土槿乙酸抗肿瘤作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土槿乙酸是从松科植物金钱松根皮中分离的新型二萜酸化合物,具有抗真菌、抗生育、抗血管生成和抗肿瘤等作用。近年来研究证实土槿乙酸对肝癌、乳腺癌、宫颈癌、前列腺癌等多种肿瘤细胞具有明显的抗肿瘤活性,且多与p53蛋白表达相关,但确切的作用机制目前仍未清楚。
     本文拟以表达野生型p53和突变型p53的肿瘤细胞为研究对象,探讨土槿乙酸的抗肿瘤作用机制。因消化道肿瘤(胃癌,肝癌和结肠癌)属于易发生p53突变的恶性肿瘤,而黑色素瘤常常表达野生型p53,很少发生p53的突变,故选择这两类具有代表性和普遍性的人肿瘤细胞系作为研究的对象。我们首先检测了土槿乙酸对不同人肿瘤细胞系的抑瘤作用,然后选择敏感性高且具有代表性的人胃癌MGC803(突变型p53)、AGS(野生型p53)和黑色素瘤SK–28(野生型p53)细胞株作为研究对象,系统研究了土槿乙酸抗肿瘤作用的机制,为土槿乙酸可能成为新型抗肿瘤药物提供实验数据和理论依据。
     第一部分土槿乙酸对不同人肿瘤细胞系的抑瘤作用
     目的:检测土槿乙酸对不同人肿瘤细胞系的抑瘤作用,筛选出对土槿乙酸敏感且具有代表性的细胞系,作为土槿乙酸抗肿瘤作用机制研究的细胞模型。
     方法:采用四唑氮蓝还原法(MTT)检测土槿乙酸对人胃癌MGC803、AGS、肝癌SMMC7721、结肠癌LOVO、人黑色素瘤A375、SK–28和624 mel细胞增殖的抑制作用。运用逆转录聚合酶链式反应(RT–PCR)技术检测PPARγ在人胃癌MGC803、肝癌SMMC7721、结肠癌LOVO细胞中的mRNA表达。
     结果:1.土槿乙酸对人胃癌MGC803、AGS、肝癌SMMC7721细胞抑制作用显著(P<0.05),且呈时间和剂量依赖性,IC50值分别为AGS(0.89μmol/L)     小结:土槿乙酸对表达野生型和突变型p53的肿瘤细胞均具有明显的生长抑制作用,提示土槿乙酸具有较强的抗肿瘤作用,有望成为一种新的肿瘤治疗药物。
     第二部分土槿乙酸对p53野生型和突变型人胃癌细胞凋亡的影响及其可能机制的对比研究
     目的:对比研究土槿乙酸对人胃癌MGC803和AGS细胞凋亡的影响及其可能机制。
     方法:应用Hoechst33342/PI核荧光双染色法、DNA片段化分析检测细胞凋亡的改变;应用流式细胞术分析细胞周期的变化;应用蛋白检测和RT–PCR技术检测参与细胞凋亡和细胞周期运行的相关基因的蛋白和mRNA表达。
     结果:1. Hoechst33342/PI核荧光双染色法、DNA片段化分析证实,土槿乙酸明显诱导人胃癌AGS、MGC803细胞凋亡产生;2.流式细胞术分析显示,土槿乙酸诱导人胃癌AGS、MGC803细胞G2期阻遏;3. 10μmol/L土槿乙酸作用AGS细胞12h后可见p53表达增加,在36h达到峰值,24h后可见p21WAF1/CIP1表达明显增加;作用MGC803细胞12h后明显上调PPARγmRNA表达,24h后可见p21WAF1/CIP1表达明显增加;4.土槿乙酸作用于AGS、MGC803细胞后,增加了Fas/APO–1蛋白表达和促凋亡蛋白Bax mRNA表达,降低了抑凋亡蛋白Bcl–2 mRNA表达,提高了caspase–3活性。
     小结: 1.土槿乙酸能明显诱导人胃癌细胞凋亡和细胞周期阻滞;2.土槿乙酸通过Bcl–2介导的线粒体途径和Fas/APO–1介导的死亡受体途径诱导胃癌细胞凋亡。3. p53野生型的胃癌细胞,其凋亡途径的激活可能与p53表达有关;p53突变型的胃癌细胞,其凋亡途径的激活可能与PPARγ表达有关。
     第三部分土槿乙酸对p53野生型人黑色素瘤细胞抗增殖作用机理的研究
     目的:研究土槿乙酸抗人黑色素瘤细胞增殖的机制。
     方法:采用Hoechst33342/PI核荧光双染色法、DNA片段化分析技术检测细胞凋亡的改变;应用流式细胞术分析细胞周期的变化;运用Westernblot和RT–PCR技术检测参与细胞凋亡和细胞周期运行的相关基因的蛋白和mRNA的表达。
     结果:1. Hoechst33342/PI核荧光双染色法、DNA片段化分析证实土槿乙酸能明显诱导人黑色素瘤SK–28细胞凋亡产生;2.流式细胞术分析显示土槿乙酸诱导人黑色素瘤SK–28细胞G2/M期阻遏: (1)土槿乙酸作用SK–28细胞4h,增加了Cdc2的磷酸化水平,24 h下调了其蛋白水平表达。(2)土槿乙酸降低了Cdc25C磷酸酶蛋白表达,提高了Wee1激酶蛋白表达。(3)土槿乙酸能明显诱导p53下游靶基因p21WAF1/CIP1蛋白表达,降低Cdc2的活性。(4)土槿乙酸增加了ATM激酶活性,提高了细胞周期检测点激酶Chk2和p53蛋白表达及p53磷酸化水平,这些作用可被ATM激酶抑制剂咖啡因阻断;3.土槿乙酸作用于SK–28细胞后,增加了Fas/APO–1蛋白表达和促凋亡蛋白Bax mRNA表达,降低了抑凋亡蛋白Bcl–2 mRNA表达;提高了caspase–3活性。
     小结: 1.土槿乙酸可通过依赖ATM–p53–p21WAF1/CIP1信号途径和ATM–Chk2–Cdc25C信号途径诱导人黑色素瘤SK–28细胞周期G2/M期阻滞; 2.土槿乙酸可通过Bcl–2介导的线粒体途径和Fas/APO–1介导的死亡受体途径诱导人黑色素瘤SK–28细胞凋亡。3.凋亡途径的激活可能与p53表达有关。
     结论:1.土槿乙酸具有较强的抗肿瘤作用,有望成为一种新的抗肿瘤药物;2.土槿乙酸可通过Bcl–2介导的线粒体途径和Fas/APO–1介导的死亡受体途径诱导人胃癌和黑色素瘤细胞凋亡,提示诱导细胞凋亡可能是土槿乙酸抗癌作用的机制之一; 3.土槿乙酸可通过依赖ATM–p53–p21WAF1/CIP1信号途径和ATM–Chk2–Cdc25C信号途径诱导人黑色素瘤细胞G2/M期阻滞,提示诱导细胞周期阻滞可能是土槿乙酸抗癌作用的又一机制。
Pseudolarix acid B is a natural diterpenoid compound isolated from the root bark of P. kaempferi Gordon, and displays antifungal, antifertil, antivascular and antiangiogenic properties. Previous studies have shown that pseudolarix acid B displays antiangiogenic properties in a variety of cancer cell lines including gastric carcinoma, liver, breast, colon, cervical, protate cancer and melanoma cell, and accompanied with up–regulation of p53, but the underlying mechanism has not been fully elucidated.
     The aim of this study was to investigate the mechanism of PLAB–antitumor in wild–type p53 and mutant–type p53 tumor cells. Since p53 mutations are often observed in human gastric carcinoma cells and rarely in melanoma cells, these kinds of cells are representative as cell line models. Firstly, we studied the antitumor effect of Pseudolarix acid B on various human tumor cells. Furthermore, we investigated PLAB mechanism of action using MGC803(mtp53), AGS(wtp53) and SK–28(wtp53) as representative cell line models, which is foundation that PLAB may be a promising chemopreventive agent anti-angiogenic properties.
     PartⅠAntitumor effect of Pseudolarix acid B on various human tumor cells
     Objective: To evaluate the antitumor effect of PLAB on various human tumor lines in vitro, and further investigate mechanism of PLAB as a representative cell line model.
     Methods: The expression of PPARγwas detected by RT–PCR; the role of different concentration of PLAB on cell growth was tested by MTT in vitro.
     Results: 1. PLAB had a potent inhibitory effect on the growth of MGC803、AGS and SMMC7721 cells in a dose–dependent and time-dependent manner (P< 0.05), and the order of the concentration of 50% cytotoxicity (IC50) against the various human cancer cell lines for 48h was AGS (0.89μmol/L)      Conclusion: PLAB has obviously of activity against human carcinoma in wild–type p53 and mutant–type p53 tumor cells, which suggests that PLAB possessed significantly antiangiogenic activity,may be a promising, novel agent for treating human carcinoma.
     PartⅡResearch on mechanisms of apoptosis induced by Pseudolaricacid B in wild–type p53 and mutant–type p53 human gastric carcinoma cells by comparsion
     Objective: To investigate the effects and mechanisms of PLAB-induced apoptosis in wild–type p53 and mutant–type p53 human gastric carcinoma cells by comparsion
     Methods: Cell cycle was analyzed by flow cytometry. Apoptotic cells were detected using Hoechst Hoechst33342/PI staining, and confirmed by DNA fragmentation assay. ELISA kit analysis was used to detect the expression of proteins. The expression of genes involved in apoptosis metabolism was analysized with RT–PCR.
     Results: 1.PLAB–induced apoptosis in MGC803 and AGS cells was confirmed by DNA fragmentation assay and Hoechst33342/PI staining. 2 Flow cytometry analysis showed that PLAB significantly blocked cell cycle progression in the G2/M phase in MGC803 and AGS cells. 3 In AGS cells, PLAB (10μmol/L) exhibited a time–dependent p53 protein levels after 12h of treatment, and the protein levels of p21WAF1/CIP1, a downstream target of p53, were also found to increase after treatment with 10μmol/L PLAB for 24h; In MGC803 cells, PLAB (10μmol/L) exhibited a time–dependent PPARγmRNA levels after 12h of treatment, and protein levels of p21WAF1/CIP1 were also found to increase after treatment with 10μmol/L PLAB for 24h. 4. When MGC803 and AGS cells was treated with PLAB, it induced Fas/APO–1 and caspase–3 expression, and decreased in the mRNA expression of Bcl–2, but increased in the mRNA expression of Bax.
     Conclusion: 1. PLAB can significantly induce G2 arrest and apoptosis in human gastric carcinoma cells. 2 PLAB–induced apoptosis of human gastric carcinoma cells is mediated through both Bcl–2–associated mitochondrial pathway and Fas–associated death receptor signaling death pathway. 3. Activation of apoptosis signaling pathway may be mediated through of p53 or PPARγ.
     PartⅢEffect of Pseudolaricacid B on Cell Growth in wild–type p53 human melanoma cells and its Mechanism
     Objective: To investigate the effect of PLAB on cell growth and its mechanism in human melanoma cells.
     Methods: Cell cycle was analyzed by flow cytometry. Apoptotic cells were detected using Hoechst Hoechst33342/PI staining, and confirmed by DNA fragmentation assay. The expression of genes involved in apoptosis metabolism was analysized with RT–PCR. The level of the protein was detected with western blotting.
     Results: 1.PLAB–induced apoptosis in SK–28 cells was confirmed by DNA fragmentation assay and Hoechst33342/PI staining. 2 Flow cytometry analysis showed that PLAB significantly blocked cell cycle progression in the G2/M phase in SK–28 cells. (1) PLAB (10μmol/L) increased phosphorylation of Cdc2 and subsequently decreased expression of Cdc2. (2) PLAB decreased the expression of Cdc25C phosphatase and increased the expression of Wee1 kinase. (3) A reduction in Cdc2 activity was partly due to induction of expression of p21waf1/cip1 in a p53–dependent manner. (4) PLAB activated the checkpoint kinase, Chk2, and increased the expression and phosphorylation of p53, and enhanced ATM kinase activity, and these effects were inhibited by caffeine, an ATM kinase inhibitor. 3. PLAB enhanced caspase–3 activity, and increased in the protein expression of Fas/APO–1, and decreased in the mRNA expression of Bcl–2, but increased in the mRNA expression of Bax.
     Conclusion: 1.PLAB induced G2/M arrest in human melanoma cells via a mechanism involving the activation of ATM–Chk2–Cdc25C and ATM– p53–p21WAF1/CIP1 signalling pathways. 2. PLAB–induced apoptosis of human melanoma cells is mediated through both Bcl–2–associated mitochondrial pathway and Fas–associated death receptor signaling death pathway.
     Summary: 1 PLAB has obviously antitumor effect against human carcinoma cells, which suggsts that PLAB may be a promising, novel agent for treating cancer. 2 PLAB–induced apoptosis of human gastric carcinoma and melanoma cells is mediated through both Bcl–2–associated mitochondrial pathway and Fas–associated death receptor signaling death pathway, which suggests it may be one of anticancer mechanisms that PLAB induces apoptosis. 3. PLAB induced G2/M arrest in human melanoma cells via a mechanism involving the activation of ATM–Chk2–Cdc25C and ATM–p53–p21WAF1/CIP1 signalling pathways, which suggests it may be one of anticancer mechanisms that PLAB induces cell cycle arrest.
引文
1 Liu B, Chen H, Lei ZY, Yu PF, Xiong B.Studies on anti–tumour activities of pseudolaric acid–B (PLAB) and its mechanism of action. J Asian Nat Prod Res. 2006, 8(3): 241-252
    2 Gong X, Wang M, Tashiro S, Onodera S, Ikejima T.Involvement of JNK–initiated p53 accumulation and phosphorylation of p53 in pseudolaric acid B induced cell death. Exp Mol Med. 2006, 38(4): 428-434
    3 Gong XF, Wang MW, Tashiro S, Onodera S, Ikejima T.Pseudolaric acid B induces apoptosis through p53 and Bax/Bcl–2 pathways in human melanoma A375–S2 cells.Arch Pharm Res. 2005, 28(1): 68-72
    4 Yu JH, Cui Q, Jiang YY, Yang W, Tashiro S, Onodera S, Ikejima T. Pseudolaric acid B induces apoptosis, senescence, and mitotic arrest in human breast cancer MCF–7. Acta Pharmacol Sin. 2007, 28(12): 1975-1983
    5 Yang SP,Wu Y, Yue JM. Five new diterpenoids from Pseudolaric Kaempferi [J]. J Nat Prod 2002, 65(7): 1041-1044
    6 Pan DQ, Li ZL, Hu CQ, Chen K, Chang JJ, K H.The cytotoxic principles of Pseudolarix kaempferi; Pseudolaric acid–A and B and related derivatives. Planta Medica 1990, 56(4): 383-385
    7 Ko JK, Leunq WC, Ho WK, Chiu P. Herbal diterpenoids induce growth arrest and apoptosis in colon cancer cells with increased expression of the nonsteroidal anti–inflammatory drug–activated gene. Eur J Pharmacol 2007, 559(1): 1-13
    8 Jaradat MS, Noonan DJ, Wu B, Avery MA, Feller DR. Pseudolaric acidanalogs as a new class of peroxisome proliferator–activated receptor agonists [J]. Planta Med 2002, 68(8): 667-671
    9 Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator–activated receoptor–γagonists [J]. Lancet Oncol 2004, 5(7): 419-429
    10 Motomura W, Okumura T, Takahashi N, Obara T, Kohqo Y. Activation of peroxisome proliferator–activated receptor gamma by troglitazone inhibits cell growth through the increase of p27KiP1 in human. Pancreatic carcinoma cells [J]. Cancer Res 2000, 60(19): 5558-5564
    11 Segawa Y, Yoshimura R, Westin S, et al. Expression of peroxisome proliferators– activated receptor (PPAR) in human prostate cancer [J]. Prostate 2002, 51: 108-116
    1 Reed JC. Mechanisms of apoptosis[J]. Am J Pathol 2000, 157(5): 1415-1430
    2 Gong X, Wang M, Tashir0o S, Onodera S, Ikejima T.Involvement of JNK–initiated p53 accumulation and phosphorylation of p53 in pseudolaric acid B induced cell death. Exp Mol Med. 2006, 38(4): 428-434
    3 Gong XF, Wang MW, Tashiro S, Onodera S, Ikejima T.Pseudolaric acid B induces apoptosis through p53 and Bax/Bcl–2 pathways in human melanoma A375–S2 cells.Arch Pharm Res. 2005, 28(1): 68-72
    4 Agarwal ML,Taylor WR,Chemov MV,Chemova OB,Stark GR. The p53 network. J Biol Chem. 1998, 273: 1-4
    5 Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia 2000, 2: 291-299
    6 Vidal A,Koff A. Cell–cycle inhibitors: three families united by a commoncause. Gene 2000, 247: 1-15
    7 Cheng J, Zhou T, Liu C, Shapiro, JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD. Prrotection from Fas–mediated apoptosis by a soluble from of the Fas molecule. Science 1994, 263: 1759-1762
    8 Wahli W,Braissant O,Desvergne B,et al.Peroxisome proliferator activated receptors:transcriptional regulators of adipogenesis,lipid metabolism and more.Chem Biol. 1995, 2: 261-266
    9 Ting–Jun FAN, Li–Hui HAN, Ri–Shan CONG, et al. Caspase Family Proteases and Apoptosis.Acta Biochimica et Biophysica Sinica 2005, 37(11): 719-727
    10 Long S, Wilson M, Bengten E, Clem LW, Miller NW, Chinchar VG.Identification and characterization of a as L–like protein and cDNAs encoding the channel catfish death–inducing signaling complex.Immunogenetics 2004, 56: 518-530
    11 Nomura J, Matsumoto K, Iguchi–Ariga SM, Ariga H. Mitochondria–independent induction of Fas–mediated apoptosis by MSSP.Oncol Rep 2005, 14: 1305-1309
    12 Arajuskovic G, Orolicki SV, Cerovic S, et al. Bcl–2 and Bax protein interaction in B–lymphocyteu of peripheral blood in patients with chronic lymphocytic leukemia.Vo–jnosantit Pregl 2005, 62(5): 357-363
    13 Filippovich I V, Sorokina NI, Lisbona A, et al. Radianon–induced apoptosis in human myeloma cell line increases BCL–2/BAX dimer formation and does not result in BAX/BAX homodimerization.Int J Cancer 2001, 92(5): 651-660
    14 Cheng J, Zhou T, Liu C, Shapiro, JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD. Prrotection from Fas–mediated apoptosis by a soluble from of the Fas molecule. Science 1994, 263: 1759-1762
    15 Nagata S. Apoptotic DNA fragmentation. Exp cell Res 2000, 10: 12-18
    16 Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromtin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 1984, 142: 67-77
    17吴艳萍,李立平,张颖,等。细胞周期调控分子与肿瘤关系的研究进展。军医进修学院学报2006,27(4):306-308
    18 Gartel AL,Tyner AL.The role of the cyclin–dependentkinase inhibitor P21WAF1/CIP1 in apoptosis.Mol Cancer Ther 2002, 1: 639
    19袁璧钗,林东。肿瘤抑制基因p53与人类肿瘤研究进展。基层医学论坛2005,9(10):929-930
    20 Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N, Getz G, Domany E, Givol D. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene 2001, 20: 2225–2234.
    21 Amoêdo ND, Castelo-Branco MT, Paschoal ME, Pezzuto P, Esperan?a AB, Rumjanek VM, Rumjanek FD. Expression of ABC transporters, p53, Bax, Bcl-2 in an archival sample of non-small cell lung cancer bearing a deletion in the EGFR gene. Int J Mol Med. 2009, 23(5): 609-614
    22 Wahli W,Braissant O,Desvergne B,et al.Peroxisome proliferator activated receptors:transcriptional regulators of adipogenesis,lipid metabolism and more.Chem Biol. 1995, 2: 261-266
    23 Zang CB, Liu H, Maximilian GP, et al .Peroxisome proliferator–activated receptor ligandsinducegrowth inhibition andapoptosis of human B lymphocytic leukemia. Leukemia Research 2004, 28: 387-397
    24 Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, Chen CS. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl–xL/Bcl–2 functions independently of PPARgamma. Cancer Res. 2005, 65(4): 1561-1569
    25 Nam DH, Ramachandran S, Song DK, Kwon KY, Jeon DS, Shin SJ, Kwon SH, Cha SD, Bae I, Cho CH. Growth inhibition and apoptosis induced in human leiomyoma cells by treatment with the PPAR gamma ligand ciglitizone. Mol Hum Reprod. 2007, 13(11): 829-836
    1 Jin, P., Gu, Y., Morgan, D.O. Role of inhibitory CDC2 phosphorylation in radiation–induced G2 arrest in human cells. Journal of Cell Biology 1996,134: 963-970
    2 Booher, R.N, Holman, PS, Fattaey, A. Human Myt1 is a cell cycleregulated kinase that inhibits Cdc2 but not Cdk2 activity. Journal of Biological Chemistry 1997, 272: 22300-22306
    3 Jin P, Gu Y, Morgan DO. Role of inhibitory CDC2 phosphorylation in radiation–induced G2 arrest in human cells. Journal of Cell Biology 1996,134: 963-970
    4 SEARS R C,NEVINS J R. Signaling networks that link cell proliferation and cell fate. J Bid Chem. 2002, 277(14): 11617-11620
    5 Sebastian B, Kakizuka A, Hunter T. Cdc25M2 activating of cyclin–dependent kinase by dephosphorylation of threonine–14 and tyrosine–15. Proc Natl Acad Sci USA 1993, 90(8): 3521-3524
    6 Gould KL, Nurse P. Tyrosine phosphorylation of the fission yeast cdc+ protein kinase regulation entry into mitosis. Nature 1989, 342(6245): 39-45
    7 Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser–20 mediates stabilization of human p53 in response to DNA damage.Proc Natl Acad Sci USA 1999, 96 (24): 13777-137782
    8 Gong XF, Wang MW, Tashiros, Onodera S, Ikejima T. Pseudolaric acid B induces apoptosis through p53 and Bax/Bcl–2 pathways in human melanoma A375–S2 cells. Arch Pharm Res. 2005, 28(1): 68-72
    9 Li L, Zou L. Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. Journal of Cellular Biochemistry 2005, 94: 298-306
    10 Sebastian B, Kakizuka A, Hunter T. Cdc25M2 activating of cyclin–dependent kinase by dephosphorylation of threonine–14 and tyrosine–15. Proc Natl Acad Sci USA 1993, 90(8): 3521-3524
    11 Gould KL, Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+protein kinase regulation entry into mitosis. Nature 1989, 342(6245): 39-45
    12 Aprelikova O, Xiong Y, Liu ET. Both p16 and p21WAF1/CIP1 families of cyclin–dependent kinases by the CDK–activating kinase. J Biol Chem 1995, 270(3): 18195-18197
    13 Hunter T. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 1995, 83: 1-4
    14 Nakamura Y. ATM: the p53 booster. Nat Med 1998, 4: 1231-1232
    15 O'Connell MJ, Walworth NC, Carr AM. The G2–phase DNA–damage checkpoint. Trends Cell Biol. 2000, 10(7): 296-303
    16 Canman CE, Lim DS. The role of ATM in DNA damage responses and cancer. Oncogene 1998, 17: 3301-3308
    17 Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Research 1999, 59: 4375-4382
    18 King K, Cidlowski J. Cell cycle regulation and apoptosis. Ann Rev Physiol 1998, 60: 601-617
    1 LI E,Clark AM,Hufford CD.Antifungal evaluation of pseudolaric acid B,a major constituent of pseudolarix kaempferi.J Nat Prod. 1995, 58: 57-67
    2 Gong XF, Wang MW, Tashiro S, Onedera S, Ikejima T.Pseudolarie acid B induces apoptosis through p53 and Bax/Bcl-2 pathways in human melanoma A375-S2 cells.Arch pharm Res 2005, 28(1): 68-72
    3 Cao B,Jiang MC,Lei ZY,Bai SF,Chen H. Effects of PLAB on apoptosis and Smad signal Pathway of hypertrophic scar fibroblasts.J Asian Nat Pred Res. 2008, 10(2): 147-57
    4 Pan DJ,Li ZL,Hu CQ,Chen K,Chang JJ,Lee KH.The cytotoxic principles of pseudolarix kaempferi: Pseudolaric acid -A and B and related derivatives.Planta Med. 1990, 56: 383-85
    5 Gong XF,Wang MW,Tashiro S,Onedera S,Ikejima T.Involvement of JNK-initiated p53 accumulation and Phosphorylation of p53 in Pseudolaric acid B induced cell death.Exp Mol Med. 2006, 38(4): 428-34
    6 Gong XF, Wang MW, WU Z, Tashiro S , Onedera S , Ikejima T .Pseudolarie acid B induces apoptosis via activation of c-Jun N-terminal kinase and caspase-3 in HeLa cells.Exp Mol Med. 2004, 36(6): 551-6
    7姜孟臣,陈虹,张敏,陈莉。土槿皮乙酸对人黑素瘤细胞增殖抑制作用研究。中草药2003,34:532-34
    8张敏,买霞,陈小义,陈莉,陈虹,李灵芝。土槿乙酸体外诱导K562细胞凋亡的研究。中草药2002,33:533-5
    9姜孟臣,陈虹,张敏,陈莉,徐鑫,李灵芝。土槿皮乙酸对人HT1080细胞系增殖抑制的体外研究。天津药学2002,14:36-8
    10王伟成,陈荣发,赵世兴,朱雅珍。土槿皮乙酸的抗生育作用。中国药理学报1982,3:188-192
    11 Liu B,Chen H,Lei ZY,Yu PF,Xiong B.Studies on anti-tumor activities of pseudolaric acid-B(PLAB) and its mechanism of action.J Asian Nat Prod Res. 2006, 8(3): 241-252
    12徐瑞成,刘艳青,买霞,范磊,徐丽君,陈虹。土槿乙酸诱导HL60细胞凋亡及其与半胱氨酸蛋白酶-3活化的关系。实用癌症杂志2004,19:344-346
    13 Tan WF,Zhang XW,Li MH,etal.Pseudolarix acid B inhibits angiogenesis by antagonizing the vascular endothelial growth factor-mediated anti-apoptotic effect .Eur J Pharmacol. 2004, 499: 219-228
    14王伟成,游根娣,蒋秀娟,陆荣发,顾芝萍。土槿皮甲酸和土槿皮乙酸的内分泌活性和它们对性激素,前列腺素,子宫,胎儿的影响。中国药理学报1991,12: 187-190
    15王伟成,顾芝萍,顾克仁,陈荣锡。土槿皮乙酸对妊娠大鼠子宫内膜及肌层血流量的影响。中国药理学报1991,12: 423-425
    16 Zhang YL,Lu RZ,Yan AL.Inhibition of ova fertilizability by pseudolaric acid B in hamster.Zhongguo Yao Li Xue Bao.1990, 11(l): 60-62
    17 Li MH,Miao ZH,Tan WF, etal. Pseudolarix acid B inhibits angiogenesis and reduces hypoxia-inducible factor lalpha by promoting proteasome-mediated degradation.Clin Cancer Res.2004, 15: 8266-8274
    18 Wong VK, Chiu P, Chung SS, et al.Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo .Clin Cancer Res. 2005, 11: 6002-6011
    19 TongYG, Zhang XW,Geng MY, etal. Pseudolarix acid B,a new tubulin-binding agent ,inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol Pharmacol 2006, 69: 1226-1233
    20 Maisa SJ,Dnaiel JN,Baogen Wu,Mitchell AA,Dennis RF. Pseudolaric acid analogs as a new class of peroxisome proliferator-activated receptor agonists. Planta Med 2002, 68: 667-671
    1.彭黎明,王曾礼。细胞凋亡的基础与临床。北京:人民卫生出版社2000, 1-285
    2.姜泊。细胞凋亡的基础与临床。北京:人民卫生出版社1999,1-25
    3. Zornig M,Hueber AO, Buam W, Evan G. Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 2001, 1551: Fl-F37
    4. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: A link between cancer genetics and chemotherapy. Cell 2002, 108:153-164
    5. Meier P, Finch A, Evan G.nature apoptosis in development. 2000, 407: 796-801
    6. Thompson C.B. Apoptosis in pathogenesis and trentment of disence. Science 1995, 267: 1465
    7. Coyr S,Adams JM.The Bcl–2 family: of the cellular life–or–death swith. Nat Rev Cancer 2002,2: 647-656
    8. Joza N,Susin SA,Daugas E,Stanford WL,Cho SK,Li CY,Sasaki T,Elia AJ,Cheng HY,RavagnanL,Ferri KF,Zamzami N,Wakeham A,Hakem R,Yoshida H, Kong YY, Mak TW, Zuniga–Pflucker JC, Kroemer G, Penniger JM. Essential role of the mitochondrial apoptosis–inducing factor in progammed cell death. Nature 2001, 410: 549-554
    9. Harris MH, Thompson CB, The role of the Bcl–2 family in the regulation of outer mitochondrial menbrane oermeability. Cell dath Differ 2000, 7: 1182-1191
    10. Shi Y. A structural view of mitochondrial–mediated apoptosis. Nat Struct Biol 2001, 8: 394-401
    11. Adams JM, Cory S. The Bcl–2 protein family: Arbiters of cell survival.Science, 1998, 281:1322–1326. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004, 116: 205-219
    12. Stewart ZA, Westfall MD, Pietenpol JA. Cell–cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 2003, 24:139-145
    13. Gostissa M, Hofmann TG, Will H, Sal GD. Regulation of p53 fuctions: let’s mett at the nuclear bodies. Curr Opin Cell Biol 2003, 15: 351-357
    14. Vousden KH. Activation of the p53 tumor suppressor protein.Biochim Biophy Acta 2002, 1602: 47-59
    15. Somasundaram K.Tumor suppressor p53: regulation and fuction. Front Biosci 2001, 5: D424-437
    16. Miyahita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.Cell 1995, 80: 293-299
    17. Hall PA, Coates PJ, Ansari B, et al. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis[J]. J Cell Science 1994, 107(12): 3569-3577
    18. Nagata S, Golstein P. The Fas death factor.Science 1995, 267(12): 1449-1452
    19. Martinous Jc,Desagher S,Antonsson B.Cytochrome C release from mitochondria:all or nothing[J].Nature cell biology 2000, 2: 41
    20. Li K,Li Y,Shelton Jm,et al.Cytochrome C,deficiency causes embryonic lethality and attenuates stress–induced apoptosis.Cell 2000, 101(4): 398
    21. Hengartner MO, The biochemmistry of apoptosis. Nature 2000, 407: 770-776.
    22. Vaux DL, Strasser A. The molecular biology of apoptosis. Pro Natl Acad Sci USA 1996, 93: 2239-2244
    23. Villa P, Kaufmann SH, Earnshaw WC. Caspase and caspase inhibitors. Trend Biochem Sci 1997, 22:388-393
    24. Salvesen GS, Dixit VM. Caspase: intracellular signaling by proteolysis. Cell 1997, 91: 443-446
    25. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A Caspase–activated Dnase that degardes DNA during apoptosis, andinhibitor ICAD.Nature 1998, 391: 43-50
    26. Raffm. Cell suicide for beginners. Nature 1998, 396: 119-122
    27. Cohen GM. Caspase: the executioners of apoptosis. Biochem J 1997, 326:1-16
    28. Stennicke HR, Salvesen S. Properties of the caspases. Biochim biophys Acta 1998, 1387: 17-31
    29. Takahashi A, arnshaw WC. ICE–related proteases in apoptosis. Curr Opin Gene Dev 1996, 6: 50-55
    30.金伯泉。细胞和分子免疫学。北京:科学出版社2001,695-704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700