou-Khamlichi C., Menges M., Healy J. M. S. and Murray J. A. H. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cel Biol, 2000(20):4513-4521
    Robles P., Pelaz S. Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol, 2005(49):633-643
    Romanov G. A. Cytokinins and tRNAs: a hypothesis on their competitive interaction via specific receptor proteins. Plant Cell Environ, 1990(13):751-754
    Richmond A. E., Lang A. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science, 1957(125):650-651
    Sablowski R. Flowering and determinacy in Arabidopsis. J Exp Bot, 2007(58):899-907
    Sambrook J., Fritsch E. and Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, 1998
    Sasaki A., Itoh H., Gomi K., Ueguchi-Tanaka M., Ishiyama K., Kobayashi M., Jeong D.H., An G., Kitano H., Ashikari M. and Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003(299):1896-1898
    Scheres B ., Laurenzio L. D. and Willemsen V. Mutants affecting the radial organisation of the Arabidoposis root display specific defects throughout the embryonic axis. Development, 1995(121):53-62
    Schultz E. A., Haughn G. W. Leafy, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell, 1991(3):771-781
    Schwartz S. H., Qin X. and Loewen M. C. The biochemical characterization oftwo carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem, 2004(279):46940-46945.
    Semiarti E., Ueno Y., Tsukaya H., Iwakawa H., Machida C. and Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 2001(128):1771-1783
    Sessions R. A. Arabidopsis (Brassicaceae) flower development and gynoecium patterning in wild type and Ettin mutants. Am J Bot, 1997(84):1179 -1191
    Shimizu-Sato S., Mori H. Control in outgrowth and dormancy in axillary buds. Plant Physiol, 2001(127):1405-1413
    Shuai B., Reynaga-Pena C. G. and Springer P. S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002(129): 747-761
    Smart C. M. Gene expression during leaf senescence. New Phytol, 1994(126): 419-448
    Sorefan K., Booker J. and HaurognéK. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes and Development, 2003(17):1469-1474
    Stern R. A., Shargal A. and Flaishman M. A. Thidiazuron in-creases fruit size of‘Spadona’and‘Coscia’pear (Pyruscom-munis L.). J Hortic Sci Biotechnol, 2003a(78):51-55
    Stern R. A., Benarie R., Neria O. and Flaishman M. CPPU and BA increase fruit size of‘Royal Gala’(Malus domestica) apple in a warm climate. J Hortic Sci Biotechnol, 2003b(78):297-302
    Stirnberg P., van de Sande K and Leyser H. M. O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development , 2002(129):1131-1141
    Stirnberg P., Furner I. J. and Leyser H. M. O. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant Journal, 2007(50):80-94
    Sweere U., Eichenberg K., Lohrmann J., Mirarodado V., Baurle I., Kudla J., Nagy F., Schafer E. and Harter K. Interaction of the response regulatorARR4 with phytochrome B in modulating red light signaling. Science, 2001(294):1108-1111
    Tanaka M., Takei K., Kojima M., Sakakibara H. and Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance Plant J, 2006(45):1028-1036
    Tantikanjana T., Yong J. W., Letham D. S., Griffith M., Hussain M., Ljung K., Sandberg G. and Sundaresan V. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev, 2001(15):1577-1588
    Taramino G., Sauer M., Stauffer J. L., Multani D., Niu X., Sakai H. and Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J, 2007(50):649-59
    Theiβen G., Saedler H. Floral quartets. Nature, 2001(409): 469-471
    Thomas T. H., Hare P. D. and Staden J. V. Phytochrome and cytokinin responses. Plant Growth Regul, 1997(23):105-122
    To J. P. C., Haberer G., Ferreira F. J., Deruère J., Mason M. G., Schaller G. E., Alonso J. M., Ecker J. R. and Kieber J. J. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 2004(16):658-671
    Truernit E., Schmid J., Epple P., Illig J. and Sauer N. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding elicitors, and pathogen challenge. Plant Cell, 1996(8):2169-2182
    Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T.-y., Hsing Y.-i., Kitano H., Yamaguchi I. and Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005(437):693-698
    Van Aken O, PecenkováT., van de Cotte B, De Rycke R, Eeckhout D., Fromm H., De Jaeger G, Witters E., Beemster G.T., InzéD. and Van Breusegem F. Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. Plant J, 2007(52):850-64
    Venglat S. P., Sawhney V. K. Benzylaminopurine induces phoenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants.Planta, 1996(198):480-487
    Verdonk J. C., Shibuya K., Loucas H. M., Colquhoun T. A., Underwood B. A. and Clark D. G. Flower-specific expression of the Agrobacterium tumefaciens isopentenyltransferase gene results in radial expansion of floral organs in Petunia hybrida. Plant Biotechnol J, 2008(Epub ahead of print) Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F. and Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992(69):843-859
    Weigel D., Meyerowitz E. M. Activation of floral homeotic genes in Arabidopsis. Science, 1993(261):1723-1726
    Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995(377):495-500
    Wagner D., Sablowski R. W. and Meyerowitz E. M. Transcriptional activation of APETALA1 by LEAFY. Science, 1999(285):582-584
    Werner T., Motyka V., Laucou V., Smets R., Onckelen H. V. and Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 2003(15):2532-2550
    Werner T., Motyka V., Strnad M. and Schmülling T. Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A, 2001(98):10487-10492
    Wigge P. A., Kim M. C., Jaeger K. E., Busch W., Schmid M., Lohmann J. U. and Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005(309):1056-1059
    Wilson R. N., Heckman J. W. and Somerville C. R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol, 1992(100):403-408
    Xu H. Y., Li X. G., Li Q. Z., Bai S. N., Lu W. L. and Zhang X. S. Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Mol Biol , 2004(55):209-220
    Yakovleva L. A., Klueva N. Y. and Kulaeva N. O. Phosphorylation of ribosome proteins as a mechanism of phytohormone regulation of protein synthesis in plants. In M Kamínek, DWS Mok, E Zaímalová, eds,Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing, The Hague, The Netherlands, 1992: pp 169-172
    Yang J., Peng S., Visperas R.M., Sanico A. L., Zhu Q. and Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2000(30):261-270
    Yang Y., Yu X. and Wu P. Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis. Mol Phylogenet Evo, 2006(39):248-262
    Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A. and Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990(346):35-40
    Yu H., Ito T., Zhao Y. X., Peng J. R., Kumar P. and Meyerowitz E. M. Floral homeotic genes are targets of gibberellin signaling in flower development. Development, 2004(101):7827-7832
    Zhang Z. B., Yang G., Arana F., Chen Z., Li Y. and Xia H. J. Arabidopsis Inositol Polyphosphate 6-/3-Kinase (AtIpk2β) Is Involved in Axillary Shoot Branching via Auxin Signaling. Plant Physiol, 2007(144):942-951
    Zheng B., Deng Y., Mu J., Ji Z., Xiang T., Niu Q. W., Chua N. H. and Zuo J. Cytokinin affects circadian-clock oscillation in a phytochrome B-and Arabidopsis response regulator 4-dependent manner. Physiol Plant, 2006(127):277-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700