拟南芥MPK17基因的生物信息学分析及功能的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟南芥具有基因组小、结构简单、形体小、生长周期短、繁殖系数高等优点,且其基因组全序列测定工作已于2000年12月完成。为此以模式植物拟南芥(Arabidopsis thaliana)为材料来研究MPK17基因的功能。MPK(Mitogen activatedprotein kinases MPKs)是一类广泛存在于各种真核生物体中的丝氨酸/苏氨酸型蛋白激酶。MPK与其他一系列激酶组成MPK级联信号通路,接受外界刺激信号,并将信号转入细胞内,直接调控特定基因的表达,进而控制细胞生物学反应,如细胞增殖、分化、转化及凋亡等。
     目前拟南芥中已知的有20个MPK基因,根据其中保守的TxY模体内氨基酸序列比较,将其分成TEY和TDY两个亚型,又可以将TEY类激酶分为A、B、C三组,TDY类激酶则单独列为D组。目前知道得研究最多的是A、B、C亚族的成员,如拟南芥中的MPK3,MPK4,MPK6、MPK7。D亚族成员在拟南芥中还没有见到报道,我们实验室前人从拟南芥转座子突变体库中,分离出一个MPK17的转座子插入突变株系MPK17,属于TDY族。因此通过研究,揭示含TDY这一保守结构的MPK17基因的功能以及在适应环境与植物激素等信号转导中的作用。
     首先利用NCBI(美国国立生物技术信息中心)提供的拟南芥MPK17基因的核酸序列和利用在线和本地的一些生物信息学软件对拟南芥MPK17基因的序列进行生物信息学的分析,主要内容包括:核酸序列开放阅读框分析、蛋白质结构分析、二级结构预测以及该序列的进化关系分析,初步结果它位于拟南芥2号染色体199510 bp—203 125 bp处,在芽、花的分裂组织、花、叶、根等多种组织和细胞中表达,在生长初期和末期基因的表达量最大。
     结合实验室前人工作,她们已经初步鉴定MPK17基因对环境因子,尤其是植物生长物质IAA及2,4-D有明显的应激反应。该转座子所携带的GUS报道基因在根系及幼叶组织中有特异表达。在此基础上我通过大量的实验在IAA、NAA、TIBA、2,4-D四种植物生长物质不同浓度条件下,观察拟南芥mpk17突变体与野生型之间主根长的差异,通过数据处理分析发现同一植物生长物质同一浓度处理下野生型与mpk17突变体之间主根长都没有明显的差异,表明MPK17基因功能缺陷植株在表型上与野生型没有差异,这就说明拟南芥MPK17基因的功能有可能是冗余的,与其他同源基因之间存在相互功能的替代的可能性,为了探明MPK17的功能,有必要进一步通过构建亲缘关系近基因的双突变体来研究。根据第二章的序列分析表明MPK9与MPK17亲缘关系最接近,通过PCR、抗性筛选、RT-PCR筛选出纯合的mpk17与mpk9单突变体,然后经过人工杂交,产生成功的F1代杂交种。
     近年来,在植物中分离到大量MPK,并在其作用机理研究方面取得了长足进展。植物中MPK的研究主要集中在双子叶模式植物(如拟南芥、烟草和紫花苜蓿等),关于玉米MPK方面的研究很少。因此利用生物信息学方法在玉米中发现和电子克隆了玉米的MPK17基因并对其核酸和蛋白序列进行了初步分析,表明单子叶植物玉米中也存在MPK17基因,对开展玉米中MPK种类和其作用机制的研究,对人为控制其生长发育和增强抗逆性进而增加产量具有重要的指导意义,为更好的研究MPK17提供了丰富的理论基础。
Arabidopsis thaliana has good characteristic such as small genome, simple structure,small plant,short growth period,high propagating rate,and so on,and the whole genome sequencing has been completed in December 2000.So we make research for the function of MPK17 with Arabidopsis thaliana which is model plant,MPKs is a Ser/Thr-type protein kinase which is existed widely to each eukaryotes.MPKs is make up of MPK cascade signaling with other kinesis,accepting outside stimulate signaling,and changing signal over to cell to regulate directly the deliver of special gene,and then controlling cell biological reaction, such as proliferation of cells,differentiation,transform,apoptosis etc.
     At present,Arabidopsis thaliana known to have 20 MPK genes, according to the conservative TxY die body in the amino acid sequence comparison,divides into it TEY and the TDY two hypotypes,may also divide into a TEY kind of activating enzyme A,B,the C three groups, a TDY kind of activating enzyme alone lists as D group.At present what knows most studies are most is A,B,the C Asia race's member,like MPK3,MPK4,MPK6,MPK7 of Arabidopsis thaliana.The D Asia race members in the Arabidopsis thaliana have not seen the report,our laboratory predecessor separates MPK17 transposable elements insertion mutation strain MPK17 from Arabidopsis thaliana transposable elements mutant storehouse,it belongs to the TDY race.Therefore with the research,the revelation contains TDY this conservative structure MPK17 gene function as well as in the adaptation environment and in the plant hormone equisignal transduction function.
     First,we make use of nucleic acid sequencing of Arabidopsis thaliana MPK17 which is provided with NCBI,and some on line and native bioinformatics software to analysis Arabidopsis thaliana MPK17 sequence with bioinformatics,the main contents contain:the analysis of nucleic acid sequence open reading frame,the analysis of protein structure,the forecast of the protein secondary structures and the evolution relationship analysis,the first fruit is that it is located to 199 510 bp—203 125 bp of second chromosome of Arabidopsis thaliana, and expressing with the division organizations of buds and flowers, many organizations and cells of flowers,leaves,root etc,and the most controlling is in the gene of preliminary stage and last stage.Unifies the laboratory predecessor to work,they already initially appraised the MPK17 gene to environment factor,particularly plant growth material IAA and,2,4-D have the obvious stress response.This transposable elements carries the GUS reporter gene has the special expression in the root system and the young leaf organization.
     Based on this,I through the massive experiments in IAA,NAA, TIBA,and 2,4-D four kind with different concentrations to examine the difference of main rooting length from MPK17 mutant and the wild on Arabidopsis thaliana,between wild and the MPK17 mutant the main rooting length does not have the obvious difference through data processing analysis discovery identical auxin identical concentration, indicated that the MPK17 gene function flaw,adult plant with wild does not have the difference on the phenotype,this explained that Arabidopsis thaliana MPK17 gene function to have the possibility is the redundancy, has the mutual function with other homologous gene between the substitution possibility,to verify the function of MPK17,it is necessary further studies through the construction the sibship near gene's double mutant.According to sequential analysis of the second chapter indicated that MPK9 and the MPK17 sibship is closest,through PCR,the resistance screens and RT-PCR to screen the MPK17 and the MPK9 single mutant, then undergoes the hybridization,produces a successful F1 generation of hybrid.
     In recent years,a number of MPK have been isolated in the plant, and has made the considerable progress in its action mechanism research aspect.In the plant the MPK research mainly concentrates on the double seed leaf pattern plant(for example Arabidopsis thaliana,tobacco and alfalfa and so on),are very few about the corn MPK aspect's research. Therefore we discovered and In silico cloning corn's MPK17 gene using the biological information sciences method in the corn and carried on the preliminary analysis to its nucleic acid and the protein sequence, indicated that in the monocotyledon plant corn also has the MPK17 gene, to develops in the corn the MPK type and its function mechanism research,manual control its growth and strengthens the resistance then the gain in yield to have the important guiding sense,has provided the rich rationale for better research MPK17.
引文
[1]曹植仪.拟南芥[M].北京:高等教育出版社,2004.
    [2]陈璋.拟南芥:植物分子生物学研究的模式物种[J].植物学通报,1994,11(1):6-11.
    [3]袁月星,李巧丽.植物界中的“果蝇”--拟南芥[J].生物学教学,2003,28(1):48-49.
    [4]陈琳.植物遗传实验的好材料--拟南芥简介[J].教学仪器与试验,2002,18(11):29-30.
    [5]安贤惠.拟南芥及其研究进展[J].西北农业学报,1998,7(1):92-94.
    [6]Meyerowitz E M.Rehistory and history of Arabidopsis research[J].Plant Physiol,2001,125:15-19.
    [7]徐平丽,张传坤,孙万刚,单雷,李新国.模式植物拟南芥基因组研究进展[J].山东农业科学,2006,6:100-102.
    [8]Koornneef M,Stam P.Genetic analysis In:Methods in Arabidopsis thaliana Research [J].Singapore:World Scientific,1992,6:83-99.
    [9]Sung Z R,Belachew A,Bai S N.EMF,an Arabidopsis gene required for vegetative shoot development[J].Science,1992,258:1645-1647.
    [10]Deng X W.Fresh view on light signal transduction in plants[J].Cell.1994,76:423-426.
    [11]Rounsley S,Bush D,Subramaniam S,et al.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J].Nature,2000,408(6814):796-815.
    [12]Leutwiler L S,Hough-Evans B R,Meyerowitz E M.The DNA of Arabidopsis thaliana[J].Plant Cell,1984,194:15-23.
    [13]Meinke D W,Meinke L K,Showalter T C.A sequence based map of Arabidopsis genes with mutant phenotypes[J].Plant Physiol,2003,131(2):409-418.
    [14]张振桢,许煜泉,黄海.拟南芥--打开植物生命奥秘大门的钥匙[J].生命科学.2006,18(5):442-45.
    [15]孙大业,郭颜林,马力耕,崔素娟.细胞信号转导[M].北京:科学出版社,2001.
    [16]Bush D S.Calcium regulation in Plant cells and its role in signaling[J].Annu Rev Plant Physiology plant Mol.Biol.,1995,46:95-122.
    [17]Moriguchi K,Suzuld T,Ito Y,Yamazald Y,Niwa Y,Kurata N.Functional isolation of novel nuclear Proteins showing a variety of subnucelar localizations [J].The Plant cell,2001,17:389-403.
    [18]Nakagami H,Pitzschke A,and Hirt H.Emerging MAP kinase Pathways in Plant stress signaling[J].Trends in Plant science,2000,10:339-346.
    [19]Mitler,R,Vanderauwera,S,Gollery,M,and Van Breusegem,F.Reactive oxygen gene network of plants[J].Trends in plant science,2002,9:490-498.
    [20]Pagnussat G C,Lanteri M L,Lombardo M C,and Lamatttina L.Nitric oxide mediates the indoleacetic acetic acid induction activation of a mitogen activated protein kinase cascade involved in adventitious root development[J].Plant physiology,2004,135:279-286.
    [21]Hanks SK.The eukaryotic protein kinase superfamily kinase(catalytic)classification[J].FASEB J,1995,9:576-597.
    [22]Hanks S K.Protein kinases catalytic domain sequence database:identification of primary structure and classification of family members[J].Methods Enzymol.,1991,200:38-62.
    [23]Walker J C,Zhang R.Relationship of a putative receptor protein kinase from maize to the S-locus glyco-protein of Brassica[J].Nature,1990,345:743-746.
    [24]Rudrabhatla P,Rajasekharan R.Mutational Analysis of Stress-responsive Peanut Dual Specificity Protein Kinase[J].J.Bio.Chem,2003,278:17328-17335.
    [25]Joanna B,Maria T,Klimecka M,Fraser A,Dobrowol G.Characterization of dual specificity protein kinase from maize seedlings[J].Acta Biochimica Polonica,2004,51:635-647.
    [26]Martin M,Kilic G,Cherubini E.The effects of intracellular on GABA-activated current intracellular granule cell in culture[J].Membr Biol,1994,142:209-216.
    [27]Bowler C,Neuhaus G,Yamagata H,Chua N H.Cyclic GMP and calcium mediate phyto-chrome photo-transduction[J].Cell,1994,77:73-81.
    [28]许智宏,刘春明.植物发育的分子生理[M],北京:科学出版社,1998,172-192.
    [29]Kaplan D R,Stephens R M.Neurotrophin signal transduction by the Trk receptor[J].J.Neurobiol,1994,25:1404-1417.
    [30] Sun H, Tonks N K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling[J]. Treends Biochem. Sci., 1994, 19: 480—485.
    [31 ] Boulton T G, Yancopoulos G D, Gregory J S, Slaughter C, Moomaw C, Hsu J,Cobb M H, An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control[J]. Science, 1990, 249: 64—67.
    [32] Mittler R, Vanderauwera S, Gollery M, Van Breusegem R. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9: 490—498.
    [33] Machida Y, Nishihama R, Kitakura S. Progress in studies of plant horologes of mitogen activated protein (MAP)kinase and potential upstream components in kinase cascades[J]. Critical Rev Plant Sci., 1997, 16: 481—496.
    [34] Timothy S, Lewisa, Paul S, Natalie G. Signal transduction through MAP kinase cascades [J]. Adv. Cancer Res., 1998, 74: 49—139.
    [35] Bogre L, LigterinkW, Meskiene L, Barker PJ. Wounding Induces the RaPid and Transient Acitvation of a Specific MAP kinase Pahtway[J]. Plant Cell, 1997, 9:75—83.
    [36] Bogre L, Calderini O, BinarovaP, MattauchM, Till S, Kiegerl S, Jonak C,Pollaschek C, Barker P, Husklsson N S, Hirt, H. MAP kinase is activated late in plant mitosis and becomes localied of cell division[J]. Plant Cell, 1999, 11: 101 —113.
    [37] Tanoue T. A conserved docking motif in MAP kinase is common to substrates,activeator and regulators. Nat. Cell Biol, 2002, 2: 110—116.
    [38] Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J]. The Plant Journal, 2000, 24: 655—665.
    [39] Ichimura K, Mizoguchi T, Iriek, Morris P, GiraudatJ, Matsumoto K, Shinozaki K. Isolation of AtMEKKl (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 1998, 253: 532—543.
    
    [40] Kovtun Y, Chiu W L, Tena q Sheen J. Functional analysis of oxidative stress-activated mitogen- activated protein kinase cascade in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 2940— 2945.
    
    [41] Matsuoka D, Nanmori T, Sato K, Fukami Y, KikkawaU, YasudaT. Activation of AtMEK, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings[J]. The Plant Journal, 2002, 29: 637—647.
    
    [42]Jonak C, Kiegerl S, Ligterink W, Barker P J, Huskisson N S, Hirt H. Mitogen-activated protein kinase Stress signaling in plant: a pathway is activated by cold and drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 11274-11279.
    
    [43]Munnik T, Ligterink W, Meskiene I, Calderini O, Beverly J, Musgrave A, Hirt H. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyperosmo-tic stress[J]. The Plant Jounal, 1999, 20: 381—388.
    
    [44] Ame-Claire Cazzle, Marie J D, Cathal W, Erwin H B, Helene B B and Christiane L. MAP kinase activation by hypoosmotic stress of tobacco cell suspension towards the oxidative burst response? [J]. The Plant Journal, 1999, 19(3): 297—307.
    
    [45] Drollard M J, Thibivilliers S, Cazale AC, Barbier-Brygoo H, Lauriere C. Protein kinases induced by osmotic stress and elicitor molecules in tobacco cell suspensions:two crossroad one osmoregulation specific protein kinase[J]. F'EBS Letters, 2000,474: 217—222.
    
    [46] Hoyos M E, Zhang S. Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress[J]. Plant Physiology, 2000, 122: 1355-1363.
    
    [47] Mikolajczyk M, Awotunde O S, Muszynska G, Klessig D F, Obrowolska G. Osmotic stress induces rapid activation of a acid-induced protein kinase and a homolog of protein kinase ASK1 in alicylic tobacco cell[J]. The Plant Cell, 2000, 12: 165—178.
    
    [48] Zhang S Q and Daniel F. MAPK cascades in plant defense signaling[J]. Trends.Plant Sci, 2001, 6: 520—527.
    
    [49] Ichimura K, Mizoguki T, Yoshida R, Yuasa T, Shinozaki-K. Protein phosphorylation and de-phosphorylation in environmental stress responses in plants[J]. Adv. Bot.Res., 2000, 32: 355-377.
    [50]Schaffer R,LandgrafJ,Accerbi M,Smion V,Larson M.and Wisman E.Microarry analysis of diurnal and circadian-regulated genes in Arabidopsis[J].Plant Cell,2001,13:113-123.
    [51]He C,Fong S H,Yang D,Wang G L.BWMK1,a novel MAP kinase induced by fungal infection and mechanical wounding in rice[J].Molecular Plant Microbe Interactions,1999,12:1064-1073.
    [52]Schoenbeck M A,Samac DA,Fedorova M,Gregerson R S,Gantt J S,Vance CP.The alfalfa(Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog[J].Molecular Plant-Microbe Interactions,1999,12:882-893.
    [53]Madhani H D,Fink G R.The fiddle of MAP kinase signaling specificity[J].Trends Genet,1998,14(4):151-155.
    [54]Widmann C S,Gibson M B,Johnson G L.Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human[J].Physiol Rev.,1999,79(1):143-180.
    [55]Knetsch M L W,Wang M,Ewa Snaar-Jagalska B,Heimovaara-Dijkstra S.Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts[J].Plant Cell,1996,8:1061-1067.
    [56]Novikova G V,Moshkov I E,Smith A R,Hall M A.The effect of ethylene on MAPKinase-likeactivity in Arabidopsis thaliana[J].FEBSLett,2000,474:29-32.
    [57]Zhang S,Klessing D F.Salicylic acid activates a 48 Kd map KINASE IN TOBACCO[J].Plant Cell,1997,9:809-824.
    [58]Zhang S,Klessing D F.The tobacco wounding-activated mitogen-activated protein kinase is encodedby SIPK[J].Proc Natl Acad Sci USA,1998,95:7225-7230.
    [59]Seo S,Okamoto M,Seto H,Ishizuka K,Sano H,Ohashi Y.Tobacco MAP kinase:A possible mediator in wound signal transduction pathways[J].Science,1995,270:1988-1992.
    [60]Zhang S,Klessing D F.Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection[J].Pro Natl Acad Sci USA,1998,95:7433-7438.
    [61]Ligterink W,Kroj T,Nieden U,Hirt H,Scheel D.Receptor-mediated activation of a MAP kinase in pathogen defense of plants[J],science,1997,276:2054-2057.
    [62]Yang K Y,Liu Y,Zhang S.Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco[J].Proc Natl.Acad.Sci.USA,2001,98(2):741-746.
    [63]Zhang S,Klessing D F.Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection[J].Proc Natl.Acad.Sci.USA,1998,95:7433-7439.
    [64]Mizoguchi T,Irie K,Hirayama T,et al.A gene encoding a mitogen-activated protein kinase is induced simultaneously with gene for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch,cold,and water stress in Arabidopsis thaliana[J].Proc Natl.Acad.Sci.USA,1996,93:765-769.
    [65]Mizoguchi T,Irie K,Hayashida N,Yamaguchi-Shinozaki K,Kamada H.Shinozaki K.ATMPKs:a gene family of plant MAP kinase in Arabidopsis thaliana.FEBS Lett,1993,336(3):440-444.
    [66]Mikolajzyk M,Awotunde O S,Muszynska G,et al.Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells[J].Plant Cell,2000,12:165-178.
    [67]Jonak C,Pay A,Bogre L,Hirt H,Heberle-Bors E.The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner[J].Plant J,1993,3:611-617.
    [68]Ishikawa M,Soyano T,Nishihama R,Machida Y.The NPK1 mitogen-activated protein kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein[J].The Plant J,2002,32:789-798.
    [69]张成康,林伟,蔡彦宁等.人核受体nr5a2(hblf)基因组序列的生物信息学分析[J].科学通报,2002,1:44-48.
    [70]马志杰,钟金城等.牛科动物HSL基因序列分析及其分子进化研究[J].遗传学报,2007,1:26-34.
    [71]许静,王伟,柴宝峰,梁爱华.八肋游仆虫一种富含三核苷酸重复序列的新基因GARP的克隆与序列分析[J].2007,1:87-91.
    [72]钱刚,翟旭光,韩兆雪等.西藏青稞LEA3蛋白新抗旱基因的克隆与序列分析[J].作物学报,2007,2:292-296.
    [73]张燕子,马锋旺等.苹果脱氢抗坏血酸还原酶(DHAR)基因cDNA片段的克隆及序列分析[J].西北农林科技大学学报(自然科学版),2007,1:179-183.
    [74]刘飞,方柏山.克氏肺炎杆菌NiFe-氢酶基因的克隆与序列分析[J].生物工程学报,2007,1:133-137.
    [75]李娟,赵萍.家蚕一种新的胰蛋白激酶基因电子克隆和序列分析[J].蚕学通讯,2005,25(1):1-4.
    [76]张华莉,邓昊等.人类TECTB基因的电子克隆[J].遗传学报,2003,30(4):317-320.
    [77]高兴春,顾雪峰等.基于电子克隆方法获得鸡MIBP全长cDNA[J].生物信息学,2005.2:58-61.
    [78]Petersen,M,Brodersen P,Naested H,et al.Arabidopsis map kinase 4 negatively regulates systemic acquired resistance.Cell,2000,103(7):1111-1120.
    [79]Brodersen P,Petersen M,Nielsen HB,et al.Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4.PlantJ.2006,4:532-546.
    [80]Andreasson E,Jenkins T,Brodersen P,et al.The MAP kinase substrate MKS1 is a regulator of plant defense responses.EMBO J.2005,24,2579-2589.
    [81]Chory J,Ecker J R,Briggs S.National Science Foundation-Sponsored Workshop Report,"The 2010 Project" functional genomics and the virtual plant.A blueprint for understanding how plants are built and how to improve them[J].Plant Physiol,2000,123(2):423-426.
    [82]Galperin,M Y.The Molecular Biology Database Collection:2005 update[J].Nucleic Acids Research,2005,3:15-24.
    [83]GibertD.Bioinfamatics software resources[J].Brief Bioinform,2004,5:300-304.
    [84]Skolnick J,Fetrow J S.From genes to protein structure and function.,novel applications of computational approaches in genomic era[J].Trends in iotechnology,2000,18:34-39.
    [85]余东亮,汪旭升,徐飞,傅衍.家蚕基因组中SnoRNA(Box C/D)的生物信息学分析与研究[J].中国农业科学,2007,40(1):196-203
    [86]赵宏亮,冯仁军,苏伟,徐碧玉.金志强香蕉中Mesaar1基因的生物信息学分 析[J].生物技术通报,2006,17(1):336-340.
    [87]Zhang M Q.Large-scale gene expression data analysis:a new challenge to computati onal biologists[J].Genome Res.,1999,9:681-688.
    [88]Rodriguez-Tome P.EBI databases and services[J].Mol Biotechnol.,2001,18(3):199-212.
    [89]Vincze T,Posfai J.and Roberts R J.NEBcutter:a program to cleave DNA with restriction enzymes[J].Nucleic Acids Research,2003,31:3688-3691.
    [90]Rnold K,Bordoli L,Kopp J and Schwede T.The SWISS-MODEL Workspace:A web-based environment for protein structure homology odelling[J].Bioinformatics,2006,22:195-201.
    [91]Opp J and Schwede T.The SWISS-MODEL Repository of annotated three dime-nsional protein structure homology models[J].Nucleic Acids Research,2004,32:230-234.
    [92]Schwede T,Kopp J,Guex N and Peitsch M C.SWISS-MODEL:an automated protein homology-modeling server[J].Nucleic Acids Research,2003,31:3381-3385.
    [93]Guex N and Peitsch M C.SWISS-MODEL and the Swiss-Pdb Viewer:An envir-onment for comparative protein modeling[J].Electrophoresis,1997,18:2714-2723.
    [94]Peitsch M C.Protein modeling by e-mail.From amino acid sequence to protein structure:A free one-hour service[J].Nature Biotechnology,1995,7(13):658-660.
    [95]Skolnick J,Fetrow J S.From genes to protein structure and function:Novel applications of computational approaches in genomic era[J].TIBTECH,2000,18:34-39.
    [96]黄韧,薛成.生物信息学网络资源与应用[M].广州:中山大学出版社,2003.
    [97]刘强,张贵友,SHINOZAKI K.植物促分裂原活化蛋白(MAP)激酶.植物学报[J],2000,42(7):661-667.
    [98]肖文娟,宾金华,武波.植物体中的MAPK.植物学通报[J],2004,21(2):205-215.
    [99]Brodersen P,Petersen M,Nielsen H B,Zhu S,Newman MA,Shokat K M,Rietz S,Parker J E,Mundy J.Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmines acid ethylene-dependent responses via EDS1 and PAD4[J].Plant J,2006,4:532-546.
    [100]Desikan,R,Hancock J T.Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6[J].Plant Physiol,2001,126(4):1579-1587.
    [101]Droillard M J,Boudsocq M,Barbier-Brygoo H,Laurière C.Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions.Involvement of the MAP kinases AtMPK3 and AtMPK6[J].FEBS Lett,2002,527:43-50.
    [102]Huang Y,LiH,Gupta R,Morris,P C.ATMPK4,an Arabidopsis homolog of mitogen-activated protein kinase,is activated in vitro by AtMEK1 through threonine phosphorylation[J].Plant Physiol,2000,122:1301-1310.
    [103]Shinozaki K G.Tena J.Sheen Y.Henry A.Champion M.Kreis S.Mitogen-activated protein kinase cascades in plants:a new nomenclature[J].Trends in PlantScience,2002,7(7):301-308.
    [104]Lupas A,Van Dyke M,Stock J.Predicting Coled Coils from Protein Sequences [J].Science,1991,252:1162-1164.
    [105]吴涛,宗晓娟,谷令坤,李德全.植物中的MAPK及其在信号传导中的作用[J].生物技术通报,2006,5:1-7.
    [106]陈娅斐,冯斌,赵小明,白雪芳,杜昱光.MAPK级联途径在植物信号转导中的研究进展[J].植物学通报,2005,3:357-365.
    [107]丁六松,张宇伟.生物信息学中的虚拟实验[J].情报杂志,2003,7:63-64.
    [108]James K W.BLAT----The BLAST-Like Alignment Tool[J].Genome Research,2002,4:656-664.
    [109]张成岗,贺福初.生物信息学方法与实践[M].北京:科学出版社,2002.
    [110]Cai-Ping Feng,John Mundy.Gene discovery and functional analysis in the model plant Arabidopsis[J].Journal of integrative plant biology,2006,48(1):5-14.
    [111]Mizoguch T,Ichimura K,Shinozaki K.Environmental stress response in plants,the role ofmitogen-activated protein kinases[J].Trends Biotech,1997,15:15-19.
    [112] Feng C P, Andreasson E, Maslak A, Mock H P, Mattsson O, Mundy J. Arabidopsis MYB68 in development and responses to environmental cues[J]. Plant Science,2004, 167: 1099-1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700