无线网络中的鲁棒性资源分配算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的数十年中,人们对于随时随地与一切事物进行交互的梦想驱动着无线网络技术持续地蓬勃发展。为了以更低的成本和能耗提供更广阔的无线网络接入范围,基于无线多跳转发结构的网络如无线传感器网络、无线mesh网络和移动ad-hoc网络等成为当前的研究热点。然而网络中存在多种动态因素,如电池能量损耗、链路质量变化以及拓扑的随机性等,使得目前的无线多跳网络还难以提供稳定的服务质量。为了满足实际应用的需要,在动态环境下提高无线多跳网络的鲁棒性成为重要的技术挑战。在本文中我们分析导致无线传感器网络和无线mesh网络鲁棒性不足的主要原因,并针对性地采用拓扑控制、多接口多信道以及机会式路由三种技术手段进行网络鲁棒性优化。本论文的结构如下:
     首先,我们考虑节点位置信息未知的无线传感器网络。要提高其鲁棒性,就要在能量受限的条件下令网络尽量长时间地保证连通性并满足覆盖强度需求。对此我们提出了一种名为自适应随机分簇(ARC)的拓扑控制算法,该算法可以在满足连通覆盖性能需求的前提下减少节点总体能量消耗并有效达到节点间能耗平衡。ARC算法采用了一种创新的簇头选举制度在网络中形成一个分簇拓扑,并可以避免各个簇内部的数据传输发生互相干扰。ARC通过调整簇内节点的唤醒门限自适应地满足覆盖强度需求,并通过设置适当的簇内通讯和簇间通讯发送功率来保证网络的连通性。仿真结果表明ARC可以效达到网络的连通覆盖性能要求,并显著延长网络寿命。
     其次我们对于给定端到端流量需求的无线mesh网络利用多接口多信道技术进行鲁棒性优化。为了表征网络对抗信道变化和外部干扰的能力,我们结合了干扰裕量和中断概率的概念提出了鲁棒性度量。根据实际的接口切换、速率选择和多径路由模型,我们将网络的鲁棒性资源分配建立为一个混合整形非线性规划问题。为了降低问题的复杂度,我们首先将该问题进行分解并得到一个可行性检测问题,然后通过二元搜索算法对于可行性检测问题进行迭代求解以得到原问题的最优解。用试验床得到的实测信道变化数据进行仿真,我们验证了所提出的算法能够在有信道变化和外部干扰的环境中有效维持链路的鲁棒性。
     接着我们对采用机会式路由结合网络编码的无线mesh网络进行研究,指出这种场景下网络的鲁棒性主要受到网络编码数据包相关性的影响。对此我们提出了转发节点流量控制的一组约束以减少节点收到的相关数据包数量,并将鲁棒性流量控制建立为一个非凸优化问题。我们通过一种集中式算法和一种分布式算法对原问题进行简化,其中前者只保留一部分关键的流量控制约束条件以降低问题复杂度,而后者则可以根据周围链路质量变化在本地自适应地运行。仿真结果表明相对已有算法,我们提出的算法在各种不同的网络拓扑中都可以更好地限制目的节点接收到相关数据包的概率并提高端到端有效吞吐量。
     最后我们总结了本文的内容并展望了鲁棒性优化技术的未来研究方向。
In the past decades, the dream of interconnecting every thing, everywhere, all the time has driven the fast development of wireless networking technologies. To extend the network access range with reduced cost and energy consumption, networks with multi-hop wireless networking structure have been proposed for some specific applications, such as wireless sensor networks, wireless mesh networks and mobile ad-hoc networks. However, current wireless multi-hop net-works are still inadequate to provide guaranteed quality of service (QoS) due to various dynamic factors, such as battery exhaustion, channel dynamics, external interference and topology diver-sity. Therefore, how to improve the robustness of wireless multi-hop networks in the dynamic environments is a challenging issue for wireless network practitioners. In this work, we analyze the main causes of robustness deficiency in wireless sensor networks and wireless mesh network-s, and propose corresponding solutions with different technologies including topology control, multi-radio multi-channel and resource allocation, and opportunistic routing. The contents of this thesis are organized as follows.
     Firstly, we consider wireless sensor networks where the location information of each sen-sor node is unknown. To improve the robustness of wireless sensor network, the main task is to ensure the network connectivity and guarantee the required coverage intensity as long as pos-sible with limited energy. To this end, we propose a topology control algorithm called adaptive random clustering (ARC), which can reduce the overall energy consumption and balance the energy usage among nodes while preserving the performance requirement. ARC forms a cluster topology using a novel cluster head competition scheme so as to provide contention free intra-cluster communication. The required coverage is achieved by adjusting the activation threshold of non-cluster-head node adaptively, and the connectivity is guaranteed by proper inter-cluster and intra-cluster transmit power control. Simulation results demonstrate that the required cover-age and connectivity can be guaranteed and the network lifetime is prolonged significantly.
     Secondly, assuming multiple radios and channels are available for the network, we attempt to improve the robustness of wireless mesh networks where the end-to-end traffic demands are specified. The concepts of interference margin and outage probability are incorporated to char-acterize the network robustness under channel variations and external interference. We formu-late the robust resource allocation problems as mixed integer nonlinear programming (MINLP) problems by explicitly taking into account practical radio switching, co-channel contention and multi-path routing constraints. To reduce the complexity, we exploit the special properties of the problems and decompose them into the feasibility-checking problems, and propose a bina-ry search algorithm to find the optimal solutions of the problems using an iterative procedure. By simulations using traces collected from an indoor wireless testbed, we show that our algo-rithms are more robust to the existing schemes under moderate channel variations and external interference.
     Thirdly, we consider the wireless mesh networks adopting both opportunistic routing and network coding techniques. We demonstrate that the robustness deficiency in this case is main-ly due to the dependency of network coding packets. We then propose a set of flow control constraints to alleviate the performance degradation caused by this problem, and formulate the robust flow control problem as a nonconvex optimization problem by taking into account of these constraints. To reduce the complexity of the problem, we propose a centralized algorithm which only considers the primary flow control constraints of the original problem, and a full distribu-tive algorithm which can operate adaptively according to the variation of link quality. Simulation results are provided to show that the proposed algorithms are superior to existing algorithms in reducing the packet dependency ratio and improving the goodput in both grid and random topology settings.
     Finally we conclude this thesis and suggest the directions for future research.
引文
[1]AKYILDIZ I, SU W, SANKARASUBRAMANIAM Y, et al. A survey on sensor net-works[J]. IEEE Communications Magazine,2002,40(8):102-114.
    [2]RAJARAVIVARMA V, YANG Y, YANG T. An overview of wireless sensor network and applications[C]//Proceedings of the 35th Southeastern Symposium on System Theory. 2003:432-436.
    [3]LEWIS F. Wireless Sensor Networks in Smart Environments:Technologies, Protocols, and Applications [M]. John Wiley,2004.
    [4]AKYILDIZ I F, WANG X, WANG W. Wireless mesh networks:a survey[J]. Computer Networks,2005,47(4):445-487.
    [5]DRAVES R, PADHYE J, ZILL B. Routing in multi-radio, multi-hop wireless mesh net-works [C]//MobiCom'04. New York, NY, USA:ACM,2004:114-128.
    [6]BLUM J, ESKANDARIAN A, HOFFMAN L. Challenges of intervehicle ad hoc network-s[J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(4):347-351.
    [7]BISWAS S, TATCHIKOU R, DION F. Vehicle-to-vehicle wireless communication pro-tocols for enhancing highway traffic safety [J]. IEEE Communications Magazine,2006, 44(1):74-82.
    [8]TSUGAWA S. Inter-vehicle communications and their applications to intelligent vehicles: an overview[C]//IEEE Intelligent Vehicle Symposium. vol 2.2002:564-569 vol.2. [9] LUO J, HUBAUX J P. A Survey of Research in Inter-Vehicle Communications[M]. Springer Berlin Heidelberg,2006.
    [10]HUA C, WEI S, ZHENG R. Robust channel assignment for link-level resource provi-sion in multi-radio multi-channel wireless networks[C]//IEEE International Conference on Network Protocols,2008. ICNP 2008.2008:157-166.
    [11]CRICHIGNO J, WU M Y, SHU W. Protocols and architectures for chan-nel assignment in wireless mesh networks [J]. Ad Hoc Networks,2008, 6(7):1051-1077. http://www.sciencedirect.com/science/article/B7576-4R17V16-2/2/f7f3f9be8691f96dae3395bb9b31f32b.
    [12]PERKINS C E, BHAGWAT P. Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers[C]//Proc. of SIGCOMM'94 Conf. on Communi-cations Architectures, Protocols, and Applications.1994.
    [13]PERKINS C E, ROYER E M. Ad hoc on demand distance vector (AODV) routing. Internet draft, IETF MANET working group 2000.
    [14]JOHNSON D, MALTZ D A, BROCH J. The dynamic source routing protocol for mobile ad hoc networks. Internet draft, IETF MANET working group 2000.
    [15]CHAKERES I D, KLEIN-BERNDT L. Aodvjr, aodv simplified[J]. ACM SIGMOBILE Mobile Computing and Communications Review,2002,3:100-101.
    [16]BICKET J, AGUAYO D, BISWAS S, et al. Architecture and evaluation of an un-planned 802.11b mesh network[C]//Proceedings of the 11th annual international con-ference on Mobile computing and networking. New York, NY, USA:ACM,2005:31-42. http://doi.acm.org/10.1145/1080829.1080833.
    [17]SLIJEPCEVIC S, POTKONJAK M. Power efficient organization of wireless sensor net-works [C]//IEEE International Conference on Communications,2001. ICC 2001.2001.
    [18]MEGUERDICHIAN S, KOUSHANFAR F, POTKONJAK M, et al. Coverage problems in wireless ad-hoc sensor networks[C]//INFOCOM 2001. Twentieth Annual Joint Con-ference of the IEEE Computer and Communications Societies. Proceedings. IEEE.2001.
    [19]LIU C, WU K, XIAO Y, et al. Random coverage with guaranteed connectivity:Joint scheduling for wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems,2006,17:562-575.
    [20]蒋杰,方力,张鹤颖,et al.无线传感器网络最小连通覆盖集问题求解算法[J].软件学报,2006,2:175-184.
    [21]CHAKRABARTY K, IYENGAR S, QI H, et al. Grid coverage for surveillance and tar-get location in distributed sensor networks[J]. IEEE Transactions on Computers,2002, 51(12):1448-1453.
    [22]GUPTA H, DAS S R, GU Q. Connected sensor cover:self-organization of sensor networks for efficient query execution[C]//Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing. New York, NY, USA:ACM,2003:189-200. http://doi.acm.org/10.1145/778415.778438.
    [23]QUINTAO F P, NAKAMURA F G, MATEUS G R. A hybrid approach to solve the cov-erage and connectivity problem in wireless sensor networks[M]. unpublished:.2005.
    [24]SANTI P, MATEMATICA I D. A probabilistic analysis for the range assignment problem in ad hoc networks[C]//In Proc. ACM MobiHoc 01.2001:212-220.
    [25]P. GUPTA P K. Critical power for asymptotic connectivity in wireless networks[J]. S-tochastic Analysis, Control, Optimization and Applications:A Volume in Honor of W.H. Fleming,1998.
    [26]SANTI P, BLOUGH D M. The critical transmitting range for connectivity in sparse wire-less ad hoc networks[J]. IEEE transactions on Mobile Computing,2003,2(1):25-39.
    [27]刘丰威,杨胜天,陈雁.一维无线ad hoc网络的连通性[J].浙江大学学报工学版,2007,41(8):1335-1340.
    [28]孙永进,孙雨耕,陈宝江.无线传感器网络1点和2点连通可靠性研究[J].传感技术学报,2004,17(3):379-385.
    [29]HEINZELMAN W, CHANDRAKASAN A, BALAKRISHNAN H. Energy-efficient com-munication protocol for wireless microsensor networks[C]//Proceedings of the 33rd An-nual Hawaii International Conference on System Sciences,2000.2000:10 pp. vol.2.
    [30]HEINZELMAN W, CHANDRAKASAN A, BALAKRISHNAN H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications,2002,1(4):660-670.
    [31]SORO S, HEINZELMAN W. Prolonging the lifetime of wireless sensor networks via un-equal clustering[C]//Parallel and Distributed Processing Symposium,2005. Proceedings. 19th IEEE International.2005:8 pp.
    [32]CI S, GUIZANI M, SHARIF H. Adaptive clustering in wireless sensor net-works by mining sensor energy data[J]. Computer Communications,2007, 30(14-15):2968-2975. http://www.sciencedirect.com/science/article/B6TYP-4P192JP-9/2/a33f4adc4dc44b61d836b70890a16f9f.
    [33]CHEN C W, WANG Y, KOSTANIC I. A chain-type wireless sensor network for monitor-ing long range infrastructures[C]//In Proc. SPIE 2005.2005:444-455.
    [34]AMMARI H M, DAS S K. Clustering-based minimum energy wireless m-connected k-covered sensor networks[C]//Proceedings of the 5th European confer-ence on Wireless sensor networks. Berlin, Heidelberg:Springer-Verlag,2008:1-16. http://portal.acm.org/citation.cfm?id=1786014.1786016.
    [35]WANG Y H, YU C Y, FU P F. A coverage and connectivity method to cluster topol-ogy in wireless sensor networks[J]. International Conference on Advanced Information Networking and Applications Workshops,2007,1:97-102.
    [36]卜月华.图论及其应用[M].东南大学出版社,2000.
    [37]徐俊民.图论及其应用(第二版)[M].中国科技大学出版社,2005.
    [38]RAMACHANDRAN K N, BELDING E M, ALMEROTH K C, et al. Interference-aware channel assignment in multi-radio wireless mesh networks[C]//IEEE INFOCOM'06. 2006:1-12.
    [39]RANIWALA A, GOPALAN K, CHIUEH T. Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks[J]. SIGMOBILE Mob. Comput. Commun. Rev.,2004,8(2):50-65.
    [40]RANIWALA A, CHIUEH T C. Architecture and algorithms for an ieee 802.11-based multi-channel wireless mesh network[C]//IEEE INFOCOM'05. vol 3.2005:2223-2234 vol.3.
    [41]ALICHERRY M, BHATIA R, LI LE. Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks[C]//MobiCom'05. ACM 2005:58-72.
    [42]RAD A, WONG V. Joint channel allocation, interface assignment and mac design for multi-channel wireless mesh networks[J]. IEEE INFOCOM'07,2007,1469-1477.
    [43]SUBRAMANIAN A P, GUPTA H, DAS S R. Minimum interference channel assignment in multi-radio wireless mesh networks[C]//IEEE SECON'07.2007:481-490.
    [44]SO J, VAIDYA N H. Multi-channel mac for ad hoc networks:handling multi-channel hidden terminals using a single transceiver[C]//MobiHoc'04.2004:222-233.
    [45]BAHL P, CHANDRA R, DUNAGAN J. Ssch:slotted seeded channel hopping for capacity improvement in ieee 802.11 ad-hoc wireless networks[C]//MobiCom'04.2004:216-230.
    [46]KODIALAM M, NANDAGOPAL T. Characterizing the capacity region in multi-radio multi-channel wireless mesh networks[C]//MobiCom'05. ACM 2005:73-87.
    [47]HUA C, ZHENG R. Robust resource management for predictable services in wireless healthcare[C]//ACM WiMD'09.2009.
    [48]MERLIN S, VAIDYA N, ZORZI M. Resource allocation in multi-radio multi-channel multi-hop wireless networks[C]//IEEE INFOCOM'08.2008:610-618.
    [49]KYASANUR P, VAIDYA N H. Routing and interface assignment in multi-channel multi-interface wireless networks[C]//IEEE WCNC.2005.
    [50]PADHYE J, AGARWAL S, PADMANABHAN V N, et al. Estimation of link interference in static multi-hop wireless networks[C]//IMC'05:. USENIX Association 2005:28-28.
    [51]REIS C, MAHAJAN R, RODRIG M, et al. Measurement-based models of delivery and interference in static wireless networks[J]. SIGCOMM Comput. Commun. Rev.,2006, 36(4):51-62.
    [52]QIU L, ZHANG Y, WANG F, et al. A general model of wireless interference[C]//Mobi-Com'07.2007:171-182.
    [53]KASHYAP A, GANGULY S, DAS S R. A measurement-based approach to modeling link capacity in 802.11-based wireless networks[C]//MobiCom'07.2007:242-253.
    [54]ROZNER E, MEHTA Y, AKELLA A, et al. Traffic-aware channel assignment in enter-prise wireless lans[C]//IEEE International Conference on Network Protocols,2007. ICNP 2007.2007:133-143.
    [55]GUPTA P, KUMAR P. The capacity of wireless networks[J]. IEEE Transactions on Information Theory,2000,46(2):388-404.
    [56]KAUFFMANN B, BACCELLI F, CHAINTREAU A, et al. Measurement-based self or-ganization of interfering 802.11 wireless access networks[C]//INFOCOM 2007.2007: 1451-1459.
    [57]XI Y, YEH E M. Distributed algorithms for spectrum allocation, power control, routing, and congestion control in wireless networks[C]//MobiHoc'07. ACM 2007:180-189.
    [58]BOYD S, VANDENBERGHE L. Convex Optimization[M]. New York, NY, USA:Cam-bridge University Press,2004.
    [59]PALOMAR D, CHIANG M. A tutorial on decomposition methods for network utility maximization[J]. IEEE JSAC,2006,24(8):1439-1451.
    [60]CHIANG M, LOW S, CALDERBANK A, et al. Layering as optimization decomposi-tion:A mathematical theory of network architectures [J]. Proceedings of the IEEE,2007, 95(1):255-312.
    [61]KANDUKURI S, BOYD S. Optimal power control in interference-limited fading wire-less channels with outage-probability specifications[J]. IEEE Transactions on Wireless Communications,2002,1(1):46-55.
    [62]YANG K, WU Y, HUANG J, et al. Distributed robust optimization for communication networks[C]//IEEE INFOCOM 2008.2008:1157-1165.
    [63]LUO Z Q, YU W. An introduction to convex optimization for communications and signal processing[J]. IEEE Journal on Selected Areas in Communications,2006,24(8):1426-1438.
    [64]BISWAS S, MORRIS R. Opportunistic routing in multi-hop wireless networks[J]. SIG-COMM Comput. Commun. Rev.,2004,34(1):69-74.
    [65]DE COUTO D S J, AGUAYO D, BICKET J, et al. A high-throughput path metric for multi-hop wireless routing[C]//Proceedings of the 9th annual international conference on Mobile computing and networking. New York, NY, USA:ACM,2003:134-146. http://doi.acm.org/10.1145/938985.939000.
    [66]ZENG K, LOU W, ZHAI; H. On end-to-end throughput of opportunistic routing in mul-tirate and multihop wireless networks[C]//IEEE INFOCOM'08.2008:816-824.
    [67]ZHONG Z, NELAKUDITI S. On the efficacy of opportunistic routing[C]//4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communica-tions and Networks,2007. SECON'07.2007:441-450.
    [68]ZORZI M, RAO R. Geographic random forwarding (geraf) for ad hoc and sensor network-s:multihop performance[J]. IEEE Transactions on Mobile Computing,2003,2(4):337-348.
    [69]SHAH R, WIETHOLTER S, WOLISZ A. Modeling and analysis of opportunistic routing in low traffic scenarios[C]//Third International Symposium on Modeling and Optimiza-tion in Mobile, Ad Hoc, and Wireless Networks,2005. WIOPT 2005.2005:294-304.
    [70]SHAH R, WIETHOLTER S, WOLISZ A, et al. When does opportunistic routing make sense?[C]//Third IEEE International Conference on Pervasive Computing and Communi-cations Workshops,2005. PerCom 2005 Workshops.2005:350-356.
    [71]ZHENG R, LI C. How good is opportunistic routing?:a reality check under rayleigh fading channels[C]//Proceedings of the 11th international symposium on Modeling, anal-ysis and simulation of wireless and mobile systems. New York, NY, USA:ACM,2008: 260-267. http://doi.acm.org/10.1145/1454503.1454549.
    [72]MA J, ZHANG Q, QIAN C, et al. Energy-efficient opportunistic topology control in wireless sensor networks[C]//Proceedings of the 1st international MobiSys work-shop on Mobile opportunistic networking. New York, NY, USA:ACM,2007:33-38. http://doi.acm.org/10.1145/1247694.1247701.
    [73]LIU Y, NI L. A generalized probabilistic topology control for wireless sensor network-s[C]//IEEE INFOCOM 2009.2009:2776-2780.
    [74]LIU Y, ZHANG Q, NI L. Opportunity-based topology control in wireless sensor network-s[J]. IEEE Transactions on Parallel and Distributed Systems,2010,21(3):405-416.
    [75]CHACHULSKI S, JENNINGS M, KATTI S, et al. Trading structure for randomness in wireless opportunistic routing[J]. SIGCOMM Comput. Commun. Rev.,2007,37(4):169-180.
    [76]AHLSWEDE R, CAI N, LI S Y, et al. Network information flow[J]. IEEE Transactions on Information Theory,2000,46(4):1204-1216.
    [77]LI S Y, YEUNG R, CAI N. Linear network coding[J]. IEEE Transactions on Information Theory,2003,49(2):371-381.
    [78]LIDL R, NIEDERREITER H. Finite Fields[M]. CAMBRIDGE UNIVERSITY PRESS, 1997.
    [79]SOLDO F, MARKOPOULOU A, TOLEDO A L. A simple optimization model for wire-less opportunistic routing with intra-session network coding[C]//2010 IEEE International Symposium on Network Coding (NetCod).2010:1-6.
    [80]ZHANG X, LI B. Optimized multipath network coding in lossy wireless networks[J]. IEEE Journal on Selected Areas in Communications,2009,27(5):622-634.
    [81]KOUTSONIKOLAS D, HU Y, WANG C C. Pacifier:High-throughput, reliable multicast without "crying babies" in wireless mesh networks[C]//INFOCOM 2009, IEEE.2009: 2473-2481.
    [82]KOUTSONIKOLAS D, WANG C C, HU Y. Ccack:Efficient network coding based op-portunistic routing through cumulative coded acknowledgments[C]//INFOCOM,2010 Proceedings IEEE.2010:1-9.
    [83]LIN Y, LI B, LIANG B. Codeor:Opportunistic routing in wireless mesh networks with segmented network coding[C]//IEEE International Conference on Network Protocols, 2008. ICNP 2008.2008:13-22.
    [84]KOETTER R, MEDARD M. An algebraic approach to network coding[J]. IEEE/ACM Transactions on Networking,2003,11(5):782-795.
    [85]HO T, MEDARD M, KOETTER R, et al. A random linear network coding approach to multicast[J]. IEEE Transactions on Information Theory,2006,52(10):4413-4430.
    [86]FRAGOULI C, KATABI D, MARKOPOULOU A, et al. Wireless network coding:Op-portunities and challenges[C]//Military Communications Conference,2007. MILCOM 2007. IEEE.2007:1-8.
    [87]FRAGOULI C, SOLJANIN E. Network coding fundamentals[J]. Found. Trends Netw., 2007,2:1-133. http://portal.acm.org/citation.cfm?id= 1295180.1295181.
    [88]LI S Y, SUN Q, SHAO Z. Linear network coding:Theory and algorithms[J]. Proceedings of the IEEE,2011,99(3):372-387.
    [89]SLIJEPCEVIC S, POTKONJAK M. Power efficient organization of wireless sensor net-works[C]//Proc. of IEEE International Conference on Communications.2001.
    [90]IEEE Press. IEEE Std.802.11-1999, Part11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications[S].
    [91]LEE J S, MILLER L E. CDMA Systems Engineering Handbook[M]. lstth ed. Norwood, MA, USA:Artech House, Inc.,1998.
    [92]IEEE Press. IEEE Standard for Local and metropolitan area networks, Part 16:Air Inter-face for Fixed Broadband Wireless Access Systems[S].
    [93]BASU P, REDI J. Effect of overhearing transmissions on energy efficiency in dense sensor networks [C]//Proceedings of the 3rd international symposium on Informa-tion processing in sensor networks. New York, NY, USA:ACM,2004:196-204. http://doi.acm.org/10.1145/984622.984652.
    [94]WAN C Y, EISENMAN S B, CAMPBELL A T, et al. Siphon:overload traffic management using multi-radio virtual sinks in sensor networks[C]//Proceedings of the 3rd international conference on Embedded networked sensor systems. New York, NY, USA:ACM,2005: 116-129. http://doi.acm.org/10.1145/1098918.1098931.
    [95]MHATRE V P, PAPAGIANNAKI K, BACCELLI F. Interference mitigation through pow-er control in high density 802.11 wlans[C]//IEEE INFOCOM'07.2007.
    [96]VECCHIETTI A, LEE S, GROSSMANN I E. Modeling of discrete/continuous optimiza-tion problems:Characterization and formulation of disjunctions and their relaxations [J]. Computers and Chemical Engineering,2003,27(3):433-448.
    [97]WU X, SRIKANT R, PERKINS J R. Scheduling efficiency of distributed greedy schedul-ing algorithms in wireless networks[J]. IEEE Trans. on Mobile Computing, June 2007, 6(6):595-605.
    [98]CHAPORKAR P, KAR K, LUO X, et al. Throughput and fairness guarantees through maximal scheduling in wireless networks[J]. IEEE Transactions on Information Theory, 2008,54(2):572-594.
    [99]LI D, SUN X. Nonlinear Integer Programming[M]. Springer,2006.
    [100]http://WWW.GNU.ORG/SOFTWARE/GLPK/. Glpk 2010.
    [101]FENTON L. The sum of log-normal probability distributions in scatter transmission sys-tems[J]. IRE Transactions on Communications Systems,1960,8(1):57-67.
    [102]GOUNARIS C, FLOUDAS C. Convexity of products of univariate functions and convex-ification transformations for geometric programming [J]. Journal of Optimization Theory and Applications,2008,138:407-427. http://dx.doi.org/10.1007/s10957-008-9402-6.
    [103]HTTP://WWW.MATHWORKS.COM/HELP/TOOLBOX/OPTIM/UG/LINPROG.HTML. Linprog 2010.
    [104]HO T, KOETTER R, MEDARD M, et al. The benefits of coding over routing in a ran-domized setting[C]//IEEE International Symposium on Information Theory,2003. Pro-ceedings.2003.
    [105]LEE P, MISRA V, RUBENSTEIN D. On the robustness of wireless opportunistic routing toward inaccurate link-level measurements[C]//2010 Second International Conference on Communication Systems and Networks (COMSNETS).2010:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700