无线网络视频传输技术与可伸缩视频编码
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的发展,视频通信的需求日益强烈。然而,无线网络固有的传输特性,给视频传输带来巨大挑战。可伸缩视频编码是目前最有发展前景的、符合无线网络传输特性的编码方案。本文将可伸缩视频编码和无线网络传输技术有机结合,采用跨层设计理念,较全面地研究了无线网络视频传输面临的关键问题。
     首先,在H.264/AVC可伸缩扩展的框架下,提出了MCTF的性能改进方法,包括增加更新操作的约束条件和残差图像的去块滤波操作。在JSVM0上的测试结果表明,当视频中的运动比较剧烈并且出现很多块效应时,改进的MCTF能取得很好效果,而且编码效率也有一定程度的提高。
     其次,提出了一种分形和小波相结合的混合视频编码算法FEZW。该算法在EZW编码的基础上,采用了小波域的分形预测方法。实验结果表明,FEZW能提供可截断性码流;与EZW相比,在低码率下,FEZW恢复视频的PSNR值有所提高;在丢失相同的数据时,FEZW的PSNR值下降速度较EZW慢,上述特点非常适合于无线网络中的视频传输。
     再次,根据无线网络视频传输的率失真模型,提出了跨层的自适应速率控制机制CLARC。该机制和可伸缩视频编码相结合,利用应用层和网络层的反馈信息调整视频发送速率。仿真和实验结果均表明,CLARC算法能有效区分拥塞丢包和网络差错丢包;能适应网络带宽的波动;对网络拓扑变化反应敏感;能和TCP业务共存。另外,该算法速率控制较平稳,没有剧烈波动,在速率和总体失真二者间取得了较好的折衷,恢复视频的主、客观质量较好。
     然后,应用网络流理论,给出了多数据流拥塞优化路由问题的数学描述,在DSR的基础上提出了启发式算法CO-DSR。仿真结果表明,CO-DSR可以提高网络的端端吞吐率。该算法和应用层的速率控制CLARC相结合,能提高FEZW视频流的综合传输性能。
     最后,基于WRR,提出了一种视频业务调度算法WRR-CSDPS。该算法和DCF协议紧密结合,能充分利用信道状态调度数据包。仿真结果表明,WRR-CSDPS提高了实时业务的端端吞吐率,降低了端端延迟,延迟抖动和丢包率,可以在一定程度上保证实时业务的服务质量。
Video application is becoming an important application under the next-generation wireless networks. However, supporting video communication over wireless networks poses many challenges due to fluctuations of wireless channel conditions. Scalable video coding has been shown to be capable of coping effectively with time-varying wireless environment. In this dissertation, we proposed a cross-layer framework to solve scalable video streaming over wireless networks.
     The scalable extension of H.264/AVC adopts a hierarchical prediction structure based on open-loop MCTF (Motion-Compensated Temporal Filtering). In this dissertation, we proposed new algorithms to improve the performance of MCTF under JSVM0 framework, including update constraints, residual image deblocking filtering. We also designed a new fractal wavelet hybrid video codec based on EZW, called FEZW. FEZW inherits the embedded structure from EZW. Therefore, its bit rate can be truncated to meet the network bandwidth requirements. On the other hand, the fractal prediction method increases its PSNR at low bit rate. This is also verified via simulations.
     To improve the quality of received video, we proposed a cross-layer adaptive rate control mechanism, CLARC, which makes good use of 1) routing information from the lower network layer, and 2) the frame loss feedback from the application layer. The proposed scheme tries to adapt the video encoder’s output bitrate to closely mimic the available network bandwidth. CLARC is also congestion-aware, robust to random error, and can co-exist with other TCP flows in a friendly manner. Extensive simulations were performed, as well as actual experiments (on our own ad hoc video streaming testbed) were conducted to validate the effectiveness of our scheme.
     Furthermore, we instigated the congestion optimized routing in wireless ad hoc network and presented a CO-DSR (Congestion Optimized DSR) algorithm based on DSR protocol. The CO-DSR scheme considers both link bandwidth and the number of flows on the path when selecting a route. Simulation results show that CO-DSR can effectively improve the network throughput, the quality of the received FEZW video stream.
     Lastly, based on the classic WRR (Weighted Round Robin) concepts, we proposed an efficient real-time traffic-scheduling algorithm for WLAN. Our algorithm
引文
[1] D. Wu, T. Hou, Y. Q. Zhang. Scalable Video Coding and Transport over Broadband Wireless Networks, Proceedings of the IEEE, Sept. 2000.
    [2] 刘乃安. 无线局域网原理(WLAN)—— 原理、技术与应用,西安:西安电子科技大学出版社,2004.
    [3] H. Gharavi, K. Ban. Dynamic packet control for video communications over ad-hoc networks. In Proc. IEEE International Conference on Communications (ICC’04), 20-24 June 2004, Paris, France, June 2004.
    [4] Y. Wang, J. Ostermann, Y. Q. Zhang. Video processing and communications, New Jersey: Prentice Hall, 2002.
    [5] 孙晓艳. 面向互联网的可伸缩视频编码,[博士学位论文],哈尔滨,哈尔滨工业大学 2003.
    [6] S. Mao, S. Lin, S. Panwar, et al. Video transport over ad hoc networks: Multistream coding with multipath transport. IEEE Journal on Selected Areas in Communications, Special Issue on Recent Advances in Wireless Multimedia, December 2003, 21(10): 1721-1737.
    [7] J. Xu, R. Xiong, B. Feng et al. 3D subband video coding using Barbell lifting. ISO/IEC JTC1/SC29/ WG11 MPEG 68th meeting, M10569/s05, Mar. 2004, Munich, German.
    [8] M. Wien, T. Rusert, K. Hanke. RWTH proposal for scalable video coding technology. ISO/IEC JTC1/SC29/ WG11 MPEG 68th meeting, Mar. 2004, Munich, Germany.
    [9] H. Schwarz, D. Marpe, T. Wiegand. Scalable extension of h.264/AVC. ISO/IEC JTC1/SC29/WG11, Doc. ISO/IEC JTC1/SC29/ WG11 MPEG 68th meeting, Mar. 2004, Munich, Germany.
    [10] W. Li. Streaming video profile in MPEG-4. IEEE trans. on Circuits and Systems for Video Technology, Mar. 2001, 11 (3): 301-317.
    [11] ITU-T Recommendation H.264 & ISO/IEC 14496-10 AVC, Advanced Video Coding for Generic Audiovisual Services, (version 1: 2003, versions 2: 2004) version 3: 2005.
    [12] Y. Zhang, L. Po, Y. Yu. Wavelet transform based variable tree size fractal videocoding. In Proc. IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, California, 26-29 Oct. 1997.
    [13] Y. Brijmohan, S.H. Mneney. Low bit-rate video coding using fractal compression of wavelet subtrees. In Proc. IEEE Africon 7th Africon Conference in Africa, 15-17 Sept. 2004, 39-44.
    [14] M. Gharavi-Alkhansari, T. S. Huang. Fractal-based image and video coding, Chapter 7 of the book Video Coding: The Second Generation Approach, Boston, Massachusetts: Kluwer Academic Publishers, 1996, 265-303.
    [15] S.B. Lee, A. T. Campbell. INSIGNIA: in-band signaling support for qos in mobile ad hoc networks. In Proc. the 5th International Workshop on Mobile Multimedia Communications (MoMuC'98), Berlin, Germany. 12-14 Oct. 1998.
    [16] 王雷. 无线移动 Ad hoc 网络多径路由研究,[博士学位论文],天津:天津大学,2001.
    [17] D. Wu, Y. Hou, W. Zhu, et al. Streaming video over the Internet: approaches and directions. IEEE Trans. Circuits and Systems for Video Technology, 2001, 11(3): 282-300.
    [18] E. Crawley, R. NairMa, B. Rajagopalan et al. A framework for qos-based routing in the Internet. RFC2386,Aug. 1998.
    [19] E. Setton, X. Zhu, B. Girod. Congestion-optimized multipath dtreaming of video over ad hoc wireless networks. In Proc. IEEE International Conference on Multimedia and Expo (ICME’04), Taipei, June 2004, (3): 1619-1622.
    [20] Y. Cao and V. Li. Scheduling Algorithms in Broad-Band Wireless Networks, in proceedings of the IEEE, Jan. 2001, 89 (1): 76-87.
    [21] Y. Wu, P. Chou, Q. Zhang, et al. Network planning in wireless ad hoc networks: a cross-layer approach. IEEE Trans. Journal of Selected Areas Communications, Jan. 2005, (23): 136-151.
    [22] P. P. Pham, S. Perreau, and A. Jayasuriya. New cross-layer design approach to ad hoc networks under rayleigh fading. IEEE Journal on Selected Areas in Communications, Jan. 2005, 23(1): 28–39.
    [23] V. Kawadia, P. R. Kumar. A cautionary perspective on cross layer design. IEEE Wireless Communication Magazine. February 2005, 12 (1): 3-11.
    [24] M. Sichitiu. Cross-layer scheduling for power efficiency in wireless sensor networks. In Proc. the Conference on Computer Communications, the Twenty-third AnnualJoint Conference of the IEEE Computer andCommunications Societies (INFOCOM’04), March 7 - 11, 2004, Hong Kong, 1740-1750.
    [25] T. ElBatt, A. Ephremides. Joint scheduling and power control for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 2004, (1): 74–85.
    [26] E. Setton, T. Yoo, X. Zhu, et al. Cross-layer design of ad hoc networks for real-time video streaming, IEEE Wireless Communications Magazine, August 2005, 12 (4): 59-65.
    [27] S. Mao, S. Lin, S. Panwar, et al. A multipath video streaming testbed for ad hoc networks. In Proc. IEEE Semiannual Vehicular Technology Conference (VTC’03), Orlando, Florida, Oct. 6-9, 2003.
    [28] H. Gharavi, K. Ban.Cross-layer feedback control for video communications via mobile ad-hoc networks.In Proc. IEEE Semiannual Vehicular Technology Conference (VTC’03), Orlando, Florida, October 6-9, 2003, 2941-2945.
    [29] E. Setton and B. Girod. Rate-distortion analysis and streaming of SP and SI Frames. IEEE Trans. Circuits and Systems for Video Technology, June 2006, 6(16): 733-743.
    [30] X. Zhu, J. P. Singh, B. Girod. Joint routing and rate allocation for multiple video streams in ad hoc wireless networks. Journal of Zhejiang University, Science A, May 2006, 7(5): 727-736.
    [31] J. R. Ohm. Three-dimensional subhand coding with motion compensation. IEEE Trans. Image Processing, Sept. 1994, 3(5): 559-571.
    [32] I. Daubechies, W. Sweldens. Factoring wavelet transforms into lifting steps. Joural of Fourier Analalysis and Application, 1998, (4): 247-269.
    [33] D. Turaga, M. Schaar. Wavelet coding for video streaming using new unconstrained motion compensated temporal filtering. In Proc. International Workshop on Digital Communications: Advanced Methods for Multimedia Signal Processing, Capri, Italy, Sept. 2002, 41-48.
    [34] T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, et al. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits and Systems for Video Technology, July 2003, 13(7): 560–576.
    [35] A. Tabatabai, Z. Visharam, T. Suzuki. Study of effect of update step in MCTF. Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 17th Meeting, Nice, France, 14-21 Oct. 2005.
    [36] W. Han. CE6 response of Samsung Electronics: in-depth comparison ofclosed-loop and open-loop MCTF structures. Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 16th Meeting, Poznan, PL, 24-29 July, 2005
    [37] X. Wang, M. Karczewicz, Y. Bao, et al. Simplified update step operation for MCTF. Document JVT-O015, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 15th Meeting, 18-22, April 2005, Basun, Korea.
    [38] B. Feng, et al., Energy distributed update step (EDU) in lifting based motion compensated video coding. In Proc. International Conference on Image Processiong (ICIP’04), Singapore, Oct.24-27, 2004
    [39] W. Han, B. Lee. Closed-loop update-step in MCTF for scalable video coding. Document JVT-O062, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 15th Meeting, Busan, Kerea, 16-22 April, 2005
    [40] P. List, A. Joch, J. Lainema. Adaptive deblocking filter. IEEE Trans. Circuits and Systems for Video Technology, Jul. 2003, 37(7): 614- 619.
    [41] S. Srinivasan. Windows media video 9: overview and applications. Signal Processing: Image Communication, Oct. 2004, (19): 851-875.
    [42] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Processing, Dec. 1993, (41): 3445-3462
    [43] 沈兰荪,卓力. 小波编码与网络视频传输. 北京:科学出版社,2005.
    [44] M. F. Barnsley, S. Demko. Iterated function systems and the global construction of fractals, in Proc. Roy. Soc. London, 1985, (A399): 243-275
    [45] A. Jacquin. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Processing.1992, 1 (1): 18-30.
    [46] E. W. Jacobs, Y. Fisher and R. D. Boss. Image compression: a study of the iterated transform method. Signal Processing, Dec. 1992, (29): 251-263.
    [47] C. M. Lai, K. M. Lam, W. C. Siu, A fast fractal image coding based on kick-out and zero contrast conditions, IEEE Trans. Image Processing, 2003, 12 (11): 1398-1403
    [48] C. He, S. X. Yang, X. Huang. Variance-based accelerating scheme for fractal image encoding, IEEE’s Letters, 2004, 40 (2): 115-116
    [49] C. K. Lee, W. K. Lee. Fast fractal image block coding based on local variances. IEEE Trans. Image Processing, June 1998, 7 (6): 888-891.
    [50] M. S. Lazar, L. T. Bruton. Fractal block coding of digital video, IEEE Trans. Circuits and Systems for Video Technology, 1994,4 (3): 297-308.
    [51] K. U. Barthel and T. Voye. Threedimensional fractal video coding. In Proc.International Conference on Image Processing (ICIP’95), Washington D.C., Oct. 1995, (l.3): 260-263.
    [52] T. C. Ferguson, H. R. Wu. Fractal Transform Techniques for Very Low Bit Rate Video Coding. In Proc. The International Symposium on Circuits and Systems (ISCAS'97), Hong Kong, June 1997, (2): 1456-1459.
    [53] X. Dong and R. Sudhakar. Fractal compression of image sequences. In Proc. International Conference on Image Processing (ICIP’95), Washington D.C., Oct. 1995, (3): 284-287.
    [54] A. Said, W. A. Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits and Systems for Video Technology, June 1996, (6): 243-250.
    [55] W. A. Pearlman, A. Islam, N. Nagaraj, et al. Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits and Systems for Video Technology, Nov. 2004, (14): 1219-1235.
    [56] A. Zandi, J. D. Allen, E. L. Schwartz, et al. CREW: compression by reversible embedded wavelets. In Proc. Data Compression Conference (DCC’95), Snowbird, UT, 1995, 212-221.
    [57] A. Pentland and B. Horowitz. A practical approach to fractal-based image compression, in Proc. Data Compression Conference (DCC’91), Snowbird, UT, Mar. 1991, 176-185.
    [58] R. Rinaldo, G. Calvagno. Image coding by block predition of multiresolution subimages. IEEE Trans. Image Processing, July 1995, 4 (7): 909-920.
    [59] G. Davis. A wavelet-based analysis of fractal image compression. IEEE Trans.Image Processing, Febrary 1998, 7 (2): 141-154.
    [60] Li, C. J. Kuo. Image compression with a hybrid wavelet-fractal coder. IEEE Trans. on Image Processing, 1999, 8(6): 868-874.
    [61] T. Kim, D. Van, D. J. Miller. Hybrid fractal zerotree wavelet image coding. Signal Processing Image Communications, 2002, 17(4): 347 - 360
    [62] Y. Iano, F. Silvestre, A. Cruz. A fast and efficient hybrid fractal-wavelet image coder. IEEE trans. Image Processing, 2006, 15(1): 98-105.
    [63] S. Kim, N. Kim. Low bit-rate video coding using wavelet-based fractal approximation In Proc. IEEE International Conference on Image Processing (ICIP’97), Santa Barbara, California, Oct. 1997.
    [64] M. Antonini, M. Barlaud, P. Mathieu, et al. Image coding using wavelettransform. IEEE Trans. Image Processing, 1992, 205-220.
    [65] Theodore, S. Rappaport. Wireless Communications: Principles & Practice, New Jersey: Prentice Hall, 1996.
    [66] H. Gharavi, K. Ban. Dynamic packet control for video communications over ad-hoc Networks. In Proc. IEEE International Conference on Communications (ICC’04), Paris, France, June 2004.
    [67] M. Handley, S. Floyd, J. Padhye, et al. TCP friendly rate control (TFRC): protocol specification, IETF RFC 3448, January 2003.
    [68] J. Tang, G. Morabito, I. F. Akyildiz, et al. RCS: a rate control scheme for real-time traffic in networks with high bandwidth-delay products and high bit error rates, In Proc. The Conference on Computer Communications, the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'01), Anchorage, Alaska, April 22-26, 2001 (1): 114-122.
    [69] R. Stewart, Q. Xie, K. Morneault, et al. Stream control transmission protocol, October 2000. RFC 2960.
    [70] E. Kohler, M. Handley, S. Foyd. Datagram congestion control protocol (DCCP). Internet Draft, June 2002. Draft-kohler-dcp-04.txt (work in progress).
    [71] G. Yang, M. Gerla, M. Y. Sanadidi. Adaptive video streaming in presence of wireless errors, The 7th IFIP/IEEE International Conference on Management of Multimedia Networks and Services (MMNS’04), San Diego, CA, 2004
    [72] K. Chen, K. Nahrstedt. Limitations of equation-based congestion control in mobile ad hoc networks. In Proc. International Workshop on Wireless Ad Hoc Networking (WWAN’04), Tokyo, Japan, Mar. 2004.
    [73] H. Gharavi, K. Ban. Rate adaptive video transmission over ad-hoc networks. IEE Electronics Letters, 2004, 40(19): 1177-1178.
    [74] M. Hassan, M. Krunz. A playback-adaptive approach for video streaming over wireless networks. In Proc. the IEEE Conference Wireless Communications (GLOBECOM’05), St. Louis, Missouri, Nov. 28- Dec. 2, 2005.
    [75] D. B. Johnson, D. A. Maltz. Dynamic source routing in ad-hoc wireless networks. Mobile Computing, 1996, 153–81.
    [76] C. E. Perkins, E. M. Royer. Ad hoc on-demand distance vector routing, In Proc. The 2nd IEEE Workshop on Mobile Computing Systems and Applications, Feb 1999, 90 -100.
    [77] http:/ /www.scalable-networks.com, under development
    [78] http://ffmpeg.mplayerhq.hu, under development
    [79] http://mpeg4ip.sourceforge.net, under development
    [80] J. Broch, D. A. Maltz, D. B. Johnson, et al. A performance comparison of multihop wireless ad hoc network routing protocols. In Proc. the Forth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom98), Dallas, USA, October 1998.
    [81] C. E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In Proceedings of SIGCOMM 94 Conference on Communications Architecture, Protocols and Applications, August 1994, 234-244.
    [82] S. Murthy, J. J. Garcia-Luna-Aceves. Congestion-oriented shortest multipath routing, In Proc. The Conference on Computer Communications, the 18th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’99), New York, NY, March 21-25, 1999.
    [83] C. C. Chiang. Routing in clustered multihop, mobile wireless networks with fading channel. In Proc. IEEE Singapore International Conference on Networks (SICON '97), April 1997, 197–211.
    [84] V. D. Park, M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless networks. In Proc. The Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'97), Kobe, Japan, April 7 - 11, 1997.
    [85] C. K. Toh. Associativity-Based Routing for Ad-Hoc Mobile Networks. Wireless Personal Communications, Mar. 1997, 4 (2): 1-36.
    [86] R. Dube, C. D. Rais, K. Y. Wang, et al. Signal stability based adaptive routing (SSA) for ad-hoc mobile networks. IEEE Personal. Communications, Feb. 1997, 36-45.
    [87] Z. Haas. A new routing protocol for the reconfigurable wireless networks. In Proc. IEEE International Conference on Universal Personal Communications (ICUPC'97), San Diego, October 1997.
    [88] D. G. Cantor and M. Gerla. Optimal routing in a packet-switched computer network. IEEE Trans. on Computers, 1974, 23 (10): 1062-1069.
    [89] R. G. Gallager. A minimum delay routing algorithm using distributed computation. IEEE Trans. on Communications, Jan. 1977,25(1): 73-84.
    [90] S. Vutukury and J. J. Garcia-Luna-Aceves. A simple approximation tominimum-delay routing. In Proc. ACM SIGCOMM'99, Cambridge, Massachusetts, September 1 - 3, 1999.
    [91] A. Segall. The modeling of adaptive routing in data communication networks. IEEE Trans. Communications, Jan. 1977, 25 (1): 85-95.
    [92] A. Segall and M. Sidi. A failsafe distributed protocol for minimum delay routing. IEEE Trans. Communiacations, May 1981, 29 (6): 689-695.
    [93] C. G. Cassandras, M. V. Abidi, and D. Towsley. Distributed routing with on-Line marginal delay estimation. IEEE Trans. Communications, Mar. 1990, 38 (3): 348-359.
    [94] D. Bertsekas and R. Gallager. Second derivative algorithm for minimum delay distributed routing in networks. IEEE Trans. Communications, 1984, 32 (9): 911-919.
    [95] S. Doshi, S. Bhandare, T. Brown. An on-demand minimum energy routing protocol for a wireless ad hoc network. ACM SIGMOBILE Mobile Computing and Communications Review, 2002,6 (3): 50-66.
    [96] A. Srinivas and E. Modiano. Finding minimum energy disjoint paths in wireless ad hoc networks. ACM Wireless Networks, November 2005.
    [97] Q. Li, J. Aslam, D. Rus. Online power-aware routing in wireless Ad-hoc networks. In Proceedings of the 7th annual international conference on Mobile computing and networking, July 2001, Rome, Italy, 97-107.
    [98] A. Sankar, Z. Liu. Maximum lifetime routing in wireless ad-hoc networks. In Proc. 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’04), March 7 - 11, 2004, Hong Kong, (2): 1089- 1097.
    [99] R. Cruz, A. Santhanam. Optimal routing, link scheduling and power control in multi-hop wireless networks. In Proc. The Conference on Computer Communications, the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’03), March 30-April 3, 2003, San Franciso, CA, USA, 702-711.
    [100] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Network flows: theory, algorithms, and applications. New Jersy: Prentice Hall, 1993.
    [101] L. Kleinrock. Queueing systems, vol. II: computer applications. New Jersy: Wiley Interscience, 1975.
    [102] D. Bertsekas, R. Gallager. Data networks. Englewood Cliffs, New Jersy: Prentice Hall, 1992.
    [103] IEEE standard for wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, ISO/IEC 8802-11:1999(E), Aug. 1999
    [104] S. Shah, K. Chen and K. Nahrstedt. Dynamic bandwidth management in single-hop ad hoc wireless networks. In Proc. The 1st IEEE International Conference on Pervasive Computing and Commnication (PerCom’03), March 23-26, 2003, Fort Worth, TX, USA.
    [105] L. Chen, T. Sun, G. Yang, et al. Adhoc probe: path capacity probing in wireless ad hoc networks. In Proc. The first IEEE International Conference on Wireless Internet (WICON’05), July 10-15, 2005, Budapest, Hungary.
    [106] IEEE Standard for Wireless LAN Medium Access Control (MAC) and cifications, 802.11, Nov. 1997.
    [107] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Joural on Selected Areas in Communications, Mar. 2000, 18(3): 535-547.
    [108] S. Lu, V. Bharghavan. Fair scheduling in wireless packet networks. IEEE/ACM Transactions on Networking, 1999, 7(4): 473–489.
    [109] P. Bhagwat, A. Krishna, S. Tripathi. Enhancing throughput over wireless LAN’s using channel state dependent packet scheduling. In Proc. The Conference on Computer Communications, 15th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’96), March 24-28, 1996, San Francisco, CA, USA, 1133–1140.
    [110] C. Fragouli, V. Sivaraman, M. Srivastava. Controlled multimedia wireless link sharing via enhanced class-based queuing with channel-state dependent packet scheduling. In Proc. The Conference on Computer Communications, 17th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’98), March 29 - April 2, 1998, San Francisco, CA, USA, (2): 572–580.
    [111] T. S. Eugene, I. Stoica, H. Zhang. Packet fair queueing algorithms for wireless networks with location-dependent errors. In Proc. The Conference on Computer Communications, 17th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’98), March 29-April 2, 1998, San Francisco, CA, USA, (2): 1103-1111.
    [112] S. Shakkottai, R. Srikant. Scheduling real-time traffic with deadlines over a wireless channel. ACM Wireless Networks, 2002, (8): 13-26.
    [113] http://mash.cs.berkeley.edu/ns, under development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700