拟南芥晚花突变基因的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开花转变是植物个体发育中最关键的过程。在模式植物拟南芥(Arabidopsisthaliana)中,存在4条互相依赖、共同作用的调控开花时间的信号途径,包括光周期途径、春化途径、自主途径和赤霉素途径。通过分离、鉴定各种早花、晚花突变体,已经克隆了许多开花时间基因,但相对于植物开花调控的复杂性,我们所掌握的信息仍然很有限。我们以模式植物拟南芥为材料,在Columbia生态型中筛选得到一个晚花突变体,命名为flowering locus x(FLX)。本研究构建了基因定位的作图群体,对开花控制基因flx进行了定位,并且研究了春作用对该晚花突变体的影响。
     首先将突变体flx植株与不同遗传背景的野生型Ler杂交产生子一代(F_1),F_1代自交产生F_2代。从播种的2350株F_2代植株中选出了370株具有晚花表型的植株作为基因定位的作图群体。然后利用以PCR为基础的简单序列长度多态性标记(SSLP)对作图群体中的所有个体进行检测,通过分析目的基因flx与各分子标记之间的连锁关系,将开花控制基因flx定位于拟南芥第5条染色体分子标记T24H18-25983附近。
     同时,本论文工作对突变体flx和野生型Col分别进行3周、4周、5周和6周的春化处理,同期种植正常春化处理2天的突变体flx和野生型Col作为对照,分析了春化作用对拟南芥晚花突变体flx开花时间的影响。实验结果显示,突变体经flx春化处理5周后,晚花表型基本被逆转,表型和野生型Col基本一致,当春化处理6周后,基本不能再进一步加速开花进程,春化处理达到饱和状态。因此,我们认为FLX基因突变并不影响对春化作用的应答,也就是说,突变基因flx对于开花的抑制并不是通过春化作用途径实现的。
The transition to flowering is the most critical process during the plant life cycle. The genetic and molecular analyses of Arabidopsis thaliana have revealed four interdependent genetic pathways for flowering: photoperiod, vernalization, autonomous, and gibberellin pathway. Although many flowering time gene have been cloned by isolating and identifying early- and later-flowering mutants, our understanding of flowering time control is still limited. A late-flowering Arabidopsis mutant (refer to as flx) was isolated from EMS-mutagenized plants of the Col ecotype in our lab. In this study, F_2 population was generated, mutant F_2 individuals were genotyped for SSLP molecular markers polymorphism, and the vernalization effect on flowering time on flx was studied.
     For mapping the flx locus, homozygous flx plants (ecotype Columbia) were outcrossed to wild type plants (ecotype Landsberg), and the resulting F_1 plants were allowed to self-fertilize to generate F_2 population. 370 late-flowering plants in the F_2 population were selected, and mutant F_2 individuals were genotyped for SSLP molecular markers polymorphic between Col and Ler. Analysis of the relationships of the gene flx with the molecular markers showed that the flx locus is located near of the markers T24H18-25983 on chromosome 5.
     In addition, the effect of the vernalization on flowering time of mutant flx and wild type plants was studied. The experiment showed that the late-flowering phenotype of the mutant could be restored by 5 weeks treatment of vernalization, but the 6 weeks treatment could not further accelerate the transition. This result implies that the FLX gene is not a component of the vernalization pathways.
引文
[1]许智宏.植物发育与生殖的研究:进展与展望.植物学报,1999,41(9):909-920.
    [2]种康,雍伟东,谭克辉.高等植物春化作用研究进展.植物学通报,1999,16(5):481-487.
    [3]种康,谭克辉,白书农.高等植物开花调控的分子基础.北京:科学出版社,1997,563-578.
    [4]李宪利,袁志友,高东升.高等植物成花分子机理研究现状及展望.西北植物学报,2002,22(1):173-183.
    [5]Boss PK,Bastow RM,Mylne JS,Dean C.Multiple pathways in the decision to flower:enabling,promoting,and resetting.Plant Cell,2004,16 Suppl:S18-S31.
    [6]Putterill J,Laurie R,Macknight R.It's time to flower:the genetic control of flowering time.Bioessays,2004,26(4):363-373.
    [7]李合生.现代植物生理学.高等教育出版社.2002,332-346.
    [8]Komeda Y.Genetic regulation of time to flower in Arabidopsis thaliana.Annu Rev Plant Boil.,2004,55:521-535.
    [9]Simpson GG,Dean C.Arabidopsis,the Rosetta stone of flowering time? Science,2002,296(5566):285-289.
    [10]Chentao Lin.Photoreceptors and regulation of flowering time.Plant physiology,2000,123:39-50.
    [11]Mc Clung CR.Circadian rhythms in plants.Annu Rev Plant Physiol.,2001,52:139-162.
    [12]Matsushika A,Makino S,Kojima M,Mizuno T.Circadian waves of expression of the APRR1/TOC1 family of pseudoresponse regulators in Arabidopsis thaliana:insight into the plant circadian clock.Plant Cell Physiol.,2000,41(9):1002-1012.
    [13]Kim JY,Song HR,Taylor BL,Cane IA.Light-regulated translation mediates gated induction of the Arabidopsis thaliana clock protein LHY.EMBO J.,2003,22(4):935-944.
    [14]Doyle MR,Davis SJ,Bastow RM,McWatters HG,Kozma-Bognar L,Nagy F,Millar AJ, Amasina RM. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 2002, 379(6902):694-699.
    
    [15]Levy YY, Dean C. The transition to flowering. Plant Cell, 1998, 10(12):1973-1990.
    [16]Zeevaart JAD. Physiology of flower formation. Annu Rev Plant Physiol., 1976, 27:321-348.
    [17]Takada S, Goto K. TERMINAL FLOWER 2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell, 2003, 15(12): 2856-2865.
    [18]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827): 1030-1033.
    [19]Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Curr Bio., 2007,17:1050-1054.
    [20]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaquchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737): 1052-1056.
    [21]Wigge P, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309(5737):1056-1059.
    [22]Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 2001,13(6): 1293-1304.
    [23]Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature, 2003, 426(6964):302-306.
    [24]Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell, 2005,17(8):2255-2270.
    [25]Imaizumi T,Schultz TF,Harmon FG,Ho LA,Kay SA.FKF1 F-box protein mediates cyclic degradation of a repressor of CONTANS in Arabidopsis.Science,2005,309(5732):293-297.
    [26]Paloma MAS.Circadian clock signaling in Arabidopsis thaliana:from gene expression to physiology and development.Int.J.Dev.Biol.,2005,49:491-500.
    [27]Michaels SD,Amasino RM.FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.Plant Cell,1999,11(5):949-956.
    [28]Lee I,Micheals SD,Masshardt AS,Amasino RM.The late-flowering phenotype of FRIG1DA and LUMINIDEPENDDENS is suppressed in the Landsberg erecta strain of Arabidopsis.Plant J.,1994,6:903-909.
    [29]Johanson U,West J,Lister C,Michaels SD,Amasino RM,Deans C.Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time.Science,2000,290:344-347.
    [30]Zhang H,Van NS.The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FOWERING LOCUS C.Plant J.,2002,31:663-673.
    [31]He Y,Doyle MR,Amasino RM.PAF1 complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive,winter-annual habit in Arabidopsis.Genes Dev.,2004,18:2774-2784.
    [32]Soppe WJ,Bentsink L,Koornneef M.The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana.Development,1999,126:4763-4770.
    [33]Roguev A,Schaft D,Shevchenko A,Pijnappel WW,Wilm M,Aasland R,Stewart AF.The Saccharomyces cerevisiae Selt complex includes and Ash2 homologue and methylates histone 3 lysine.EMBO J.,2001,20:7137-7148.
    [34]Gendall AR,Levy YY,Wilson A,Dean C.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis.Cell,2001,107:525-535.
    [35]Levy YY,Mesnage S,Mylne JS,Gendall A,Dean C.Multiple roles of Arabidopsis VRN1 in vernalization and flowering tine control.Science,2002,(297):243-246.
    [36]Sung S,Amasino RM.Vemalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3.Nature,2004,(427):159-164.
    [37]Sung S,Amasino RM.Vernalization and epigenetics:how plants remember winter.Curr.Opin.Plant Biol.,2004,7:4-10.
    [38]He Y,Amasino RM.Role of chromatin modification in flowering-time control.Trends Plant Sci.,2005,10:30-35.
    [39]Koornneef M,ALonso-Blanco C,Blankestijn-de Vries H,Hanhart C J,Peeters AJ.Genetic interactions among late-flowering mutants of Arabidopsis.Genetics,1998,148(2):885-892.
    [40]Lee I,Aukerman MJ,Gore SL,Lohman KN,Michaeis SD,Weaver LM,John MC,Feldmann KA,Amasino RM.Isolation of LUMINIDEPENDENS:a gene involved in the control of flowering time in Arabidopsis.Plant Cell,1994,6:75-83.
    [41]Macknight R,Bancroft I,Page T,et al.FCA,a gene controlling flowering time in Arabidopsis,encodes a protein containing RNA-binding domains.Cell,1997,89(5):737-745.
    [42]Quesada V,Macknight R,Dean C,et al.Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time.Embo J.,2003,22(12):3142-3152.
    [43]Simpson GG,Dijkwel PP,Quesada V,Henderson I,Dean C.FY is an RNA3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition.Cell,2003,113(6):777-787.
    [44]Schomburg FM,Patton DA,Meinke DW,Amasino RM.FPA,a gene involved in floral induction in Arabidopsis,encodes a protein containing RNA-recognition motifs.Plant Cell,2001,13:1427-1436.
    [45]Lim MH,Kim YS,Chung KS,Seo YH,Lee I,Kim J,Hong CB,Kim HJ,Park CM.A New Arabidopsis gene,FLK,encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C.Plant Cell,2004,16(3):731-740.
    [46]He Y,Michaels SD,Amasino RM.Regulation of flowering time by histone acetylation in Arabidopsis.Science,2003,302(5651):1751-1754.
    [47]Ausin I,Alonso-Blanco C,Jarillo JA,Ruiz-Garcia L,Martinez-Zapater JM. Regulation of flowering time by FVE,a retinoblastoma-associated protein.Nat.Genet.,2004,36:162-166.
    [48]Marguardt S,Boss PK,Hadfield J,Dean C.Additional targets of the Arabidopsis autonomous pathway members,FCA and FY.J Exp Bot.,2006,57(13):3379-3386.
    [49]Blazquez MA,Green R,Nilsson O,Sussman MR,Weigel D.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.Plant Cell,1998,10(5):791-800.
    [50]Sun TP,Kamiya Y.The Arabidopsis gal locus encodes the cyciase ent-kaurene synthetase-A of gibberellin biosynthesis.Plant Cell,1994,6:1509-1518.
    [51]Xu YL,Li L,Wu KQ,Peeters AJM,Gage DA.The ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase-molecular-cloning and functional expression.Proc.Ncad.Sci.USA.,1995,92:6640-6644.
    [52]Sun T.Gibberellin signal transduction.Curr Opin Plant Biol.,2000,3(5):374-380.
    [53]Wen CK,Chang C.Arabidopsis RGL1 encodes a negative regulator of gibberellin responses.Plant Cell,2002,14(1):87-100.
    [54]Jacobsen SE,Olszewski NE.Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction.Plant Cell,1993,5(8):887-896.
    [55]Jander G,Norris SR,Rounsley SD,Bush DF,Levin IM,Last RL.Arabidopsis map-based cloning in the post-genome era.Plant Physiol.,2002,129(2):440-450.
    [56]Yamaguchi A,Kobayashi Y,Goto K,Abe M,Araki T.TWIN SISTER OF FT(TSF)acts as a floral pathway integrator redundantly with FT.Plant Cell Physiol.,2005,46(8):1175-1189.
    [57]Meyerowitz EM.Aabidopsis thaliana.Annu Rev Genet.,1987,21:93-111.
    [58]Pruitt RE,Meyerowitz EM.Characterization of the genome of Arabidopsis thaliana.J.Mol.Biol.,1986,187:169-183.
    [59]Coulson A,Sulston J,Brenner S,Karn J.Toward a physical map of the genome of the nematode Caenorhabditis elegans.Proc.Natl.Acad Sci.USA.,1986,83(20):7821-7825.
    [60]Bell CJ,Ecker JR.Assignment of 30 microsatellite loci to the linkage map of Arabidopsis.Genomics,1994,19:137-144.
    [61]Konieczny A, Ausubel F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype especific PCR-based markers. Plant J., 4:403-410.
    [62]Micheals SD, Amasino RM. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J., 14:381-385.
    [63]Neff MM, Neff JD, Chory J, Papper AE. dCAPS, a simple technique for the genetic annlysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J., 14:387-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700